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Preface

Overview

The advent of the digital information and communication era has resulted in image

processing and computer vision playing more important roles in our society today.

These roles include creating, delivering, processing, visualizing, and making deci-

sions from information in an efficient and visually pleasing manner.

The term digital image processing or simply image processing refers to com-

prehensively processing picture data by a digital computer. The term computer
vision refers to computing properties of the three-dimensional world from one or

more digital images.

The theoretical bases of image processing and computer vision include mathe-

matics, statistics, signal processing, and communications theory. In a wide variety

of theories for image processing and computer vision, optimization plays a major

role. Although various optimization techniques are used at different levels for those

problems, there has not been a sufficient amount of effort to summarize and explain

optimization techniques as applied to image processing and computer vision.

The objective of this book is to present practical optimization techniques used in

image processing and computer vision problems. A generally ill-posed problem is

introduced and it is used to show how this type of problem is related to typical

image processing and computer vision problems.

Unconstrained optimization gives the best solution based on numerical minimi-

zation of a single, scalar-valued objective function or cost function. Unconstrained
optimization problems have been intensively studied, and many algorithms and

tools have been developed to solve them. Most practical optimization problems,

however, arise with a set of constraints. Typical examples of constraints include

(a) prespecified pixel intensity range, (b) smoothness or correlation with neighbor-

ing information, (c) existence on a certain contour of lines or curves, and (d) given

statistical or spectral characteristics of the solution.
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Regularized optimization is a special method used to solve a class of constrained

optimization problems. The term regularization refers to the transformation of an

objective function with constraints into a different objective function, automatically

reflecting constraints in the unconstrained minimization process. Because of its

simplicity and efficiency, regularized optimization has many application areas,

such as image restoration, image reconstruction, and optical flow estimation.

Optimization-Problem Statement

The fundamental problem of optimization is to obtain the best possible decision in

any given set of circumstances. Because of its nature, problems in all areas of

mathematics, applied science, engineering, economics, medicine, and statistics can

be posed in terms of optimization.

The general mathematical formulation of an optimization problem may be

expressed as

min

x2RN f xð Þ subject to x2C; ð1:1Þ

where f(x) represents the objective function, C the constraint set in which the

solution will reside, and RN the N-dimensional real space.

Various optimization problems can be classified based on different aspects. At

first, classification based on the properties of the objective function f(x) is:

1. Function of a single variable or multiple variables,

2. Quadratic function or not, and

3. Sparse or dense function.

A different classification is also possible based on the properties of the constraint

C as:

1. Whether or not there are constraints,

2. Defined by equation or inequality of constraint functions, i.e.,C ¼ x
�
�c xð Þ ¼�

0g
or C ¼ x

�
�c xð Þ � 0

� �

, where c(x) is termed the constraint function, and

3. The constraint function is either linear or nonlinear.

If, for example, we want to reduce random noise from a digital image, a simple

way is to minimize the extremely high-frequency component while keeping all

pixel intensity values inside the range [0, 255]. In this case, the objective function of

multiple variables represents the high-frequency component. The range of pixel

intensity values plays a role in inequality constraints.
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Optimization for Image Processing

Various optimization techniques for image processing can be summarized as, but

are not limited to, the following:

1. Image quantization: The optimum mean square (Lloyd-Max) quantizer design.

2. Stochastic image models: Parameter estimation for auto-regressive (AR), mov-

ing average (MA), or auto-regressive-moving average (ARMA) model.

3. Image filtering: Optimal filter design and Wiener filtering.

4. Image restoration: Wiener restoration filter, constrained least squares (CLS)

filter, and regularized iterative method.

5. Image reconstruction: Convolution/filtered back-projection algorithms.

6. Image coding: Energy compaction theory and optimum code-book design.

Optimization for Computer Vision

Some examples of optimization techniques for computer vision are summarized as:

1. Feature detection: Optimal edge enhancer, ellipse fitting, and deformable con-

tours detection.

2. Stereopsis: Correspondence/reconstruction procedures, three-dimensional

image reconstruction.

3. Motion: Motion estimation, optical flow estimation.

4. Shape from single image cue: Shape from shading, shape from texture, and

shape from motion.

