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Preface

Utility

Mathematical models are important.
Engineers use mathematical models to describe the natural world and then rearrange the

model equations to answer the question, “How do I create an environment that makes Nature
behave the way I want it to?” The answer to the mathematical rearrangement of the model
equations reveals how to design processes, products, and procedures. It also reveals how to
operate, use, monitor, and control them. Modeling is a critical underpinning for engineering
analysis, design, control, and system optimization.

Further, since mathematical models express our understanding of how Nature behaves, we
use them to validate our understanding of the fundamentals about processes and products. We
postulate a mechanism and then derive a model grounded in that mechanistic understanding. If
the model does not fit the data, our understanding of the mechanism was wrong or incomplete.
Alternately, if the model fits the data we can claim our understanding may be correct. Models
help us develop knowledge.

These models usually have coefficients representing some property of Nature, which has
an unknown value (e.g., the diffusivity of a new molecule in a new medium, drag coefficient
on a new shape, curing time of a new concrete mix, a catalyst effective surface area per unit
mass, a heat transfer fouling factor). Model coefficient values must be adjusted to make the
model match the experimentally obtained data, and obtaining the value of the coefficient adds
to knowledge.

The procedure for finding the model coefficient values that makes a model best fit the data
is called regression.

Although regression is ages old, there seem to be many opportunities for improvements
related to finding a global optimum; finding a universal, effective, simple, and single stop-
ping criterion for nonlinear regression; validating the model; balancing model simplicity and
sufficiency with perfection and complexity; discriminating between competing models; and
distinguishing functional sufficiency from prediction accuracy.

I developed and used process and product models throughout my 13-year industrial career.
However, my college preparation for the engineering career did not teach me what I needed
to know about how to create and evaluate models. I recognized that my fellow engineers,
regardless of their alma mater, were also underprepared. We had to self-learn as to what was
needed. Recognizing the centrality of modeling to engineering analysis, I have continued to
explore model development and use during my subsequent academic career.
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This textbook addresses nonlinear regression from a perspective that balances engineering
utility with scientific perfection, a view that is often missing in the classroom, wherein the focus
is often on the mathematical analysis, which pretends that there are simple, first-attempt solu-
tions. Mathematical analysis is intellectually stimulating and satisfying, and sometimes useful
for the practitioner. Where I think it adds value, I included analysis in this book. However,
development of a model, choosing appropriate regression features, and designing experiments
to generate useful data are iterative procedures that are guided by insight from progressive
experience. It would be a rare event to jump to the right answers on the first try. Accordingly,
balancing theoretical analysis, this book provides guides for procedure improvement.

This work is a collection of what I consider to be best practices in nonlinear regression
modeling, which necessarily includes guides to design experiments to generate the data and
guides to interpret the models. Undoubtedly, my view of best has been shaped with my par-
ticular uses for the models within the context of process and product modeling. Accordingly,
this textbook has a focus on models with continuous-valued variables (either deterministic,
discretized, or probabilities) as opposed to rank or classification, nonlinear as opposed to
linear, constrained as opposed to not, and of a modest number of variables as opposed to
Big Data.

This textbook includes the material I wish I had known when starting my engineering career
and now what I would like my students to know. I hope it is useful for you.

The examples and discussion presume basic understanding of engineering models, regres-
sion, statistics, optimization, and calculus. This textbook provides enough details, explicit
equation derivations, and examples to be useful as an introductory learning device for an
upper-level undergraduate or graduate. I have used much of this material in the undergraduate
unit operations lab course, in my explorations of model-based control on pilot-scale units, and
in modeling of diverse processes (including the financial aspects of my retirement and the use
of academic performance in the first two college years to project upper-level success). A per-
son with an engineering degree and some experience with regression should be able to follow
the concepts, analysis, and discussion.

