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A great discovery solves a great problem but
there is a grain of discovery in the solution of
any problem.

- George Pólya, How to solve it.
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Preface

The earliest murmurs of a theory of modular forms can be traced back to the
work of Jacobi in 1829 when he wrote his famous treatise Fundamenta Nova
Theoriae Functionum Ellipticarum dealing with q-series and elliptic functions.
In some parenthetic sense, this was further developed by Riemann, Hur-
witz, Dedekind, Eisenstein, and Kronecker. However, it is in the work of
Ramanujan, in his celebrated paper [29] of 1916 in which he introduced the
τ -function, where we find the seeds of a comprehensive theory. There, Ra-
manujan studied the infinite product (in the variable q) given by

q

∞∏
n=1

(1− qn)
24 (0.1)

which he expands as an infinite series and writes

∞∑
n=1

τ(n)qn.

Ramanujan computes by hand many of these coefficients and makes the
following empirical observations about the integers τ(n):

(i) if (m,n) = 1 then τ(mn) = τ(m)τ(n),
(ii) if p is prime and α ≥ 0 then τ(pα+2) = τ(p)τ(pα+1)− p11τ(pα),

(iii) if p is prime then |τ(p)| ≤ 2p11/2.

Items (i) and (ii) were proved by Mordell in 1917 [23], a year after Ra-
manujan’s paper appeared. But conjecture (iii) defied attempts by many em-
inent mathematicians until 1974, when Deligne [8] resolved it as a corollary
of his solution to the Weil conjectures. In fact, only after Ramanujan’s con-
jecture was reformulated in the context of algebraic geometry and its con-
nection to the Weil conjectures made explicit, did mathematicians realize its
central place in number theory, and mathematics in general.
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xiv Preface

At first, Ramanujan’s conjectures are amazing. Why should coefficents of
the power series defined by the infinite product in (0.1) show such structure?
Why should they be multiplicative?

These questions were first addressed in a serious and fundamental way
by Erich Hecke, who in the 1930’s wrote a sequence of papers enunciating
what we now call the Hecke theory of modular forms. For the most part,
his theory was quite satisfactory in the sense that it explained conceptually
why (i) and (ii) should be true. However, when it came to (iii), the theory
suggested only a general conjecture but could not “explain” why it should
be true. Such an explanation had to await further developments in algebraic
geometry, largely due to Weil and Grothendieck.

Afterwards, in the late 1940’s, Hecke’s theory was further developed on
the one hand by Maass, who noticed the existence of a “real-analytic” coun-
terpart, and by Rankin and Selberg, who developed a theory of L-series and
obtained significant results towards conjecture (iii).

In the 1950’s and 1960’s, Harish-Chandra and, subsequently, Langlands
reformulated the notion of a modular form in the larger framework of rep-
resentation theory of Lie groups. This opened up a new universe linking
number theory and representation theory, and subsequently led to the de-
velopment of the Langlands program in the theory of automorphic repre-
sentations. For a readable account of this connection, we refer the reader to
Kumar Murty’s article “Ramanujan and Harish-Chandra” [26].

In the 1960’s and 1970’s, Hecke’s theory was extended to “higher levels,”
notably by Atkin and Lehner. At the same time, its connection to the the-
ory of elliptic curves, and more generally abelian varieties, forged the link
to arithmetic, algebraic geometry, and more precisely to the theory of Ga-
lois representations. Perhaps the most exciting event in this context was the
insight of Hellegouarch and Frey relating Fermat’s Last Theorem and mod-
ular forms. This led Serre to formulate precise conjectures that paved the
way for a method of attack on Fermat’s Last Theorem. The turning point
was when Ribet showed that if every elliptic curve “arose from a modular
form” (Taniyama’s conjecture) then Fermat’s Last Theorem follows.

Andrew Wiles recalls that when he heard this result, he set himself the
task of proving Taniyama’s conjecture. Wiles completed his proof in 1995.
His solution of Fermat’s Last Theorem required the full force of number
theory, algebraic geometry, and representation theory.