5. Recognition

6. Pattern matching

Organization of This Book

This book has five self-contained parts. In Part I, Chap. 1 introduces the scope and

general overview of the material. Chapter 1 gives an introduction into ill-posed

problems. This chapter also discusses practical reasons why many image processing

and computer vision problems are formulated as ill-posed problems. Chapter 1 also

presents typical examples of ill-posed problems in image processing and computer

vision areas. Chapter 2 discusses different techniques to select regularization

parameter.

Part II summarizes the general optimization theory that can be used to develop a

new problem formulation. Practical problems are solved using the optimization

formulation. Chapter 3 presents a general form of optimization problems and

summarizes frequently used terminology and mathematical background. Chapters

4 and 5 describe in-depth formulation and solution methods for unconstrained and
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constrained optimization problems, respectively. Constrained optimization prob-

lems are more suitable for modeling real-world problems. This is true because the

desired solution of the problem usually has its own constraints.

In Part III, we discuss regularized optimization, or simply regularization, that

can be considered a special form of a general constrained optimization. In Chap. 6,

frequency-domain regularization is discussed. Chapters 7 and 8 describe iterative

type implementations of regularization and fusion-based implementation of

regularization.

Part IV provides practical examples for various optimization technique applica-

tions. Chapters 9, 10, 11, and 12 give some important applications of

two-dimensional image processing and three-dimensional computer vision.

Appendices summarize commonly used mathematical background.

Knoxville, TN Mongi A. Abidi

Idaho Falls, ID Andrei V. Gribok

Seoul, Republic of Korea Joonki Paik
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Chapter 1

Ill-Posed Problems in Imaging and
Computer Vision

1.1 Introduction

In many image processing problems, we need to estimate the original complete data

sets, generally from incomplete and, most often, from degraded observations. One

simplified example is to estimate the original pixel intensity value, which has been

attenuated in the imaging system, without any correlation with neighboring pixels.

If we know the nonzero attenuation factor for the imaging system, we can easily

estimate the original value by multiplying by this attenuation factor. Figure 1.1

shows the corresponding attenuation and the restoration processes.

As a second example, suppose we estimate the original pixel intensity value by

averaging this pixel with eight neighboring pixels as shown in Fig. 1.2. This

example is frequently used in simplifying the out-of-focus blur in an imaging

system. As shown in Fig. 1.2a, a pixel intensity value is distributed into the

neighborhood on the imaging plane. As a result, a pixel value in the imaging

plane is determined by integrating partial contributions of neighboring pixels in

the object plane, as shown in Fig. 1.2b. In order to have mathematical representa-

tion of the two-dimensional (2D) signals and systems, we use the row-ordered

(or lexicographically ordered) vector-matrix notation [jain89]. If we assume that

both the input image contained in the object plane and the observed image

contained in the imaging plane are N � N, the pixel averaging process can be

represented as

Du ¼ f ; ð1:1Þ

where u and f represent N2 � 1 input and output images, respectively, and D the

N2 � N2 matrix, such that
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Fig. 1.1 A diagram illustrating pixel attenuation followed by restoration
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Fig. 1.2 (a) Simplified out-of-focus process and (b) the corresponding model obtained by

averaging pixels in the neighborhood
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D ¼

D1 D1 0 � � � 0

D1 ⋱ ⋱ ⋱ ⋮

0 ⋱ ⋱ ⋱ 0

⋮ ⋱ ⋱ ⋱ D1

0 � � � 0 D1 D1

26666666664

37777777775
, where D1 ¼

1 1 0 � � � 0

1 ⋱ ⋱ ⋱ ⋮

0 ⋱ ⋱ ⋱ 0

⋮ ⋱ ⋱ ⋱ 1

0 � � � 0 1 1

26666666664

37777777775
:

ð1:2Þ

See Appendix A for more details of this formulation.

To estimate u from f, we can multiply D�1 to the left-hand side of f, such that

û ¼ D�1f , where û denotes a calculated estimate of u. Keep in mind that in order to

compute the inverse of a matrix, the matrix must be nonsingular. One also will

recall that a nonsingular matrix has a nonzero determinant. It is desirable for the

matrix D to be well conditioned. This means that a bounded perturbation in the

observed data f results in a bounded error in the estimated solution û. In this

example, û is a good estimate, in some sense, because D is assumed to have an

inverse and assumed to be well conditioned [golub96]. However, D becomes ill

conditioned as the number of averaged pixels increases. Even when D has an

inverse, the estimate from observed data, being possibly corrupted by noise, is

not reliable if this matrix is ill conditioned. This means bounded perturbations in the

observed data may result in unbounded errors in the estimated solution.

