

Nonlinear Regression Modeling for Engineering Applications

Modeling, Model Validation, and Enabling Design of Experiments

R. Russell Rhinehart

NONLINEAR REGRESSION MODELING FOR ENGINEERING APPLICATIONS

Wiley-ASME Press Series List

Introduction to Dynamics and Control of Mechanical Engineering Systems	То	March 2016
Fundamentals of Mechanical Vibrations	Cai	May 2016
Nonlinear Regression Modeling for Engineering Applications	Rhinehart	August 2016
Stress in ASME Pressure Vessels	Jawad	November 2016
Bioprocessing Piping and Equipment Design	Huitt	November 2016
Combined Cooling, Heating, and Power Systems	Shi	January 2017

NONLINEAR REGRESSION MODELING FOR ENGINEERING APPLICATIONS MODELING, MODEL VALIDATION, AND ENABLING DESIGN OF EXPERIMENTS

R. Russell Rhinehart

This edition first published 2016 © 2016, John Wiley & Sons, Ltd

First Edition published in 2016

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data:

Names: Rhinehart, R. Russell, 1946- author.
Title: Nonlinear regression modeling for engineering applications : modeling, model validation, and enabling design of experiments / R. Russell Rhinehart.
Description: Chichester, UK ; Hoboken, NJ : John Wiley & Sons, 2016. | Includes bibliographical references and index.
Identifiers: LCCN 2016012932 (print) | LCCN 2016020558 (ebook) | ISBN 9781118597956 (cloth) | ISBN 9781118597934 (pdf) | ISBN 9781118597958 (epub)
Subjects: LCSH: Regression analysis–Mathematical models. | Engineering–Mathematical models.
Classification: LCC TA342 .R495 2016 (print) | LCC TA342 (ebook) | DDC

LC record available at https://lccn.loc.gov/2016012932

620.001/519536-dc23

A catalogue record for this book is available from the British Library.

Set in 10/12pt, TimesLTStd by SPi Global, Chennai, India.

1 2016

Contents

Series Preface	xiii
Preface	XV
Acknowledgments	xxiii
Nomenclature	XXV
Symbols	xxxvii

Part I INTRODUCTION

1	Introductory Concepts		3
1.1	Illustrative Example – Traditional Linear I	Least-Squares Regression	3
1.2	How Models Are Used		7
1.3	Nonlinear Regression		7
1.4	Variable Types		8
1.5	Simulation		12
1.6	Issues		13
1.7	Takeaway		15
	Exercises		15
2	Model Types		16
2.1	Model Terminology		16
2.2	A Classification of Mathematical Model T	ypes	17
2.3	Steady-State and Dynamic Models		21
	2.3.1 Steady-State Models		22
	2.3.2 Dynamic Models (Time-Depende	nt, Transient)	24
2.4	Pseudo-First Principles – Appropriated Fir	rst Principles	26
2.5	Pseudo-First Principles – Pseudo-Compor	ients	28
2.6	Empirical Models with Theoretical Ground	ding	28
	2.6.1 Empirical Steady State	-	28
	2.6.2 Empirical Time-Dependent		30
2.7	Empirical Models with No Theoretical Gro	ounding	31
2.8	Partitioned Models	-	31
2.9	Empirical or Phenomenological?		32

2.10	Ensemble Models	32
2.11	Simulators	33
2.12	Stochastic and Probabilistic Models	33
2.13	Linearity	34
2.14	Discrete or Continuous	36
2.15	Constraints	36
2.16	Model Design (Architecture, Functionality, Structure)	37
2.17	Takeaway	37
	Exercises	37