Only a special case of Serre’s conjecture was needed for Fermat’s Last
Theorem, but other cases had important consequences. A landmark theorem
is the two-dimensional reciprocity law for Galois representations. In 2008,
Khare and Wintenberger showed that every two-dimensional “odd” Galois
representation “arises from a modular form.”

This theorem can be viewed as a generalization of Wiles’ work and at
the same time, as the methods are different, it offers yet another (although
equally difficult) resolution to Fermat’s Last Theorem, which is only one of
many conjectures to which the theory of modular forms has been applied.



Preface xv

A conjecture or a problem in mathematics acts like a muse that inspires
further developments, new concepts, and a rich tapestry of fundamental
ideas. The theory of modular forms is an essential part of mathematics and
it is becoming increasingly clear that it will play a central role in the devel-
opment of twenty-first century mathematics. This is our main motivation
for the writing of this book. It is to acquaint the graduate student in a pain-
less manner to the essential ideas of the theory. At the same time, as theory
is sterile without practice, we have tried to invite and engage the student in
this topic through the problem-solving approach. Along with my other two
books, “Problems in Algebraic Number Theory” and ‘Problems in Analytic
Number Theory, ” this book should serve as a practical guide for the seri-
ous student to teach herself or himself the rudiments of number theory and
to embark in the exciting pursuit of research work in this area. At the end,
I have listed some references for further study to assist the student in this
lofty endeavour.

Kingston, Ontario Ram Murty
August 2014
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Part I
Problems



Chapter 1
Jacobi’s q-series

1.1 The q-exponential function

It is not clear exactly how to define a q-series. Some experts humorously
suggest that it is any power series in q. To some extent this may be true.
However, one can say that part of the theory is connected with modular
forms and another part with combinatorics. Euler, Jacobi, Ramanujan and
many others have made expert use of q-series to derive remarkable num-
ber theoretic results ranging from the study of the partition function, the
number of representations of natural numbers as sums of squares to the de-
velopment of exotic continued fractions as is evidenced by the recent book
[7] on the subject. During the last fifty years, more connections have arisen,
most notably with Lie theory and representation theory as well as theoretical
physics. Since the subject is gaining prominence and significance, pointing
to a parallel world of mathematics in which q-analogues of classical theo-
ries exist, and since the prerequisites for the theory are minimal, we found
it fitting to introduce the reader to the world of modular forms through q-
series. Already, one sees several classical results such as Jacobi’s triple prod-
uct identity and his celebrated formula for the number of ways of writing a
natural number as a sum of four squares as immediate consequences. More-
over, as the problem of representing a natural number as a sum of k squares
(with k even) is intimately tied to the theory of modular forms of integral
weight, it seems fitting to begin with a study of how q-series can be used to
study this problem. The number of ways of writing a number as a sum of k
squares with k odd is related to the study of modular forms of half-integral
weight, which is beyond the scope of this book.

To ease the reader into this fascinating world, we begin our study with
the function

Eq(x) = 1 +

∞∑
n=1

xn

(qn − 1)(qn−1 − 1) · · · (q − 1)
,

3© Springer Science+Business Media Singapore 2016 and Hindustan Book Agency 2016
M.R. Murty et al., Problems in the Theory of Modular Forms, HBA Lecture Notes
in Mathematics, DOI 10.1007/978-981-10-2651-5_1
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and view it as the q-analog of the classical exponential function. We work
with Eq(x) as a formal Laurent series. If we define the empty product as 1,
then the series can be written as

Eq(x) =

∞∑
n=0

xn

(qn − 1)(qn−1 − 1) · · · (q − 1)
,

It may not be clear to the reader why this should be considered as an
analog of the exponential function. The underlying “philosophy” of mov-
ing from the world of natural numbers to the q-world seems to be partially
based on the observation that

lim
q→1

qn − 1

q − 1
= n,

so that one views qn−1 (or more precisely (qn−1)/(q−1)) as the q-analog of
the natural number n. Once this is understood, many of the functions in the
q-world become meaningful and exhibit remarkable structural properties.