This second example deals with a simple estimation problem in which the

observed data and the solution have the same dimensions. This results in the

estimation process outcome being equivalent to multiplying the inverse of the

distortion matrix D by the observed data f. In many engineering problems, however,

the observed data and the solution generally have different dimensions and char-

acteristics. For this reason, we need a more general description of the characteristics

of inverse problems.

1.2 The Concepts of Well Posedness and Ill Posedness

J. Hadamard introduced the concept of a well-posed problem, resulting from

physical mathematical models, to clarify the most natural boundary conditions for

various types of differential equations in the early 1900s [tikhonov77]. As men-

tioned previously, a linear equation with a well-conditioned matrix is a good

example of a well-posed problem. A formal definition of well posedness is now

presented.

We consider a solution of any quantitative problem, where the solution u is to be
estimated from given data f and the operator A, which relates u and f, such as

A: u ! f . We shall consider u and f as elements of metric spaces U and F with

metrics ρU (u1, u2) for u1, u22U and ρF ( f1, f2) for f 1, f 22F.

1.2 The Concepts of Well Posedness and Ill Posedness 5
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Figure 1.3 shows the relationships among spaces, elements, the operator, and

metrics. Frequently, the Euclidean distance is used for metrics ρU and ρF. U and

F are then assumed to be Hilbert spaces.

The problem of determining the solution u in the space U from the given data f in
the space F is said to be well posed on the pair of metric spaces (U,F) if the
following three conditions are satisfied:

1. For every element f 2F, there exists a solution u in the space U.
2. The solution is unique.

3. The problem is stable on the spaces (U,F).

The problem is otherwise ill posed. For a long time, it was assumed that a

mathematical problem must satisfy the above conditions and that an applied

problem should be formulated in the same manner [courant62]. This assumption,

however, was revealed to be invalid after many physical phenomena were studied.

1.3 Ill-Posed Problems Described by Linear Equations

In general, ill-posed problems arise in a wide variety of applied physics and

engineering areas such as nuclear physics, plasma physics, radiophysics, and

geophysics as well as electrical, nuclear, and mineral engineering. In order to

generalize the solution of the linear equation (1.1), we need the following operator

equations of the first class1:

Au ¼ f , ð1:3Þ

U F
A

A

u1

u2

rU(u1,u2)

f2

f1

rF(f1,f2)

f = A(u), u åU, f åF 

.

. .

.

Fig. 1.3 Relationships

among spaces, elements, the

operator, and metrics

1If u is defined on the discrete space, each element of f in (1.3) represents a weighted sum, and we

call it the linear or the first order operation. On the other hand, if u is defined on the real space, the
corresponding operation is called the first class instead of the first order.
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where f represents the given, incomplete, or distorted data, u the complete or

original data to be estimated, and A the operator which can have various forms.

Suppose u(t) is an unknown function in space U, f(t) a known function in space

F, and that operator A is defined by

Au ¼
ð b

a

K t; sð Þu sð Þds: ð1:4Þ

Equation (1.3) then becomes the Fredholm integral equation of the first kind, such

that ð b

a

K t; sð Þu sð Þds ¼ f tð Þ, for c � t � d; ð1:5Þ

where [c, d] represents the domain on which f is defined.
Equation (1.5) is almost always an ill-posed problem. This is true because of the

instability resulting from a bounded perturbation in the given data causing an

unbounded value of the integration in Eq. (1.5). Detailed analysis about the

existence and stability of a solution for Eq. (1.5) can be found in [tikhonov77].

In this section we will describe ill-posed problems by analyzing a discrete

counterpart of Eq. (1.5). This discrete counterpart better represents digital image

processing and computer vision problems.

In Eq. (1.3), suppose that u is an unknown vector, f is a known vector, and the

A operator represents a square matrix D, with elements dij. Equation (1.3) then

becomes a linear equation having an N � N square matrix D, such that

Du ¼ f : ð1:6Þ

When U and F represent Hilbert spaces (u2U and f 2F), the problem denoted by

Eq. (1.6) is well posed if there exists a unique least square solution which contin-

uously depends on the data [nashed81].