My objective is to help you answer these questions:

• How to choose model inputs (variables, delays)?
• How to choose model form (linear, quadratic, or higher order, or equivalent model structures

or architectures such as dimension or number of neurons)?
• How to design experiments to obtain adequate data (in number, precision, and placement)

for determining model coefficient values?
• What to use for the regression objective (vertical least squares, total least squares, or maxi-

mum likelihood)?
• How to define goodness of model (r-square, fitness for use, utility, simplicity, data-based

validation, confidence interval for prediction)?
• How to choose the right model between two different models?
• What optimization algorithm should be used for the regression to be able to handle the

confounding issues of hard or soft constraints, discontinuities, discrete and continuous vari-
ables, multiple optima, and so on?

• What convergence criteria should be used to stop the optimizer (to recognize when it is close
enough to optimum)?

• Should you linearize and use linear regression or use nonlinear regression?
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• How to recognize outliers?
• How can you claim that a model properly captures some natural phenomena?

The underlying techniques needed for the answers include propagation of uncertainty,
probability and statistics, optimization, and experience and heuristics. The initial chapters
review/develop the basics. Subsequent chapters provide the application techniques, description
of the algorithms, and guides for application.

Access to Computer Code

Those interested can visit the author’s web site, www.r3eda.com, for open access to Excel
VBA macros to many of the procedures in this book.

Years back our college decided to standardize with Visual Basic for Applications (VBA) for
the undergraduate computer programming course. As a result, routines supporting this text are
written in VBA, which is convenient to me, and also a widely accessible platform. However,
VBA is not the fastest, and some readers may not be familiar with that language. Therefore,
this text also provides a VBA primer and access to the code so that a reader may convert the
VBA code to some other personally preferred platform. If you understand any structured text
procedures, you can understand the VBA code here.

Preview of the Recommendations

Some of the recommendations in this book are counter to traditional practice in regression and
design of experiments (DoE), which seem to be substantially grounded in linear regression.
As a preview, opinions offered in this textbook are:

1. If the equation is nonlinear in the coefficients, use nonlinear regression. Even if the
equation can be log-transformed into a linear form, do not do it. Linearizing trans-
formations distort the relative importance of data points within the data set. Unless
data variance is relatively low and/or there are many data points, linearizing can cause
significant error in the model coefficient values.

2. Use data pre-processing and post-processing to eliminate outliers.
3. Use direct search optimizers for nonlinear regression rather than gradient-based optimiz-

ers. Although gradient-based algorithms converge rapidly in the vicinity of the optimum,
direct search optimizers are more robust to surface aberrations, can cope with hard con-
straints, and are faster for difficult problems. Leapfrogging is offered as a good optimizer
choice.

4. Nonlinear regression may have multiple minima. No optimizer can guarantee finding the
global minimum on a first trial. Therefore, run the optimizer for N trials, starting from
random locations, and take the best of the N trials. N can be calculated to meet the user
desire for the probability of finding an optimum within a user-defined best fraction. The
equation is shown.

5. Pay as much attention to how constraints are defined and included in the optimization
application as you do to deriving the model and objective function (OF) statement. Con-
straints can have a substantial influence on the regression solution.

www.r3eda.com
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6. The choice of stopping criteria is also influential to the solution. Conventional stopping
criteria are based on thresholds on the adjustable model coefficient values (decision vari-
ables, DVs), and/or the regression target (usually the sum of squared deviations) that we
are seeking to optimize (OF). Since the right choice for the thresholds requires a priori
knowledge, is scale-dependent, and requires threshold values on each regression coeffi-
cient (DV) and/or optimization target (OF), determining right threshold values requires
substantial user experience with the specific application. This work recommends using
steady-state identification to declare convergence. It is a single criterion (only looking
at one index – statistical improvement in OF relative to data variability from the model),
which is not scale-dependent.

7. Design the experimental plan (sequence, range, input variables) to generate data that are
useful for testing the validity of the nonlinear model. Do not follow conventional statistical
DoE methods, which were devised for alternate outcomes – to minimize uncertainty on the
coefficients in nonmechanistic models, in linear regression, within idealized conditions.

8. Design the experimental methods of gathering data (measurement protocol, number and
location of data sets) so that uncertainty on the experimental measurements has a minimal
impact on model coefficient values.