Exercise 1.1.1. Show that

Eq(x)− Eq
(
x

q

)
=
x

q
Eq
(
x

q

)
.

Exercise 1.1.2. Prove that if |q| > 1 then

Eq(x) =

∞∏
n=1

(
1 +

x

qn

)
.

Exercise 1.1.3. Show that if |q| < 1 then

∞∏
n=0

(1 + qnx) =
∞∑
n=0

q(
n
2)xn

(1− q) · · · (1− qn)
.

Exercise 1.1.4. Prove that if |q| > 1 then

(1 + x)E 1
q
(x) =

1

Eq(x)
.

Deduce that if |q| < 1 then

∞∏
n=0

(1 + qnx)−1 =

∞∑
n=0

xn

(qn − 1) · · · (q − 1)
.
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1.2 Jacobi’s Triple Product Identity

We now give a simple proof of the celebrated identity of Jacobi:

Theorem 1.2.1 (Jacobi Triple Product). If |q| < 1 and x 6= 0 then

∞∏
n=0

(1− q2n+2)(1 + q2n+1x)

(
1 +

q2n+1

x

)
=

∞∑
n=−∞

qn
2

xn. (1.1)

Remark. According to Askey, this was also contained in some unpublished
work of Gauss (see [3]). In our proof of (1.1), we follow Andrews (see [1]).

Proof. By Exercise 1.1.3 we have, upon replacing q by q2 and x by xq,

∞∏
n=0

(1 + xq2n+1) =

∞∑
n=0

qn
2

xn

(1− q2) · · · (1− q2n)

=

∞∑
n=0

qn
2

xn
∏∞
j=0(1− q2n+2j+2)∏∞
j=0(1− q2j+2)

=

∞∏
j=0

(1− q2j+2)−1
∞∑

n=−∞
qn

2

xn
∞∏
j=0

(1− q2n+2j+2),

since for negative n, the product inside the sum is zero. Again by Exercise
1.1.3, replacing q by q2 and replacing x by −q2n+2, we can write the product
inside the summation as

∞∑
m=0

(−1)mqm
2+m+2nm

(1− q2) · · · (1− q2m)
.

The sum under consideration becomes
∞∑

n=−∞
qn

2

xn
∞∑
m=0

(−1)mqm
2+m+2nm

(1− q2) · · · (1− q2m)
.

Interchanging the sums, we get

∞∑
m=0

(−1)m( qx )m

(1− q2) · · · (1− q2m)

∞∑
n=−∞

q(m+n)2xn+m.

The innermost sum is
∞∑

n=−∞
qn

2

xn

and can be factored out. The remaining sum is
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∞∏
j=0

(
1 +

q2j+1

x

)−1

by Exercise 1.1.4 (where we have set q2 for q and q
x for x). Putting everything

together gives the desired result. ut

Exercise 1.2.2 (Euler’s pentagonal number theorem). Show that if |q| < 1
then

∞∏
n=1

(1− qn) =

∞∑
k=−∞

(−1)kq
k(3k−1)

2 .

Theorem 1.2.3 (Jacobi’s formula). If |q| < 1 then

∞∏
n=1

(1− qn)3 =
∞∑
k=0

(−1)k(2k + 1)q
k(k+1)

2 .

Proof. From the triple product identity, with x replaced by −x, we see that

∞∏
n=1

(1− q2n)(1− xq2n−1)(1− x−1q2n−1) =

∞∑
k=−∞

(−x)kqk
2

.

The left hand side has a factor (1−xq) coming from n = 1, and consequently
vanishes when x = 1

q . The same is true of the right hand side. Writing

∞∏
n=1

(1− xq2n−1) = (1− xq)
∞∏
n=1

(1− xq2n+1),

we obtain
∞∏
n=1

(1− q2n)(1− xq2n+1)(1− x−1q2n−1) =
1

1− xq

∞∑
k=−∞

(−x)kqk
2

.

