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The effort to understand the universe is one
of the very few things which lifts
human life a little above the level of farce
and gives it some of the grace of tragedy.

Steven Weinberg, The First Three Minutes
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Supervisor’s Foreword

Einstein’s general theory of relativity is one of the most impressive human
achievements. It superseded Newton’s great work of 1687 to provide us with a new
theory of gravitation that extended Newton’s theory to domains where velocities
could approach that of light and gravitational forces were correspondingly strong.
In the limit that speeds are slow and gravity is weak, Einstein’s theory is well
approximated by Newton’s. This is where modern physics departs from the
Kuhnian story of scientific ‘revolutions’. Old theories are not simply replaced by
new ones. Rather, they become limiting cases of the new theory which will hold
good in extreme situations where the old one cannot remain consistent. Yet,
Einstein’s theory went further than merely extending the domain of applicability of
our theory of gravity. For the first time it provided a collection of differential
equations whose solutions, all of them, describe entire universes. For the first time,
cosmology became a science. Physicists could try to solve Einstein’s equations in
simple cases where there was lots of symmetry to find possible descriptions of our
entire astronomical universe. These solutions could then be tested against the
astronomical evidence and the subject began to resemble other experimental sci-
ences. Although you cannot experiment on the universe—we only have one uni-
verse on display—you can predict correlations that should be observed between
different properties of the same mathematical universe and look to see if they exist.
In this way, cosmology has become a major scientific enterprise. It makes use of a
host of new technologies to create light detectors of previously unimagined sen-
sitivity right across the electromagnetic spectrum and has even begun to see direct
evidence of gravitational waves. It has joined forces with elementary particle
physicists to share insights and constraints on the behaviour of matter at the highest
possible energies. And it has fully exploited the massive increase in computational
ability that allows us to simulate the behaviour of large and complicated agglom-
erations of matter to follow the processes that have led to the formation of galaxies
in the universe.

Einstein’s theory of general relativity is a spectacular success and agrees with all
the observational evidence to extraordinary accuracy. It would be fair to say that the
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agreement between theory and observation is so precise that in certain situations,
like the binary pulsar’s dynamics, it provides us with the surest and most accurate
knowledge that human beings have of anything in their experience. So, why do we
want to go ‘beyond Einstein’ in the words of Adam Solomon’s thesis title? There
are two main reasons. The first is that Einstein’s theory has its limits of reliable
applicability, just as Newton’s theory does. When the density of matter gets too
high, as it does near the apparent beginning of an expanding universe and near the
centre of black holes, we expect quantum mechanics to modify the character of
gravity in a way that will be described by some new theory of quantum gravity.
Perhaps this future theory will modify general relativity so as to remove the ‘sin-
gularities’ that presently signal the beginning and of time at the beginning of the
universe and the end of time in the inexorable contraction at the centres of black
holes? The second reason to look beyond Einstein is of more recent origin. Just 17
years ago, astronomers first discovered that the expansion of the universe smoothly
changed gear from deceleration to acceleration about 4 billion years ago. Why this
occurred is a big mystery. Three different lines of astronomical evidence find the
cause to be a ubiquitous form of energy in the universe—dubbed ‘dark energy’—
that is gravitationally repulsive. Physicists knew that quantum vacuum energy can
have this repulsive effect because of its negative pressure, but no one expected the
effects to be dramatically manifested so late in the universe’s expansion history.
About 70 % of the mass-energy in the universe seems to be in the form of this dark
component. What is this dark energy? Is it just a new type of matter field that we
have not identified and logged into the energy budget of the universe? This is one
line of inquiry that cosmologists explore. The other is to investigate whether there
are extensions of Einstein’s theory of gravity which introduce new gravitational
effects that act to accelerate the expansion of the universe when it is billions of years
old and gravity is weak. These new behaviours of gravity need to be well cir-
cumscribed. They must not produce new adverse effects locally and in parts of
cosmology where observations concur with Einstein’s predictions to high accuracy.
Adam Solomon’s thesis explores a wide class of extensions to Einstein’s theory to
see whether they can potentially explain the observed acceleration of the universe
and account for the existence of galaxies. These extensions cover theories which
include a graviton with a non-zero mass and others, like bigravity, where there are
two underlying spacetime metrics instead of one. These theories are mathematically
more complicated than Einstein’s and contain undesirable possibilities that need to
be understood and excluded. Adam’s thesis contains an elegant and systematic
study of these theories, connecting abstract mathematical studies to astronomical
predictions and observational tests of the theories. This analysis discovers new
ways to solve the equations describing the growth of inhomogeneities and a facility
with the observational data and statistical analysis needed to put them to the test.
Adam combines a very wide range of mathematical skills and astrophysical
understanding to advance our understanding of what a new theory of gravity that
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solves the dark energy problem is allowed to look like. The result is a valuable
comprehensive study that will lead us a step closer towards the solution of the dark
energy problem.