Part II PREPARATION FOR UNDERLYING SKILLS

3	Propa	gation of Uncertainty	43
3.1	Introdu	action	43
3.2	Sources of Error and Uncertainty		
	3.2.1	Estimation	45
	3.2.2	Discrimination	45
	3.2.3	Calibration Drift	45
	3.2.4	Accuracy	45
	3.2.5	Technique	46
	3.2.6	Constants and Data	46
	3.2.7	Noise	46
	3.2.8	Model and Equations	46
	3.2.9	Humans	47
3.3	Signifi	cant Digits	47
3.4	Round	ing Off	48
3.5	Estima	ting Uncertainty on Values	49
	3.5.1	Caution	50
3.6	Propag	ation of Uncertainty – Overview – Two Types, Two Ways Each	51
	3.6.1	Maximum Uncertainty	51
	3.6.2	Probable Uncertainty	56
	3.6.3	Generality	58
3.7	Which	to Report? Maximum or Probable Uncertainty	59
3.8	Bootst	rapping	59
3.9	Bias ar	nd Precision	61
3.10	Takeav	vay	65
	Exerci	ses	66
4	Essent	ial Probability and Statistics	67
4.1	Variati	on and Its Role in Topics	67
4.2	Histog	ram and Its PDF and CDF Views	67
4.3	Constr	ucting a Data-Based View of PDF and CDF	70
4.4	Parame	eters that Characterize the Distribution	71
4.5	Some	Representative Distributions	72
	4.5.1	Gaussian Distribution	72

	4.5.2	Log-Normal Distribution	72
	4.5.3	Logistic Distribution	74
	4.5.4	Exponential Distribution	74
	4.5.5	Binomial Distribution	75
4.6	Confide	ence Interval	76
4.7	Central	Limit Theorem	77
4.8		esis and Testing	78
4.9		and Type II Errors, Alpha and Beta	80
4.10		al Statistics for This Text	82
		t-Test for Bias	83
		Wilcoxon Signed Rank Test for Bias	83
		r-lag-1 Autocorrelation Test	84
	4.10.4	Runs Test	87
	4.10.5	Test for Steady State in a Noisy Signal	87
	4.10.6		89
	4.10.7		89
	4.10.8	Test for Proportion	90
	4.10.9	F-Test for Equal Variance	90
4.11	Takeaw	'ay	91
	Exercis	es	91
5	Simula	tion	93
5.1	Introdu	ction	93
5.2		Sources of Deviation: Measurement, Inputs, Coefficients	93
5.3	Two Ty	pes of Perturbations: Noise (Independent) and Drifts (Persistence)	95
5.4	Two Ty	pes of Influence: Additive and Scaled with Level	98
5.5	Using t	he Inverse CDF to Generate n and u from UID(0, 1)	99
5.6	Takeaw		100
	Exercis	es	100
6	-	and Transient State Detection	101
6.1	Introdu		101
	6.1.1		101
	6.1.2	Concepts and Issues in Detecting Steady State	104
	6.1.3	Approaches and Issues to SSID and TSID	104
6.2	Method		106
	6.2.1	Conceptual Model	106
	6.2.2	Equations	107
	6.2.3	Coefficient, Threshold, and Sample Frequency Values	108
	6.2.4	Noiseless Data	111
6.3	Applica		112
	6.3.1	Applications of the R-Statistic Approach for Process Monitoring	112
	6.3.2	Applications of the R-Statistic Approach for Determining Regression	
<i>.</i> .	— 1	Convergence	112
6.4	Takeaw		114
	Exercis	es	114

Part III REGRESSION, VALIDATION, DESIGN

7	Regression Target – Objective Function	119
7.1	Introduction	119
7.2	Experimental and Measurement Uncertainty – Static and Continuous Valued	119
7.3	Likelihood	122
7.4	Maximum Likelihood	124
7.5	Estimating σ_x and σ_y Values	127
7.6	Vertical SSD – A Limiting Consideration of Variability Only in the Response Measurement	127
7.7	r-Square as a Measure of Fit	128
7.8	Normal, Total, or Perpendicular SSD	130
7.9	Akaho's Method	132
7.10	Using a Model Inverse for Regression	134
7.11	Choosing the Dependent Variable	135
7.12	Model Prediction with Dynamic Models	136
7.13	Model Prediction with Classification Models	137
7.14	Model Prediction with Rank Models	138
7.15	Probabilistic Models	139
7.16	Stochastic Models	139
7.17	Takeaway	139
	Exercises	140
8	Constraints	141
8.1	Introduction	141
8.2	Constraint Types	141
8.3	Expressing Hard Constraints in the Optimization Statement	142
8.4	Expressing Soft Constraints in the Optimization Statement	143
8.5	Equality Constraints	147
8.6	Takeaway	148
	Exercises	148
9	The Distortion of Linearizing Transforms	149
9.1	Linearizing Coefficient Expression in Nonlinear Functions	149
9.2	The Associated Distortion	151
9.3	Sequential Coefficient Evaluation	154
9.4	Takeaway	155
	Exercises	155
10	Optimization Algorithms	157
10.1	Introduction	157
10.2	Optimization Concepts	157
10.3	Gradient-Based Optimization	159
	10.3.1 Numerical Derivative Evaluation	159
	10.3.2 Steepest Descent – The Gradient	161