9. Use of the conventional least-squares measure of model quality,
∑

(ydata − ymodel)
2, is

acceptable for most purposes. It can be defended by idealizing maximum likelihood con-
ditions. Maximum likelihood is more compatible with reality and can provide better model
coefficient values, but it presumes knowledge of the variance on both experimental inputs
and output, and requires a nested optimization. Maximum likelihood can be justified where
scientific precision is paramount, but adds complexity to the optimization.

10. Akaho’s method is a computationally simple improvement for the total east-squares
approximation to maximum likelihood.

11. Establish nonlinear model validity with statistical tests for bias and either autocorrela-
tion or runs. Do not use r-square or ANOVA techniques, which were devised for linear
regression under idealized conditions.

12. Eliminate redundant coefficients, inconsequential model terms, and inconsequential input
variables.

13. Perform both logic-based and data-based tests to establish model validity.
14. Model utility (fitness for use) and model validity (representation of the truth about Nature)

are different. Useful models often do not need to be true. Balance perfection with suffi-
ciency, complexity with simplicity, rigor with utility.

Philosophy

I am writing to you, the reader, in a first-person personal voice, a contrast to most technical
works. There are several aspects that led me to do so, but all are grounded in the view that
humans will be implementing the material.

I am a believer in the Scientific Method. The outcomes claimed by a person should be ver-
ifiable by any investigator. The methodology and analysis that led to the outcomes should be
grounded in the widely accepted best practices. In addition, the claims should be tempered
and accepted by the body of experts. However, the Scientific Method wants decisions to be
purely rational, logical, and fact based. There should be no personal opinion, human emotion,
or human bias infecting decisions and acceptances about the truth of Nature. To preserve the
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image of no human involvement, most technical writing is in the third person. However, an
author’s choice of idealizations, acceptances, permissions, assumptions, givens, basis, con-
siderations, suppositions, and such, are necessary to permit mathematical exactness, proofs,
and the consequential absolute statements. However, the truth offered is implicitly infected by
the human choices. If a human is thinking it, or if a human accepts it, it cannot be devoid of
that human’s perspective and values. I am not pretending that this book is separate from my
experiences and interpretations so I am writing in the first person.

Additionally, consider the individuals applying techniques. They are not investigating a
mathematical analysis underlying the technique, but need to use the technique to get an answer
for some alternate purpose. Accordingly, utility with the techniques is probably as important
as understanding the procedure basis. Further, the application situation is not an idealized sim-
plification. Nature confounds simplicity with complexity. Therefore, as well as proficiency in
use, a user must understand and interpret the situation and choose the right techniques. The
human applies it and the human must choose the appropriate technique. Accordingly, to make
a user functional, it is important for a textbook to understand the limits and appropriateness
of techniques. The individual is the agent and primary target, the tool is just the tool. The
technique is not the truth, so I am writing to the user.

It is also essential that a user truly understands the basis of a tool, to use it properly. Accord-
ingly, in addition to discussing the application situations, this text develops the equations
behind the methods, includes mathematical analysis, and reveals nuances through examples.
The book also includes exercises so the user can develop skills and understanding.

In the 1950s Benjamin Bloom chaired a committee of educators that subsequently published
a taxonomy of Learning Objectives, which has come to be known as Bloom’s Taxonomy. One
of the domains is termed the Cognitive, related to thinking/knowing. There are six levels in
the Taxonomy. Here is my interpretation for engineering (Table 1).

Notably most of classroom instruction has the student working in the lower three levels,
where there are no user-choices. There is only one way to spell “cat,” only one right answer
to the calculation of the required orifice diameter using the ideal orifice equation and givens
in the word problem, and so on. In school, the instructor analyzes the situation, synthesizes
the exercise, and judges the correctness of the answer. By contrast, competency and success
in professional and personal life requires the individual to mentally work in the upper levels
where the situation must be interpreted, where the approach must be synthesized, and where the
propriety of the approach and answer must be evaluated. When instruction prevents the student
from working in the upper cognitive levels, it misrepresents the post-graduation environment,
which does a disservice to the student and employers who have to redirect the graduate’s
perspective. Accordingly, my aim is to facilitate the reader’s mental activity in the upper levels
where human choices have to be made. I am therefore writing to the human, not just about the
technology.