Cambridge, UK Prof. John D. Barrow
August 2016
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Abstract

The accelerating expansion of the Universe poses a major challenge to our
understanding of fundamental physics. One promising avenue is to modify general
relativity and obtain a new description of the gravitational force. Because gravi-
tation dominates the other forces mostly on large scales, cosmological probes
provide an ideal testing ground for theories of gravity. In this thesis, we describe
two complementary approaches to the problem of testing gravity using cosmology.

In the first part, we discuss the cosmological solutions of massive gravity and its
generalisation to a bimetric theory. These theories describe a graviton with a small
mass, and can potentially explain the late-time acceleration in a technically natural
way. I describe these self-accelerating solutions and investigate the cosmological
perturbations in depth, beginning with an investigation of their linear stability,
followed by the construction of a method for solving these perturbations in the
quasistatic limit. This allows the predictions of stable bimetric models to be com-
pared to observations of structure formation. Next, I discuss prospects for theories
in which matter “doubly couples” to both metrics, and examine the cosmological
expansion history in both massive gravity and bigravity with a specific double
coupling which is ghost-free at low energies.

In the second and final part, we study the consequences of Lorentz violation
during inflation. We consider Einstein-aether theory, in which a vector field
spontaneously breaks Lorentz symmetry and couples nonminimally to the metric,
and allow the vector to couple in a general way to a scalar field. Specialising to
inflation, we discuss the slow-roll solutions in background and at the perturbative
level. The system exhibits a severe instability which places constraints on such a
vector–scalar coupling to be at least five orders of magnitude stronger than sug-
gested by other bounds. As a result, the contribution of Lorentz violation to the
inflationary dynamics can only affect the cosmic microwave background by an
unobservably small amount.
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Parts of this thesis have been published in the following journal articles:

Following the tendency of modern research in theoretical physics, most of the
material discussed in this dissertation is the result of research in a collaboration
network. In particular, Chaps. 3–7 were based on work done in collaboration with
Yashar Akrami, Luca Amendola, Jonas Enander, Tomi Koivisto, Frank Könnig,
Edvard Mörtsell, and Mariele Motta, published in Refs. [1-5] while Chap. 8 is the
result of work done in collaboration with John Barrow, published as Ref. [6]. I have
made major contributions to the above, in terms of both results and writing.
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Chapter 1
Introduction

I am always surprised when a young man tells me he wants to
work at cosmology;
I think of cosmology as something that happens to one, not
something one can choose.

Sir William McCrea, Presidential Address, Royal Astronomical
Society

One of the driving aims ofmodern cosmology is to turn theUniverse into a laboratory.
By studying cosmic history at both early and late times, we have access to a range
of energy scales far exceeding that which we can probe on Earth. It falls to us only
to construct the experimental tools for gathering data and the theoretical tools for
connecting them to fundamental physics.