If we consider Eq. (1.6) as the discretization of an ill-posed continuous problem

given in Eq. (1.5), quantization error and noise may be added to the data, as in

Eq. (1.7).

Duþ v ¼ f ; ð1:7Þ

where the Dmatrix has a number of zero, or very small singular values. As a result,

ill posedness of the continuous problem translates into an ill-conditioned matrix D,
with additive quantization error v [kats91]. Various types of difficulties exist in

solving an ill-conditioned linear equation as discussed below.

• Singularity check: If D is nonsingular, a unique solution vector u exists. If D is

singular, a solution which is not unique only exists when a special condition is

satisfied. Because we want to have a unique solution, it is generally necessary to

1.3 Ill-Posed Problems Described by Linear Equations 7



check the singularity of D before beginning to solve the linear equation.

A singularity check for the N � N square matrix can be made by investigating

the determinant of D. This requires approximately N3 operations. When the

dimension of the system becomes large, a singularity check is a significant

burden.

• Observation and numerical errors: In practical problems, we cannot avoid

observation errors incorporated with data. With observation errors, the linear

equation can be rewritten as eDeu ¼ ef , where jj eD � D jj� δ and jj ef � f jj� δ.
In this case, the symbol� is used to represent observed or measured data. Even if

D is nonsingular, eDmay become singular or near singular. Furthermore, the error

in the solution jj eu � u jj may not be bounded by a sufficiently small value.

In either case, or both, a stable and meaningful solution cannot be obtained.

1.4 Solving Ill-Posed Problems

It is not practical to calculate the solution of ill-posed problems by the direct

method. In this section we introduce a selection method which serves as a general

approach for estimating an approximate solution to the ill-posed problem. In the

case of the ill-posed problem, approximate solutions are determined that are stable

under small changes in the initial data based on the use of supplementary informa-

tion. The concept of the selection method is to obtain multiple solutions of well-

posed problems that are near the original ill-posed problem, in some sense. Next,

one additional problem is formulated based on additional information from prior

well-posed problem solutions.

Example 1.1 Consider the relationship

Du ¼ f ; ð1:8Þ

whereD ¼ 2 1

2 2

� �
and u ¼ 1

1

� �
. The operation of Du yields the vector, f ¼ 3

4

� �
.

Now suppose that we desire the solution u, given D and f. Since matrix D is

invertible, the problem is well posed. We can solve for u directly by calculating

D�1, that is, u ¼ D�1f ¼ 1 �0:5
�1 1

� �
3

4

� �
¼ 1

1

� �
:

Alternatively, assume we know that the solution for u exists inside the circle of

radius 2 and centered at 1; 1½ �T. If we have three candidate solutions in the circle,

a ¼ 0; 0½ �T, b ¼ 1; 0½ �T, and c ¼ 2; 0½ �T, then calculate Da ¼ 0; 0½ �T, Db ¼ 2; 2½ �T,
andDc ¼ 4; 4½ �T. Finally, we choose c as the approximate solution based on the fact

that Dc is the closest to f in the Euclidean distance sense. This selection process is

depicted in Fig. 1.4.
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To describe the selection method for generally ill-posed problems, we consider

an operator equation of the first kind

Au ¼ f ; ð1:9Þ

where u and f belong to metric spaces U and F, respectively, and A represents an

operator that maps U onto F. Given subclass M � U, the general selection method

is defined by calculating a class of Au for u2M and then taking u0 such that

ρF Au0, fð Þ ¼ inf

u2M
ρF Au, fð Þ; ð1:10Þ

where u0 is determined such that ρF (Au, f ) is minimized over u2M.

The selection method can be accepted for solving a wide variety of ill-posed

problems due to the use of the following proposition.

Proposition 1.1 If, for un2M, ρf (Aun, f ) approaches zero as n becomes infinitely
large, then ρU un; uTð Þ ! 0 also approaches zero with infinitely large n, where uT
represents the exact solution. This proposition can be proved by using the following
lemma.

Lemma 1.1 Suppose that a compact subset U of a metric space U0 is mapped onto
a subset F of a metric space F0. If the mappingU ! F is continuous and one to one,
the inverse mapping F ! U is also continuous.

Proof of this lemma can be found in [tikhonov77]. An element of eu2M
minimizing the functional ρF (Au, f ) on the set M is called a quasisolution of

Eq. (1.9).