A final perspective, on the philosophy behind the style and contents of this book is grounded
in a list of desired engineering attributes. The members of the Industrial Advisory Committee
for our School helped the faculty develop a list of desired engineering attributes, which we use
to shape what we teach and shape the student’s perspectives. Engineering is an activity, not a
body of knowledge. Engineering is performed by humans within a human environment; it is
not the intellectual exercise about isolated mathematical analysis. There are opposing ideals in
judging engineering and the list of Desired Engineering Attributes reveals them. The opposing
ideals are highlighted in bold (Table 2).
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Table 1 Bloom’s taxonomy

Level Name Function – person does Examples

6 Evaluation (E) Judge goodness, sufficiency,
and completeness of
something, choose the best
among options, know when
to stop improving. Must
consider all aspects

Decide that a design, report,
research project, or event
planning is finished when
considering all issues (technical
completeness, needs of all
stakeholders, ethical standards,
safety, economics, impact, etc.)

5 Synthesis (S) Create something new:
purposefully integrate parts
or concepts to design
something new that meets
a function

Design a device to meet all
stakeholders’ approvals within
constraints. Create a new
homework problem integrating all
relevant technology, design a
procedure to meet multiple
objectives, create a model, create
a written report, design
experiments to generate useful
data

4 Analysis (An) Two aspects related to context
One. Separate into parts or

stages, define and classify
the mechanistic
relationships of something
within the whole

One. Describe and model the
sequence of cause-and-effect
mechanisms: tray-to-tray model
that relates vapor boil-up to
distillate purity, impact of
transformer start-up on the entire
grid, impact of an infection on the
entire body and person health

Two. Critique, assess
goodness, determine
functionality of something
within the whole

Two. Define and compute metrics
that quantify measures of utility
or goodness

3 Application (Ap) Independently apply skills to
fulfill a purpose within a
structured set of “givens”

Properly follow procedures to
calculate bubble point, size
equipment, use the Excel features
to properly present data, solve
classroom “word problems”

2 Understanding/
comprehension
(U/C)

Understand the relation of
facts and connection of
abstract to concrete

Find the diameter of a 1-inch
diameter pipe, convert units,
qualitatively describe staged
equilibrium separation
phenomena, explain the equations
that describe an RC circuit,
understand what Excel cell
equations do

1 Knowledge (K) Memorize facts and
categorization

Spell words, recite equations, name
parts of a valve, read resistance
from color code, recite the six
Bloom levels
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Table 2 Desired engineering attributes

Engineering is an activity that delivers solutions that work for all stakeholders. Desirably engineering:

• Seeks simplicity in analysis and solutions, while being comprehensive in scope.
• Is careful, correct, self-critical, and defensible; yet is performed with a sense of urgency.
• Analyzes individual mechanisms and integrates stages to understand the whole.
• Uses state-of-the-art science and heuristics.
• Balances sufficiency with perfection.
• Develops sustainable solutions – profitable and accepted today, without burdening future

stakeholders.
• Tempers personal gain with benefit to others.
• Is creative, yet follows codes, regulations, and standard practices.
• Balances probable loss with probable gain but not at the expense of EHS&LP – manages risk.
• Is a collaborative, partnership activity, energized by individuals.
• Is an intellectual analysis that leads to implementation and fruition.
• Is scientifically valid, yet effectively communicated for all stakeholders.
• Generates concrete recommendations that honestly reveal uncertainty.
• Is grounded in technical fundamentals and the human context (societal, economic, and political).
• Is grounded in allegiance to the bottom line of the company and to ethical standards of technical

and personal conduct.
• Supports enterprise harmony while seeking to cause beneficent change.