Themost obvious application of this principle is to the studyof gravitation.Gravity
is by far the weakest of the fundamental forces, yet on sufficiently large distance
scales it is essentially the only relevant player; we can understand the motion of the
planets or the expansion of the Universe to impressive precision without knowing
the details of the electromagnetic, strong, or weak nuclear forces.1 As a result, we
expect the history and fate of our Universe to be intimately intertwined with the
correct description of gravity. For nearly a century, the consensus best theory has
been Einstein’s remarkably simple and elegant theory of general relativity [1, 2].
This consensus is not without reason: practically all experiments and observations
have lent increasing support to this theory, from classical weak-field observations
such as the precession of Mercury’s perihelion and the bending of starlight around
the Sun, to the loss of orbital energy to gravitational waves in binary pulsar systems,
observations remarkable both for their precision and for their origin in the strongest
gravitational fields we have ever tested [3].

1Modulo the fact that we need, as input, to know which matter gravitates, and that the quantum field
theories describing these forces are essential to understanding precisely which matter we have.
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2 1 Introduction

Nevertheless, there are reasons to anticipate new gravitational physics beyond
general relativity. In the ultraviolet (UV), i.e., at short distances and high energies,
it is well known that general relativity is nonrenormalisable and hence cannot be
extended to a quantum theory [4]. It must be replaced at such scales by a UV-
complete theory which possesses better quantum behaviour. The focus of this thesis
is on the infrared (IR), i.e., long distances and low energies. While general relativity
is a theoretically-consistent IR theory, the discovery in 1998 that the expansion of the
Universe is accelerating presents a problem for gravitation at the longest distances
[5, 6]. The simplest explanation mathematically for this acceleration is a cosmolog-
ical constant, which is simply a number that we can introduce into general relativity
without destroying any of its attractive classical features. However, from a quantum-
mechanical point of view, the cosmological constant is highly unsatisfactory. The
vacuum energy of matter is expected to gravitate, and it would mimic a cosmological
constant; however, the value it would generate is as much as 10120 times larger than
the value we infer from observations [7–9]. Therefore, the “bare” cosmological con-
stant which appears as a free parameter in general relativity would need to somehow
know about this vacuum energy, and cancel it out almost but not quite exactly. Such a
miraculous cancellation has no known explanation. Alternatively, one could imagine
that the vacuum energy is somehow either rendered smaller than we expect, or does
not gravitate—and theories which achieve this behaviour are known [8, 9]—but we
would then most likely need a separate mechanism to explain what drives the current
small but nonzero acceleration.

For these reasons, it behoves us to consider the possibility that general relativity
may not be the final description of gravity on large scales. To put the problem in
historical context, we may consider the story of two planets: Uranus and Mercury.
In the first half of the nineteenth century, astronomers had mapped out the orbit of
Uranus, then the farthest-known planet, to heroic precision. They found anomalies
in the observed orbit when compared to the predictions made by Newtonian gravity,
then the best understanding of gravitation available. Newton’s theory had not yet
been tested at distances larger than the orbit of Uranus: it was, for all intents and
purposes, the boundary of the known universe. A natural explanation was therefore
that Newtonian gravity simply broke down at such unimaginably large distances,
to be replaced by a different theory. In 1846, French astronomer Urbain Le Verrier
put forth an alternative proposal: that there was a new planet beyond Uranus’ orbit,
whose gravitational influence led to the observed discrepancies. Le Verrier predicted
the location of this hitherto-unseen planet, and within weeks the planet Neptune was
unveiled.

Buoyed by his success, Le Verrier turned his sights to another planet whose orbit
did not quite agree with Newtonian calculations: Mercury, the closest to the Sun.
As is now famous, the perihelion of Mercury’s orbit precessed at a slightly faster
rate than was predicted. Le Verrier postulated another new planet, Vulcan, within
Mercury’s orbit. However, the hypothesised planet was never found, and in the early
parts of the twentieth century, Einstein demonstrated that general relativity accounted
precisely for the perihelion precession. In the case of Mercury, it was a modification
to the laws of gravity, rather than a new planet, which provided the solution.
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We find ourselves in a similar position today. Our best theory of gravity, general
relativity, combined with the matter we believe is dominant, mostly cold dark matter,
predict a decelerating expansion, yet we observe something different. One possibility
is that there is new matter we have not accounted for, such as a light, slowly-rolling
scalar field. However, we must also consider that the theory of gravity we are using
is itself in need of a tune-up.