1

1

2

3

4

2 3 4

a b c

u
•

•

• ••

f

Fig. 1.4 An example of the

selection method for

solving an approximated

linear equation with

supplementary information
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1.5 Image Restoration

Any image acquired by optical, electronic, or numerical means cannot be free from

degradation due to the inherent errors produced in sensing, transmitting, and

processing the image. Image restoration is concerned with estimating an image

and making it as close as possible to the original image prior to degradation. The

degradation may occur in the form of sensor noise, out-of-focus blur, motion blur,

random atmospheric turbulence, and so forth. Most forms of image degradation can

be represented, or approximated, by the linear equation

y ¼ Dxþ η; ð1:11Þ

where y and x represent vectors whose elements are sets of two-dimensionally

distributed pixel intensity values of the observed and original images, respectively.

Matrix D represents a degradation operation. Noise vector η plays a role in

incorporating sensor noise and numerical errors into the degradation process

[jain89, kats91]. In the previous section, Fig. 1.2b and Eqs. (1.1) and (1.2) showed

a simple example for image degradation.

Accuracy of the solution of Eq. (1.11) depends on both the conditioning of the

matrix D and the amount of noise η. Intuitively, the conditioning of a matrix (i.e.,

the accuracy of the represented information) becomes less reliable as the size and

bandwidth of the matrix increases. Due to the nature of the general image degra-

dation model, matrix D is almost always ill conditioned. In other words, Eq. (1.11),

which deals with a large-size image and severe distortion, is an ill-posed problem.

Because matrixD is either singular or ill conditioned, an approximate solution of

the transformed, well-posed equation is used to replace the original solution. One

popular such transformation is given by

b ¼ Tx; ð1:12Þ

where T ¼ DTDþ λCTC and b ¼ DTy. If we assume that λ is equal to zero, we can
easily see that the solution for Eq. (1.12) is identical to the solution for Eq. (1.11) by

ignoring noise η. However, matrix DTD is better conditioned than D because the

energy of diagonal elements increases by multiplying the matrix by itself. If λ has
an appropriate value, the energy of T is further concentrated on the diagonal

elements with a suitable choice of matrix C, which serves as a high-pass filter in

many signal restoration problems. See Sects. 1.9, 1.10, and 1.11 for a more detailed

analysis and implementation of matrix C.
In transforming the ill-posed problem into the well-posed one, supplementary or

a priori information about the solution is incorporated by using the filtering termCTC.
By appropriately selecting the value λ, we can make matrix T as well conditioned as

desired.

Figure 1.5 shows the entire process of image degradation and the corresponding

restoration. The 256� 256 8-bit gray-level image is used for the original data x. As
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the degradation operation, a 7� 7 pixel averaging (blurring) and 40 dB additive

noise are used. When we directly solve the ill-posed problem, we usually get a very

poorly estimated image. On the other hand, when we solve the translated well-

posed equation, we get an acceptably well-estimated image. In transforming the

ill-posed problem into a well-posed one, we use supplementary smoothness infor-

mation, which assumes that the original image does not have abruptly changed data

patterns.

1.6 Image Interpolation

Image interpolation is used to obtain a higher-resolution image from a

low-resolution image. Image interpolation is very important in high-resolution or

multi-resolution image processing. More specifically, it can be used in changing the

format of various types of images and videos and in increasing the resolution of

images in a purely digital or numerical method.

Let xC ( p, q) represent a two-dimensional spatially continuous image, and let

x(m, n) represent the corresponding digital image obtained by sampling xC ( p, q),
with sampling size N � N, such that

x m; nð Þ ¼ xC mTv, nThð Þ, for m, n ¼ 0, 1, . . . ,N � 1 ð1:13Þ

where Tv and Th represent the vertical and the horizontal sampling intervals,

respectively. In a similar way, the image with four times lower resolution in both

horizontal and vertical directions can be represented as

D +

Solve
y = Dx

Solve
b = Tx

Original Image
x

Degraded
Image y

7x7
Blur

40dB Additive
Noise h

Fig. 1.5 General image degradation and restoration processes
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x1=4 m; nð Þ ¼ 1

16

X3
i¼0

X3
j¼0

x 4mþ i, 4nþ jð Þ, for m, n ¼ 0, 1, . . . ,
N

4
� 1; ð1:14Þ

where the subscript 1/4 represents four times downsampling.