Engineering is not just about technical competence. State-of-the-art commercial software
beats novice humans in speed and completeness with technical calculations. Engineering is
a decision-making process about technology within human enterprises, value systems, and
aspirations, and I believe this list addresses a fundamental aspect of the essence of engineering.
As a complement to fundamental knowledge and skill of the core science and technical topics,
instructors need to understand the opposing ideals, the practice of application, so that they can
integrate the issues into the student’s experience and so that student exercises have students
practice right perspectives as they train for technical competency.

A straight line is very long. Maybe the line goes between pure science on one end and
pure follow-the-recipe and accept-the-computer-output on the other end. No matter where one
stands, the line disappears into the horizons to the left and to the right. No matter where one
stands, it feels like the middle, the point of right balance between the extremes. However, the
person way to the left also thinks they are in the middle. If Higher Education is to prepare
graduates for industrial careers, instructors need to understand the issues surrounding Desired
Engineering Attributes from an industrial perspective, not their academic/science perspective.
Therefore, I am writing to the human about how to balance those opposing ideals when using
nonlinear regression techniques for applications.
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Nomenclature

Accept Not reject. There is not statistically sufficient evidence
to confidently claim that the null hypothesis is not true.
There is not a big enough difference. This is equivalent
to the not guilty verdict, when the accused might have
done it, but the evidence is not beyond reasonable
doubt. Not guilty does not mean innocent. Accept
means cannot confidently reject and does not mean
correct.

Accuracy Closeness to the true value, bias, average deviation. In
contrast to precision.

AIC Akiake Information Criterion, a method for assessing
the balance of model complexity to fit to data.

A priori Latin origin for “without prior knowledge.”
Architecture The functional form of the mathematical model.
ARL Average run length, the average number of samples to

report a confident result.
Autocorrelation One value of a variable that changes in time is related to

prior values of that variable.
Autoregressive A mathematical description that one value of a variable

that changes in time is related to prior values of that
variable; the cause would be some fluctuating input that
has a persisting influence.

Batch regression The process of regression operates on all of the data in
one operation.

Best-of-N Start the optimizer N times with independent
initializations and take the best of the N trials as the
answer.

Bias A systematic error, a consistent shift in level, an average
deviation from true.

Bimodal A pattern in the residuals that indicates there are two
separate distributions, suggesting two separate
treatments affected the data.

Bootstrapping A numerical, Monte Carlo, technique for estimating the
uncertainty in a model-predicted value from the
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xxvi Nomenclature

inherent variability in the data used to regress model
coefficient values.

Cardinal Integers, counting numbers, a quantification of the
number of items.

Cauchy’s technique An optimization approach of successive searches along
the line of local steepest descent.

CDF The cumulative distribution function, the probability of
obtaining an equal or smaller value.

Chauvenet’s criterion A method for selecting data that could be rejected as an
outlier.

Class The variable that contains the name of a
classification – nominal, name, category.

Coefficient correlation When the optimizer does not find a unique solution,
perhaps many identical or nearly identical OF values for
different DV values, a plot of one DV value w.r.t.
another reveals that one coefficient is correlated to the
other. Often termed parameter correlation.

Coefficient or model coefficient A symbol in a model that has a fixed value from the
model use perspective. Model constants or parameters.
Some values are fundamental such as Pi or the 2 in
square root. Other values for the coefficients are
determined by fitting model to data. Such coefficient
values will change as new data is added.

Confidence The probability that a statement is true.
Constraints Boundaries that cannot be violated, often rational limits

for regression coefficients.
Convergence The optimizer trial solution has found the proximity of

the optimum within desired precision.
Convergence criterion The metric used to test for convergence – could be

based on the change in DVs, change in OF, and so on.
Correlation Two variables are related to each other. If one rises, the

other rises. The relation might be confounded by noise
and variation, and represent a general, not exact
relation. The relation does not have to be linear.

Cross correlation Two separate variables are related to each other.
Contrast to autocorrelation in which values of one
variable are related to prior values.

Cumulative sum CUSUM, cumulative sum of deviations scaled by the
standard deviation in the data.