Putting x = 1
q in the left hand side gives

∞∏
n=1

(1− q2n)3.

For the right hand side, we use l’Hopital’s rule to take the limit as x→ 1
q to

get

−1

q

∞∑
k=−∞

(−1)kkq1−k+k2 = −
∞∑

k=−∞

(−1)kkqk
2−k.

We observe that the function f(k) = k2 − k has the property that f(k) =
f(−(k − 1)). Thus, pairing up k and −(k − 1) in the sum, we get that it is



1.3 Jacobi’s two-square theorem 7

−
∞∑
k=1

{(−1)kk + (−1)k−1(1− k)}qk
2−k = −

∞∑
k=1

(−1)k(2k − 1)qk
2−k.

We can rewrite this sum as
∞∑
k=1

(−1)k−1(2(k − 1) + 1)qk(k−1) =

∞∑
k=0

(−1)k(2k + 1)qk(k+1).

Changing q by q
1
2 gives the desired result. ut

Exercise 1.2.4. Prove that
∞∑

n=−∞
(4n+ 1)q2n2+n =

∞∑
k=0

(−1)k(2k + 1)q
k(k+1)

2 .

1.3 Jacobi’s two-square theorem

In this section, our goal is to obtain formulas for the number of ways a nat-
ural number m can be written as a sum of two squares. We recognize this as
the computation of the m-th coefficient in the power series expansion( ∞∑

n=−∞
qn

2

)2

.

We prove:

Theorem 1.3.1.( ∞∑
n=−∞

qn
2

)2

= 1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)
.

An immediate corollary is deduced by expanding the right hand side as a
power series in q. Let rk(n) be the number of ways of writing n as a sum of
k squares.

Corollary 1.3.2. For n ≥ 1, we have r2(n) = 4(d1(n)− d3(n)) where di(n) is the
number of divisors of n congruent to i (mod 4).

The following proof is due to M.D. Hirschhorn [15].

Proof of Theorem 1.3.1. In the Jacobi triple product identity, we put a4q for x
and q2 for q to get

∞∑
n=−∞

a4nq2n2+n =

∞∏
n=1

(1 + a4q4n−1)(1 + a−4q4n−3)(1− q4n).
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Multiply both sides by a and differentiate with respect to a, to obtain

∞∑
n=−∞

(4n+ 1)a4nq2n2+n =

∞∏
n=1

(1 + a4q4n−1)(1 + a−4q4n−3)(1− q4n)

+ a
d

da

{ ∞∏
n=1

(1 + a4q4n−1)(1 + a−4q4n−3)(1− q4n)

}
.

To differentiate the product, it is useful to observe that if

P (a) =

∞∏
n=1

fn(a),

then by taking the logarithmic derivative of both sides, we get

P ′(a)

P (a)
=

∞∑
n=1

f ′n(a)

fn(a)
.

In our case, we get

∞∑
n=−∞

(4n+ 1)a4nq2n2+n =

∞∏
n=1

(1 + a4q4n−1)(1 + a−4q4n−3)(1− q4n)

×

{
1 + a

∞∑
n=1

4a3q4n−1

1 + a4q4n−1
− 4a−5q4n−3

1 + a−4q4n−3

}
.

We now put a = 1 and get

∞∑
n=−∞

(4n+ 1)q2n2+n =

( ∞∏
n=1

(1 + q4n−1)(1 + q4n−3)(1− q4n)

)

×

{
1− 4

∞∑
n=0

(
q4n+1

1 + q4n+1
− q4n+3

1 + q4n+3

)} (1.2)

after changing the index of summation to start from n = 0.
By Theorem 1.2.3 and Exercise 1.2.4, the sum on the left hand side is

∞∏
n=1

(1− qn)3.