	10.3.3 Cauchy's Method	162
	10.3.4 Incremental Steepest Descent (ISD)	163
	10.3.5 Newton-Raphson (NR)	163
	10.3.6 Levenberg–Marquardt (LM)	165
	10.3.7 Modified LM	166
	10.3.8 Generalized Reduced Gradient (GRG)	167
	10.3.9 Work Assessment	167
	10.3.10 Successive Quadratic (SQ)	167
	10.3.11 Perspective	168
10.4	Direct Search Optimizers	168
	10.4.1 Cyclic Heuristic Direct Search	169
	10.4.2 Multiplayer Direct Search Algorithms	170
	10.4.3 Leapfrogging	171
10.5	Takeaway	173
11	Multiple Optima	176
11.1	Introduction	176
11.2	Quantifying the Probability of Finding the Global Best	178
11.3	Approaches to Find the Global Optimum	179
11.4	Best-of- <i>N</i> Rule for Regression Starts	180
11.5	Interpreting the CDF	182
11.6	Takeaway	184
12	Regression Convergence Criteria	185
12.1	Introduction	185
12.1 12.2	Convergence versus Stopping	185
12.1 12.2 12.3	Convergence versus Stopping Traditional Criteria for Claiming Convergence	185 186
12.1 12.2 12.3 12.4	Convergence versus Stopping Traditional Criteria for Claiming Convergence Combining DV Influence on OF	185 186 188
12.1 12.2 12.3 12.4 12.5	Convergence versus Stopping Traditional Criteria for Claiming Convergence Combining DV Influence on OF Use Relative Impact as Convergence Criterion	185 186 188 189
12.1 12.2 12.3 12.4 12.5 12.6	Convergence versus Stopping Traditional Criteria for Claiming Convergence Combining DV Influence on OF Use Relative Impact as Convergence Criterion Steady-State Convergence Criterion	185 186 188 189 190
12.1 12.2 12.3 12.4 12.5 12.6 12.7	Convergence versus Stopping Traditional Criteria for Claiming Convergence Combining DV Influence on OF Use Relative Impact as Convergence Criterion Steady-State Convergence Criterion Neural Network Validation	185 186 188 189 190 197
12.1 12.2 12.3 12.4 12.5 12.6	Convergence versus Stopping Traditional Criteria for Claiming Convergence Combining DV Influence on OF Use Relative Impact as Convergence Criterion Steady-State Convergence Criterion Neural Network Validation Takeaway	185 186 188 189 190 197 198
12.1 12.2 12.3 12.4 12.5 12.6 12.7	Convergence versus Stopping Traditional Criteria for Claiming Convergence Combining DV Influence on OF Use Relative Impact as Convergence Criterion Steady-State Convergence Criterion Neural Network Validation	185 186 188 189 190 197
12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 13	Convergence versus Stopping Traditional Criteria for Claiming Convergence Combining DV Influence on OF Use Relative Impact as Convergence Criterion Steady-State Convergence Criterion Neural Network Validation Takeaway Exercises Model Design – Desired and Undesired Model Characteristics and Effects	185 186 188 189 190 197 198 198 199
12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 13 13.1	Convergence versus Stopping Traditional Criteria for Claiming Convergence Combining DV Influence on OF Use Relative Impact as Convergence Criterion Steady-State Convergence Criterion Neural Network Validation Takeaway Exercises Model Design – Desired and Undesired Model Characteristics and Effects Introduction	185 186 188 189 190 197 198 198 199
12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 13 13.1 13.2	Convergence versus Stopping Traditional Criteria for Claiming Convergence Combining DV Influence on OF Use Relative Impact as Convergence Criterion Steady-State Convergence Criterion Neural Network Validation Takeaway Exercises Model Design – Desired and Undesired Model Characteristics and Effects Introduction Redundant Coefficients	185 186 188 189 190 197 198 198 199 199
12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 13 13.1 13.2 13.3	Convergence versus Stopping Traditional Criteria for Claiming Convergence Combining DV Influence on OF Use Relative Impact as Convergence Criterion Steady-State Convergence Criterion Neural Network Validation Takeaway Exercises Model Design – Desired and Undesired Model Characteristics and Effects Introduction Redundant Coefficients Coefficient Correlation	185 186 188 189 190 197 198 198 198 199 199 201
12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 13 13.1 13.2 13.3 13.4	Convergence versus Stopping Traditional Criteria for Claiming Convergence Combining DV Influence on OF Use Relative Impact as Convergence Criterion Steady-State Convergence Criterion Neural Network Validation Takeaway Exercises Model Design – Desired and Undesired Model Characteristics and Effects Introduction Redundant Coefficients Coefficient Correlation Asymptotic and Uncertainty Effects When Model is Inverted	185 186 188 189 190 197 198 198 198 199 199 201 203
12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 13 13.1 13.2 13.3 13.4 13.5	Convergence versus Stopping Traditional Criteria for Claiming Convergence Combining DV Influence on OF Use Relative Impact as Convergence Criterion Steady-State Convergence Criterion Neural Network Validation Takeaway Exercises Model Design – Desired and Undesired Model Characteristics and Effects Introduction Redundant Coefficients Coefficient Correlation Asymptotic and Uncertainty Effects When Model is Inverted Irrelevant Coefficients	185 186 188 189 190 197 198 198 199 199 201 203 205
12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 13 13.1 13.2 13.3 13.4 13.5 13.6	Convergence versus Stopping Traditional Criteria for Claiming Convergence Combining DV Influence on OF Use Relative Impact as Convergence Criterion Steady-State Convergence Criterion Neural Network Validation Takeaway Exercises Model Design – Desired and Undesired Model Characteristics and Effects Introduction Redundant Coefficients Coefficient Correlation Asymptotic and Uncertainty Effects When Model is Inverted Irrelevant Coefficients Poles and Sign Flips w.r.t. the DV	185 186 188 189 190 197 198 198 199 199 201 203 205 206
12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7	Convergence versus Stopping Traditional Criteria for Claiming Convergence Combining DV Influence on OF Use Relative Impact as Convergence Criterion Steady-State Convergence Criterion Neural Network Validation Takeaway Exercises Model Design – Desired and Undesired Model Characteristics and Effects Introduction Redundant Coefficients Coefficient Correlation Asymptotic and Uncertainty Effects When Model is Inverted Irrelevant Coefficients Poles and Sign Flips w.r.t. the DV Too Many Adjustable Coefficients or Too Many Regressors	185 186 188 189 190 197 198 199 199 201 203 205 206 206
12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 13 13.1 13.2 13.3 13.4 13.5 13.6	Convergence versus Stopping Traditional Criteria for Claiming Convergence Combining DV Influence on OF Use Relative Impact as Convergence Criterion Steady-State Convergence Criterion Neural Network Validation Takeaway Exercises Model Design – Desired and Undesired Model Characteristics and Effects Introduction Redundant Coefficients Coefficient Correlation Asymptotic and Uncertainty Effects When Model is Inverted Irrelevant Coefficients Poles and Sign Flips w.r.t. the DV Too Many Adjustable Coefficients or Too Many Regressors Irrelevant Model Coefficients	185 186 188 189 190 197 198 198 199 201 203 205 206 206 215
12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7	Convergence versus Stopping Traditional Criteria for Claiming Convergence Combining DV Influence on OF Use Relative Impact as Convergence Criterion Steady-State Convergence Criterion Neural Network Validation Takeaway Exercises Model Design – Desired and Undesired Model Characteristics and Effects Introduction Redundant Coefficients Coefficient Correlation Asymptotic and Uncertainty Effects When Model is Inverted Irrelevant Coefficients Poles and Sign Flips w.r.t. the DV Too Many Adjustable Coefficients or Too Many Regressors	185 186 188 189 190 197 198 199 199 201 203 205 206 206