CUSUM Cumulative sum of deviations scaled by the standard
deviation in the data.

Cyclic heuristic CH, an optimizer technique that makes incremental
changes in one DV at a time, taking each in turn. If the
OF is improved, that new DV value is retained and the
next increment for that DV will be larger. Otherwise, the
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old DV value is retained and the next increment for that
DV will be both smaller and in the opposite direction.

Data As a singular data point (set of conditions) or as the
plural set of all data points.

Data-based validation The comparison of model to data to judge if the model
properly captures the underlying phenomena.

Data model The calculation procedure used to take experimental
measurements to generate data for the regression
modeling, the method to calculate y and x experimental
from sensor measurements.

Data reconciliation A method for correcting a set of measurements in light
of a model that should make the measurements
redundant.

Decision variables DVs are what you adjust to minimize the objective
function (OF). In regression, the DVs are the model
coefficients that are adjusted to make the model best fit
the data.

Dependent variable The output variable, output from model, result, impact,
prediction, outcome, modeled value.

Design Devising a procedure to achieve desired results.
Design of experiments DoE, the procedure/protocol/sequence/methodology of

executing experiments to generate data.
Deterministic The model returns one value representing an average, or

parameter value, or probability.
Deviation A variable that indicates deviation from a reference

point (as opposed to absolute value).
Direct search An optimization procedure that uses heuristic rules

based on function evaluations, not derivatives.
Examples include Hooke–Jeeves, leapfrogging, and
particle swarm.

Discrete A variable that has discrete (as opposed to continuum)
values – integers, the last decimal value.

Discrimination Using validation to select one model over another.
Distribution The description of the diversity of values that might

result from natural processes (particle size), simulations
(stochastic process, Monte Carlo simulation), or an
event probability.

DoE Design of experiments.
DV Decision variable.
Dynamic The process states are changing in time in response to

an input, often termed transient.
EC Equal concern – a scaling factor to balance the impact

of several measures of undesirability in a single
objective function. Essentially, the reciprocal of the
Lagrange multiplier.
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Empirical The model has a generic mathematical functional
relation (power series, neural network, wavelets,
orthogonal polynomials, etc.) with coefficients chosen
to best shape the functionalities to match the
experimentally obtained data.

Ensemble A model that uses several independent equations or
procedures to arrive at predictions, then some sort of
selection to choose the average or representative value.

Equal concern factor The degree of violation of one desire that raises the
same level of concern as a specified violation of another
desire, weighting factors in a penalty that are applied as
divisors as opposed to Lagrange multipliers.

Equality constraints A constraint that relates variables in an equality
relation, useful in reducing the number of DVs.

EWMA Exponentially weighted moving average, a first-order
filtered value of a variable.

EWMV Exponentially weighted moving variance, a first-order
filtered value of a variance.

Experiment A procedure for obtaining data or results. The
experiment might be physical or simulated.

Exponentially weighted EWMA, a first-order filtered value of a variable.
moving average
Exponentially weighted EWMV, a first-order filtered value of a variance.
moving variance
Final prediction error FPE, Ljung’s take on Akaike’s approach to balancing

model complexity with reduction in SSD. Concepts are
similar in Mallows’ Cp and Akaike’s information
criterion.

First principles An approach that uses a fundamental mechanistic
approach to develop an elementary model. A
phenomenological model, but not representing an
attempt to be rigorous or complete.

First-order filter FOF – an equation for tempering noise by averaging, an
exponentially weighted moving average, the solution to
a first-order differential equation, the result of an RC
circuit for tempering noise on a voltage measurement.

FL Fuzzy logic – models that use human linguistic
descriptions, such as: “Its cold outside so wear a
jacket.” This is not as mathematically precise as, “The
temperature is 38 ∘F, so use a cover with an insulation
R-value of 12,” but fully adequate to take action.

FOF First-order filter.
FPE Final prediction error, which is Ljung’s take on

Akaike’s approach to balancing model complexity with
reduction in SSD. Concepts are similar in Mallows’ Cp
and Akaike’s information criterion.