This can be rewritten as
∞∏
n=1

(1− q2n−1)3(1− q2n)3.
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The product on the right hand side of (1.2) can be written as

∞∏
n=1

(
1− q4n−2

1− q2n−1

)
(1− q4n) =

∞∏
n=1

(
1− q2n

1− q2n−1

)
,

so we now deduce that
∞∏
n=1

(1− q2n−1)4(1− q2n)2 = 1− 4

∞∑
n=0

(
q4n+1

1 + q4n+1
− q4n+3

1 + q4n+3

)
.

But the left hand side is ( ∞∑
n=−∞

(−1)nqn
2

)2

from the triple product formula. Changing q to −q gives( ∞∑
n=−∞

qn
2

)2

= 1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)
,

which is the desired result. ut

Exercise 1.3.3. Let x4(n) be defined as follows:

x4(n) =


0 if n is even
+1 if n ≡ 1 (mod 4)

−1 if n ≡ 3 (mod 4)

Prove that x4(n) is completely multiplicative. That is, show that x4(mn) =
x4(m)x4(n).

Exercise 1.3.4. Show that

r2(n) = 4
∑
d|n

x4(d).

1.4 Jacobi’s four square theorem

Using results obtained for r2(n), we will derive an explicit formula for r4(n),
the number of ways of writing n as a sum of four squares. This formula is
due to Jacobi who derived it using the theory of elliptic functions. Here, we
will follow a method due to Ramanujan that is completely elementary and
based on the following exercise.
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Exercise 1.4.1. Show that

(a)
1

2

(
cot

θ

2

)
sinnθ =

1

2
+ cos θ + cos 2θ + · · ·+ cos(n− 1)θ +

1

2
cosnθ,

(b) 2(sinmθ)(sinnθ) = cos(m− n)θ − cos(m+ n)θ.

Exercise 1.4.2. For |q| < 1, we let ur = qr

1−qr so that

qr

(1− qr)2
= ur(1 + ur).

Prove that
∞∑
m=1

um(1 + um) =

∞∑
n=1

nun.

Exercise 1.4.3. With notation as in the previous exercise, show that

∞∑
m=1

(−1)m−1u2m(1 + u2m) =

∞∑
n=1

(2n− 1)u4n−2.

We are now ready to prove the following theorem due to Ramanujan.

Theorem 1.4.4. Let θ be real and not a multiple of π. Set

L = L(q, θ) =
1

4
cot

θ

2
+

∞∑
n=1

un sinnθ,

T1 = T1(q, θ) =

(
1

4
cot

θ

2

)2

+

∞∑
n=1

un(1 + un) cosnθ,

T2 = T2(q, θ) =
1

2

∞∑
n=1

nun(1− cosnθ),

where un = qn

1−qn . Then L2 = T1 + T2.

Before we begin the proof of this theorem, we indicate how it implies
Jacobi’s theorem on representing a natural number as a sum of four squares.

Corollary 1.4.5.{
1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)}2

= 1 + 8

∞∑
n=1

n 6≡0 (mod 4)

nqn

1− qn
.

Proof. Put θ = π
2 in Theorem 1.4.4. Then
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L =
1

4
+

∞∑
n=1

qn

1− qn
sinn

π

2
.

If n is even, sinnπ2 = 0 so the right hand side is

1

4
+

∞∑
n=0

q2n+1

1− q2n+1
sin(2n+ 1)

π

2
.

Now, if n is even, sin(2n + 1)π2 = 1 and if n is odd, sin(2n + 1)π2 = −1. In
other words,

4L = 1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)
.

Since cosnπ2 = 0 if n is odd and (−1)
n
2 if n is even, computing T1 and T2 in

Theorem 1.4.4 gives

16T1 = 1− 16

∞∑
m=1

(−1)m−1u2m(1 + u2m),

16T2 = 8

∞∑
m=1

(2m− 1)u2m−1 + 32

∞∑
m=1

(2m− 1)u4m−2.

Putting everything together and using Exercise 1.4.3 gives

16L2 = 16(T1 + T2) = 1 + 8
∞∑
n=1

n 6≡0 (mod 4)

nun,

which is the desired result. ut

Corollary 1.4.6. Let r4(n) be the number of ways of writing n as a sum of four
squares. Then

r4(n) = 8
∑
d|n

d 6≡0 (mod 4)

d.