The project of modifying gravity leads immediately to two defining questions:
what does a good theory of modified gravity look like, and how can we test such the-
ories against general relativity? This thesis aims to address both questions, although
any answerswefindnecessarily comprise only a small slice of a deepfield of research.

Einstein’s theory is a paragon of elegance. It is practically inevitable that this is
lost when generalising to a larger theory. Indeed, it is not easy to even define elegance
once we leave the cosy confines of Einstein gravity. Consider, as an example, two
equivalent definitions of general relativity, each of which can be used to justify the
claim that GR is the simplest possible theory of gravity. First we can say that general
relativity is the theory whose Lagrangian,

L = √−gR, (1.1)

known as the Einstein-Hilbert term, is the simplest diffeomorphism-invariant
Lagrangian that can be constructed out of themetric tensor and its derivatives.2 Alter-
natively, we could look at general relativity as being the unique Lorentz-invariant
theory of a massless spin-2 field, or graviton [4, 10–13].

These serve equally well to tell us why general relativity is so lovely, but they
diverge once we move to more general theories. Consider, for example, modifying
the Lagrangian (1.1) by promoting the Ricci scalar R to a general function f (R),

L = √−g f (R). (1.2)

This is the defining feature of f (R) gravity, a popular theory of modified gravity
[14–16]. One can certainly make the argument that this is mathematically one of the
simplest possible generalisations of general relativity. However, when considered in
terms of its fundamental degrees of freedom, we find a theory in which a spin-0 or
scalar field interacts in a highly nonminimal way with the graviton [17].

Alternatively, one can consider massive gravity, in which the massless graviton
of general relativity is given a nonzero mass. While this has a simple interpretation
in the particle picture, its mathematical construction is so nontrivial that over seven
decades were required to finally find the right answer. The resulting action, given in
Eq. (2.21), is certainly not something one would have thought to construct had it not
been for the guiding particle picture.

There are additional, more practical concerns when building a new theory of
gravity. General relativity agrees beautifully with tests of gravity terrestrially and in
the solar system, and it is not difficult for modified gravity to break that agreement.

2For an introduction to the Lagrangian formulation of general relativity, see Ref. [2].
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While this may be surprising if we are modifying general relativity with terms that
should only be important at the largest distance scales, it is not difficult to see that
this problem is fairly generic. Any extension of general relativity involves adding
new degrees of freedom (even massive gravity has three extra degrees of freedom),
and in the absence of a symmetry forbidding such couplings, these will generally
couple to matter, leading to gravitational-strength fifth forces. Such extra forces
are highly constrained by solar-system experiments. Almost all viable theories of
modified gravity therefore possess screening mechanisms, in which the fifth force
is large cosmologically but is made unobservably small in dense environments. The
details of these screening mechanisms are beyond the scope of this thesis, and we
refer the reader to the reviews [18, 19].

In parallel with these concerns, we must ask how to experimentally distinguish
modified gravity from general relativity. One approach is to use precision tests in the
laboratory [20–27]. Another is to study the effect of modified gravity on astrophys-
ical objects such as stars and galaxies [28–31]. In this thesis we will be concerned
with cosmological probes of modified gravity. Because screening mechanisms force
these modifications to hide locally (with some exceptions), it is natural to look to
cosmology, where the new physics is most relevant. Cosmological tests broadly fall
into three categories: background, linear, and nonlinear. Background tests are typ-
ically geometrical in nature, and try to distinguish the expansion history of a new
theory of gravity from the general relativistic prediction. Considering small perturba-
tions around the background, we obtain predictions for structure formation at linear
scales. Finally, on small scales where structure is sufficiently dense, nonlinear theory
is required to make predictions, typically using N-body computer simulations.