Two different sampling grids for images in Eqs. (1.13) and (1.14) are shown in

Fig. 1.6a. Array structures of photodetectors corresponding to the images in

Eqs. (1.13) and (1.14) are shown in Fig. 1.6b, c, respectively.

A discrete linear space-invariant degradation model for an N
4
� N

4
low-resolution

image, which is obtained by subsampling the originalN � N high-resolution image,

can be given as

y ¼ Hxþ η; ð1:15Þ

where the N2 � 1 vector x represents the lexicographically ordered high-resolution

image and N
4

� �2 � 1 vectors y and η the subsampled low-resolution and noise

images, respectively. The N
4

� �2 � N2 matrix H represents the series of low-pass

filtering and subsampling and can be written as

H ¼ H1 	 H1; ð1:16Þ

where	 represents the Kronecker product and the N
4

� �� Nmatrix H1 represents the

one-dimensional low-pass filtering and subsampling by a factor of 4, such as

H1 ¼ 1

4

1 1 1 1 0 0 0 0 � � � 0 0 0 0

0 0 0 0 1 1 1 1 � � � 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 0 0 0 0 0 0 � � � 1 1 1 1

266664
377775:
ð1:17Þ

Fig. 1.6 Relationship between two images with different resolutions: (a) Sampling grids for two

different images; “O” for x1/4 and “X” for x, (b) an array structure of photodetectors for x(m, n) and
(c) an array structure of photodetectors for x1/4(m, n)

12 1 Ill-Posed Problems in Imaging and Computer Vision



To estimate the original high-resolution image from the low-resolution obser-

vation given in Eq. (1.15), we need to solve the corresponding inverse problem.

Because H is not a square matrix, a unique solution does not exist for the inverse

problem. Instead, we may obtain the solution that minimizes

f xð Þ ¼ ����y� Hx
����2; ð1:18Þ

which is clearly an ill-posed problem because the solution is not unique. To select

one good solution from the set of feasible solutions, we must use additional

information about the solution, such as smoothness or finite bandwidth. One typical

way to incorporate the additional information into the minimization process is to

minimize

f xð Þ ¼ ����y� Hx
����2 þ λ

����Cx����2; ð1:19Þ

where C represents a filter that extracts a certain kind of frequency component, and

λ the scalar value that controls the utilization of additional information.

1.7 Motion Estimation

Motion estimation is one of the fundamental problems in image processing and

computer vision. In approaching this problem, two-dimensional image plane

motion estimation serves as a theoretical basis of motion-compensated video

coding standards. Three-dimensional object motion estimation is used for

reconstructing three-dimensional shapes and object tracking systems.

Consider a pair of similar images which can be obtained from either two

adjacent image frames in a moving image sequence, stereo image pairs, or a pair

of synthetic aperture radar (SAR) images. Those images can be depicted as in

Fig. 1.7. The motion estimation problem can be posed as the estimation of image

at time t at time t +Δt 

dx

dy

P'

P' = P + d =  

P

P = y1 + dy
x1 + dx

y1 + dy
x1 + dx⎡ ⎤

⎦
⎤
⎦ ⎣

⎡
⎣

Fig. 1.7 A pair of images

in which the point P in the

left image moves onto P0 in
the right image
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plane correspondence vectors or simply motion vectors denoted by d ¼ dx; dy½ �T.
Let I(x, y, t) be the intensity value of the (x, y) -th pixel at time t. We can then write

I xþ dx, yþ dy, tþ Δtð Þ ¼ I x; y; tð Þ; ð1:20Þ

where we assume that there is no intensity variation between two corresponding

points.

Because the correspondence vector relates two different positions in each image

frame, the motion estimation problem can be considered as a correspondence

problem.

Among various motion vector estimation methods, the block-matching algo-

rithm is one that minimizes the sum of absolute difference in the neighborhood of

the point of interest, such as

minimize f dx; dyð Þ ¼
X
x;yð Þ2S

I xþ dx, yþ dy, tþ Δtð Þ � I x; y; tð Þj j; ð1:21Þ

where S represents the neighborhood for the point of interest.

It is well known that motion estimation cannot be free from the following three

problems [tekalp95].

1. Existence occluded problem: On the region, no correspondence can be

established.