In particular, r4(n) > 0 for all n ≥ 1.

Proof. We need only invoke Theorem 1.3.1 and Corollary 1.4.5 to deduce that

∞∑
n=0

r4(n)qn =

( ∞∑
n=−∞

qn
2

)4

= 1 + 8

∞∑
n=1

n 6≡0 (mod 4)

nqn

1− qn
.

We write the right hand side as
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1 + 8

∞∑
n=1

n 6≡0 (mod 4)

n

∞∑
m=1

qnm = 1 + 8

∞∑
n=1

qn

 ∑
d|n

d 6≡0 (mod 4)

d

 ,

from which we deduce the desired formula for r4(n). ut

Proof of Theorem 1.4.4. Squaring L, we obtain

L2 =

{
1

4
cot

θ

2
+
∞∑
n=1

un sinnθ

}2

=

(
1

4
cot

θ

2

)2

+
1

2

(
cot

θ

2

) ∞∑
n=1

un sinnθ +

∞∑
m=1

∞∑
n=1

umun sinmθ sinnθ

=

(
1

4
cot

θ

2

)2

+ S1 + S2,

where

S1 =
1

2

(
cot

θ

2

) ∞∑
n=1

un sinnθ

and

S2 =

∞∑
m=1

∞∑
n=1

umun sinmθ sinnθ.

By Exercise 1.4.1,

1

2

(
cot

θ

2

)
sinnθ =

1

2
+ cos θ + cos 2θ + · · ·+ cos(n− 1)θ +

1

2
cosnθ

and
2 (sinmθ) (sinnθ) = cos(m− n)θ − cos(m+ n)θ,

so that

S1 =

∞∑
n=1

un

{
1

2
+ cos θ + cos 2θ + · · ·+ cos(n− 1)θ +

1

2
cosnθ

}
and

S2 =
1

2

∞∑
m=1

∞∑
n=1

umun {cos(m− n)θ − cos(m+ n)θ} .

In other words,

L2 =

(
1

4
cot

θ

2

)2

+ c0 +

∞∑
k=1

ck cos kθ
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for certain constants ck, after re-arranging S1 + S2 as a cosine series. Now

c0 =
1

2

∞∑
n=1

(
un + u2

n

)
=

1

2

∞∑
n=1

nun,

by Exercise 1.4.2. For k ≥ 1, we have

ck =
1

2
uk +

∞∑
n=k+1

un +
1

2

∑
m−n=k

umun +
1

2

∑
n−m=k

umun −
1

2

∑
m+n=k

umun,

where m,n ≥ 1 in all of the summations. We may rewrite this as

ck =
1

2
uk +

∞∑
j=1

uk+j +

∞∑
j=1

ujuj+k −
1

2

k−1∑
j=1

ujuk−j .

It is easily checked that

ujuk−j = uk(1 + uj + uk−j)

and
uk+j + ujuk+j = uk(uj − uk+j)

so that

ck = uk

1

2
+

∞∑
j=1

(uj − uk+j)−
1

2

k−1∑
j=1

(1 + uj + uk−j)

 .

The first sum telescopes and we obtain

ck = uk

{
1

2
+ (u1 + u2 + · · ·+ uk)− 1

2
(k − 1)− (u1 + u2 + · · ·+ uk−1)

}
= uk(1 + uk −

1

2
k).

Hence

L2 =

(
1

4
cot

θ

2

)2

+
1

2

∞∑
n=1

nun +
∞∑
k=1

uk(1 + uk −
1

2
k) cos kθ

=

(
1

4
cot

θ

2

)2

+

∞∑
k=1

uk(1 + uk) cos kθ +
1

2

∞∑
k=1

kuk(1− cos kθ),

which is the desired result. ut

The methods utilised above to determine formulas for r2(n) and r4(n)
can be extended for other values r2k(n) for certain values of k. We refer the
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reader to consult [11] for more examples. In [11], the student will also find a
discussion for finding formulas for rk(n) when k is odd and this is intimately
connected with the theory of modular forms of half-integral weight which
is beyond the scope of this book.