This thesis is concerned with the construction of theoretically-sensible modified
gravity theories and their cosmological tests at the level of the background expansion
and linear perturbations. In the first part, we focus on massive gravity and its exten-
sion to a bimetric theory, or massive bigravity, containing two dynamical metrics
interacting with each other. In particular, we derive the cosmological perturbation
equations for the case where matter couples to one of the metrics, and study the
stability of linear perturbations by deriving a system of two coupled second-order
evolution equations describing all perturbation growth and examining their eigen-
frequencies. Doing this, we obtain conditions for the linear cosmological stability of
massive bigravity, and identify a particular bimetricmodelwhich is stable at all times.
We next move on to the question of observability, constructing a general framework
for calculating structure formation in the quasistatic, subhorizon régime, and then
applying this to the stable model.

After this, we tackle the question of matter couplings in massive gravity and
bigravity, investigating a pair of theories in which matter is coupled to both metrics.
In the first, matter couples minimally to both metrics. We show that there is not
a single effective metric describing the geometry that matter sees, and so there is
a problem in defining observables. In the second theory, matter does couple to an
effective metric.We first study it in the context of bigravity, deriving its cosmological
background evolution equations, comparing some of the simplest models to data, and
examining in depth some particularly interesting parameter choices. We next exam-
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ine the cosmological implications of massive gravity with such a matter coupling.
Massive gravity normally possesses a no-go theorem forbidding flat cosmological
solutions, but coupling matter to both metrics has been shown to overcome this. We
examine this theory in detail, finding several stumbling blocks to observationally
testing the new massive cosmologies.

The remainder of this thesis examines the question of Lorentz violation in the
gravitational sector.We focus on Einstein-aether theory, a vector-tensor model which
spontaneously breaks Lorentz invariance. We study the coupling between the vector
field, or “aether,” and a scalar field driving a period of slow-roll inflation. We find
that such a coupling can lead to instabilities which destroy homogeneity and isotropy
during inflation. Demanding the absence of these instabilities places a constraint on
the size of such a coupling so that it must be at least 5 orders of magnitude smaller
than the previous best constraints.

The thesis is organised as follows. In the rest of this chapter, we present back-
groundmaterial, discussing the essential ingredients of general relativity andmodern
cosmology which will be important to understanding what follows. In Chap. 2 we
give a detailed description of the modified gravity theories discussed in this thesis,
specifically massive gravity, massive bigravity, and Einstein-aether theory, focus-
ing on their defining features and their cosmological solutions. In Chaps. 3 and 4
we examine the cosmological perturbation theory of massive bigravity with matter
coupled to one of the metrics. In Chap.3 we study the stability of perturbations,
identifying a particular bimetric model which is stable at all times, while in Chap.4
we turn to linear structure formation in the quasistatic limit and look for observa-
tional signatures of bigravity. In Chaps. 5–7 we examine generalisations of massive
gravity and bigravity in which matter couples to both metrics. Chapter 5 focuses on
the thorny problem of finding observables in one such theory. In Chap.6 we examine
the background cosmologies of a doubly-coupled bimetric theory, and do the same
for massive gravity in Chap.7. Finally, in Chap.8 we study the consequences of cou-
pling a slowly-rolling inflaton to a gravitational vector field, or aether, deriving the
strongest bounds to date on such a coupling.We conclude in Chap.9 with a summary
of the problems we have addressed and the work discussed, as well as an outlook on
the coming years for modified gravity.