	13.8.3	Logical Tests	216
	13.8.4	Propagation of Uncertainty	216
	13.8.5	Bootstrapping	217
13.9	Scale-U	p or Scale-Down Transition to New Phenomena	217
13.10	Takeawa	ly	218
	Exercise	is a second s	218
14	Data Pr	e- and Post-processing	220
14.1	Introduc	tion	220
14.2	Pre-proc	essing Techniques	221
	14.2.1	Steady- and Transient-State Selection	221
	14.2.2	Internal Consistency	221
	14.2.3	Truncation	222
	14.2.4	Averaging and Voting	222
	14.2.5	Data Reconciliation	223
	14.2.6	Real-Time Noise Filtering for Noise Reduction (MA, FoF, STF)	224
	14.2.7	Real-Time Noise filtering for Outlier Removal (Median Filter)	227
	14.2.8	Real-Time Noise Filtering, Statistical Process Control	228
	14.2.9	Imputation of Input Data	230
14.3	Post-pro	cessing	231
	14.3.1	Outliers and Rejection Criterion	231
	14.3.2	Bimodal Residual Distributions	233
	14.3.3	Imputation of Response Data	235
14.4	Takeawa	Ŋ	235
	Exercise	S	235
15	Increme	ental Model Adjustment	237
15.1	Introduc	tion	237
15.2	Choosin	g the Adjustable Coefficient in Phenomenological Models	238
15.3		Approach	238
15.4	An Alter	rnate Approach	240
15.5		pproaches	241
15.6	Takeawa	•	241
	Exercise	S	241
16	Model a	nd Experimental Validation	242
16.1	Introduc	tion	242
	16.1.1	Concepts	242
	16.1.2	Deterministic Models	244
	16.1.3	Stochastic Models	246
	16.1.4	Reality!	249
16.2	Logic-B	ased Validation Criteria	250
16.3	Data-Ba	sed Validation Criteria and Statistical Tests	251
	16.3.1	Continuous-Valued, Deterministic, Steady State, or End-of-Batch	251
	16.3.2	Continuous-Valued, Deterministic, Transient	263
	16.3.3	Class/Discrete/Rank-Valued, Deterministic, Batch, or Steady State	264