2. Uniqueness problem: If, for example, a line moves along a certain direction,

many different displacements can match the two lines. It is called an aperture

problem.

3. Continuity problem: Motion estimation is highly sensitive to the presence of

noise. A small amount of noise may result in a large deviation in the estimated

motion vector.

Because of the above-stated problems, motion estimation is an ill-posed prob-

lem. Therefore, the estimated motion vector, without proper constraints, cannot be a

good approximation for the real motion.

1.8 Volumetric Models for Shape Representation

Fundamental problems in computer vision can be stated as follows:

1. Two-dimensional images are inadequate for defining the three-dimensional

world.

2. More than one three-dimensional scene can produce identical two-dimensional

images [ber88].

Therefore, recovery of a three-dimensional scene from two-dimensional images

is an ill-posed problem. The relationship between the three-dimensional real world

14 1 Ill-Posed Problems in Imaging and Computer Vision



and two-dimensional images can be depicted in Fig. 1.8. Right-hand arrows repre-

sent two-dimensional image formulation or acquisition, while the left-hand arrows

represent recovery of the three-dimensional world.

Due to its ill-posed nature, three-dimensional scene or shape recovery requires

additional knowledge that may be incorporated in models that represent shapes. The

reasons for using models for shape recovery can be summarized as follows:

1. Data compression becomes possible by using a small number of model

parameters.

2. The resulting shape can be immunized against erroneous data.

3. Higher-level description is possible.

4. We can deduce occluded or missing data depending on the model.

In this section, we will introduce the superquadrics as a volumetric model for

three-dimensional scene recovery [solina90]. Figure 1.9 shows a point on the

superquadric surface in the three-dimensional coordinate. The point s(η,w) can be

described mathematically as

3D 

: 2D imaging or image acquisition 

: Recovery of 3D world 

2D

Y1

Y2

X1

X2

X YM

Fig. 1.8 The relationship

between the real-world and

two-dimensional images

22

x

z ω

η
− p ≤ w ≤ p

y

s(h,w) p p− ≤ h ≤

Fig. 1.9 Representation of

a point in three-dimensional

space
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s η;wð Þ ¼
x

y

z

264
375 ¼

a1 cos
ε1 ηð Þ cos ε2 wð Þ

a2 cos
ε1 ηð Þ sin ε2 wð Þ

a3 sin
ε1 ηð Þ

264
375; ð1:22Þ

where a1, a2, and a3 represent the size of the superquadric in the x, y, and

z directions, respectively. ε1 and ε2 represent the measure of squareness in the

latitude and longitude, respectively. According to the signs and magnitudes of ε1
and ε2, the corresponding superquadrics may have the form of a sphere, a cylinder, a

parallelepiped, etc.

From Eq. (1.22), any point on the surface of a superquadric satisfies the follow-

ing relationships:

x=a1ð Þ1=ε2 ¼ cos ηð Þε1=ε2 cos w; ð1:23Þ
y=a2ð Þ1=ε2 ¼ cos ηð Þε1=ε2 sinw; ð1:24Þ

and

z=a3ð Þ1=ε1 ¼ sin η ð1:25Þ

On the surface of superquadric, it is also true that

F x; y; zð Þ ¼ x

a1

� �2=ε2

þ y

a2

� �2=ε2
( )ε2=ε1

þ z

a3

� �2=ε1
24 35ε1

¼ 1; ð1:26Þ

where we call F(x, y, z) the inside-outside function.
If the coordinate on which the superquadric is defined, rotated, and translated by

(ϕ, θ,φ) and (px, py, pz) from the three-dimensional world coordinate system, (x, y, z)
can be expressed by the following homogeneous transformation:

x

y

z

264
375 ¼ R

xw

yw

zw

264
375þ

px

py

pz

264
375; ð1:27Þ

where R represents the rotation matrix.

Finally, the model of a superquadric surface is represented by the 11 parameters,

that is, three-scale parameters (a1, a2, a3), two measure of squareness parameters

(ε1, ε2), three rotation parameters (ϕ, θ,φ), and three translation parameters (px, py, pz).
For simplicity, let {b1,b2, . . .,b11} represent the 11 parameters.

Given N three-dimensional surface points, such as (xiw, y
i
w, z

i
w), for i ¼ 1, . . . ,N,

the optimum superquadric that fits the data points can be obtained from the

following optimization problem:
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