1.1 Conventions

Throughout this thesis we will use a mostly-positive (−+++) metric signature. We
will denote the flat-space or Minkowski metric by ημν . Greek indices μ, ν, . . . =
(0, 1, 2, 3) represent spacetime indices, while Latin indices i, j, . . . = (1, 2, 3) are
used for spatial indices. Latin indices starting from a, b, c, . . . are also used for field-
space and local Lorentz indices. Partial derivatives are denoted by ∂ and covariant
derivatives by ∇. Commas and semicolons in indices will occasionally be used to
represent partial and covariant derivatives, respectively, i.e., φ,μ ≡ ∂μφ and φ;μ ≡
∇μφ. Symmetrisation and antisymmetrisation are denoted by
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Table 1.1 Abbreviations
used throughout this thesis

Abbreviation Expression

BAO Baryon-acoustic oscillations

CDM Cold dark matter

CMB Cosmic microwave
background

FLRW Friedmann-Lemaître-
Robertson-Walker

GR General relativity

SNe Supernovae

VEV Vacuum expectation value

S(μν) ≡ 1

2

(
Sμν + Sνμ

)
, A[μν] ≡ 1

2

(
Aμν − Aνμ

)
, (1.3)

and similarly for higher-rank tensors. In lieu of the gravitational constant G we will
frequently use the Planck mass, M2

Pl = 1/8πG. Cosmic time is denoted by t and its
Hubble rate is H , while we use τ for conformal time with the Hubble rate H . For
brevity we will sometimes use abbreviations for common terms, listed in Table1.1.

1.2 General Relativity

This thesis deals with modified gravity. Consequently it behoves us to briefly
overview the theory of gravity we will be modifying: Einstein’s general relativity.
The theory is defined by the Einstein-Hilbert action,

SEH = M2
Pl

2

∫
d4x

√−gR, (1.4)

where R = gμν Rμν is the Ricci scalar, with gμν and Rμν the metric tensor and Ricci
tensor, respectively. Allowing for general matter, represented symbolically by fields
�i with Lagrangians Lm determined by particle physics, the total action of general
relativity is

S = SEH +
∫

d4x
√−gLm (g,�i ) . (1.5)

Varying the action S with respect to gμν we obtain the gravitational field equation,
the Einstein equation,

Rμν − 1

2
Rgμν = 8πGTμν, (1.6)
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where the stress-energy tensor of matter is defined by

Tμν ≡ − 2√−g

δ
(√−gLm

)

gμν
. (1.7)

It is often convenient to define the Einstein tensor,

Gμν ≡ Rμν − 1

2
Rgμν, (1.8)

which is conserved as a consequence of the Bianchi identity,

∇μGμ
ν = 0. (1.9)

Note that we are raising and lowering indices with themetric tensor, gμν . The Bianchi
identity is a geometric identity, i.e., it holds independently of the gravitational field
equations. The stress-energy tensor is also conserved,

∇μT μ
ν = 0. (1.10)

This is both required by particle physics and follows from the Einstein equation and
the Bianchi identity, which is a good consistency check. A consequence of stress-
energy conservation is that particles move on geodesics of the metric, gμν ,

ẍμ + 

μ
αβ ẋα ẋβ = 0, (1.11)

where xμ(λ) is the position 4-vector of a test particle parametrised with respect
to a parameter λ, an overdot denotes the derivative with respect to λ, and 


μ
αβ =

1
2gμν(gαν,β + gβν,α − gαβ,ν) are the Christoffel symbols.

Einstein’s equation relates the curvature of spacetime to the distribution of matter.
Freely-falling particles then follow geodesics of the metric. The combination of the
Einstein and geodesic equations leads to what we call the gravitational force. John
Wheeler’s description of gravity’s nature is perhaps the most eloquent: “Spacetime
tells matter how to move; matter tells spacetime how to curve” [32].

As discussed above, it seems clear to the eye that Eq. (1.4) is the simplest action one
can construct for the gravitational sector, if one restricts oneself to scalar curvature
invariants. Indeed, the simplicity of general relativity can be phrased in two equivalent
ways. Lovelock’s theorem states that Einstein’s equation is the only gravitational field
equation which is constructed solely from the metric, is no more than second order in
derivatives,3 is local, and is derived from an action [34]. Alternatively, as alluded to
previously, the same field equations are the unique nonlinear equations of motion for

3The requirement that higher derivatives not appear in the equations of motion comes from demand-
ing that the theory not run afoul of Ostrogradsky’s theorem, which states that most higher-derivative
theories are hopelessly unstable [33].