1.5 Supplementary problems

Exercise 1.5.1. Define τ(n) by

q

∞∏
n=1

(1− qn)24 =

∞∑
n=1

τ(n)qn.

Show that τ(n) is odd if and only if n = (2m+ 1)2 for some m.

Exercise 1.5.2. Let rk(n) be the number of ways of writing n as a sum of k squares.
Show that

rk(n) =

n∑
a=0

ri(a)rk−i(n− a)

for any i satisfying 1 ≤ i ≤ k.

Exercise 1.5.3. Define the q-logarithm function Lq(x) as

Lq(x) =

∞∑
n=1

xn

qn − 1
.

Suppose |x| < |q| and |q| > 1. Show that

Lq(x)− Lq
(
x

q

)
=

x

q − x
.

Deduce that

Lq(x) =

∞∑
n=1

x

qn − x
.

Exercise 1.5.4. Show that if |x| < |q| and |q| > 1 then

Lq(x) =
xE ′q(−x)

Eq(−x)
,

where the derivative is with respect to x.



Chapter 2
The Modular Group

2.1 The full modular group

Exercise 2.1.1. Let R be a commutative ring with identity. Show that the set

SL2(R) =

{(
a b
c d

)
:
a, b, c, d ∈ R
ad− bc = 1

}
forms a group under matrix multiplication.

The (full) modular group SL2(Z) plays a pivotal role in the theory of mod-
ular forms. One also considers PSL2 (Z) = SL2(Z) /{±I}. The relationship
of SL2(Z) to SL2(R) is similar to the relationship of Z to R in the sense that
Z is a discrete subgroup of R and SL2(Z) is a discrete subgroup of SL2(R).
We will show below that SL2(Z) is generated by the elements

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

Theorem 2.1.2. The matrices S and T generate SL2(Z).

Proof. Observe that

Tn =

(
1 n
0 1

)
so that

Tn
(
a b
c d

)
=

(
a+ nc b+ nd
c d

)
. (2.1)

Also S2 = −I and

S

(
a b
c d

)
=

(
−c −d
a b

)
.
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Now let g =

(
a b
c d

)
be any element of SL2(Z). If c = 0, then ad = 1

implies that a = d = ±1. In this case

g = ±
(

1 b′

0 1

)
= ±T b

′
.

where b′ = ±b. Since S2 = −I , either g = T b
′

or S2T b
′
. If c 6= 0, we proceed

as follows. Without loss of generality we may suppose |a| ≥ |c|, for oth-
erwise we can apply S to arrange this. By the Division Algorithm, we can
write a = cq + r with 0 ≤ r < |c|. Then T−qg has upper left entry r = a− qc
which is smaller than |c|. Applying S switches the rows (with a sign change)
and so we can iterate the process if r 6= 0. After a finite number of steps, we
are reduced to the case c = 0 and we are done. ut

Exercise 2.1.3. Show that S has order 4, ST has order 6, and T has infinite order.

Exercise 2.1.4. Show that SL2(Z) is generated by two elements of finite order,
namely S and ST of order 4 and 6 respectively.

Exercise 2.1.5. Show that any homomorphism

φ : SL2(Z)→ C×

has image contained in the finite subgroup of C× consisting of 12th roots of unity.

Exercise 2.1.6. Show that SL2(Z) is generated by

T =

(
1 1
0 1

)
and U =

(
1 0
1 1

)
.

Exercise 2.1.7. Suppose that (c, d,N) = 1. Show that there are elements c′ =
c+ tN and d′ = d+ sN for some integers s, t such that (c′, d′) = 1.

2.2 Subgroups of the modular group

For each natural number N , the principal congruence subgroup of level N ,
denoted Γ(N), is the group{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N)

}
.

In particular, Γ(1) = SL2(Z) .

Exercise 2.2.1. Show that the natural map