	16.3.4 Continuous-Valued, Stochastic, Batch, or Steady State	265
	16.3.5 Test for Normally Distributed Residuals	266
	16.3.6 Experimental Procedure Validation	266
16.4	Model Discrimination	267
	16.4.1 Mechanistic Models	267
	16.4.2 Purely Empirical Models	268
16.5	Procedure Summary	268
16.6	Alternate Validation Approaches	269
16.7	Takeaway	270
	Exercises	270
17	Model Prediction Uncertainty	272
17.1	Introduction	272
17.2	Bootstrapping	273
17.3	Takeaway	276
18	Design of Experiments for Model Development and Validation	277
18.1	Concept – Plan and Data	277
18.2	Sufficiently Small Experimental Uncertainty – Methodology	277
18.3	Screening Designs – A Good Plan for an Alternate Purpose	281
18.4	Experimental Design – A Plan for Validation and Discrimination	282
	18.4.1 Continually Redesign	282
105	18.4.2 Experimental Plan	283
18.5	EHS&LP Visual Examples of Undesired Designs	286 287
18.6 18.7	Visual Examples of Undesired Designs	
18.7	Example for an Experimental Plan Takeaway	289 291
10.0	Exercises	291
	Exercises	292
19	Utility versus Perfection	293
19.1	Competing and Conflicting Measures of Excellence	293
19.2	Attributes for Model Utility Evaluation	294
19.3	Takeaway	295
	Exercises	296
20	Troubleshooting	297
20.1	Introduction	297
20.2	Bimodal and Multimodal Residuals	297
20.3	Trends in the Residuals	298
20.4	Parameter Correlation	298
20.5	Convergence Criterion – Too Tight, Too Loose	299
20.6	Overfitting (Memorization)	300
20.7	Solution Procedure Encounters Execution Errors	300
20.8	Not a Sharp CDF (OF)	300
20.9	Outliers	301
20.10	Average Residual Not Zero	302

20.11	Irrelevant Model Coefficients	302
20.12	Data Work-Up after the Trials	302
20.13	Too Many <i>rs</i> !	303
20.14	Propagation of Uncertainty Does Not Match Residuals	303
20.15	Multiple Optima	304
20.16	Very Slow Progress	304
20.17	All Residuals are Zero	304
20.18	Takeaway	305
	Exercises	305

Part IV CASE STUDIES AND DATA

21	Case Studies	309
21.1	Valve Characterization	309
21.2	CO ₂ Orifice Calibration	311
21.3	Enrollment Trend	312
21.4	Algae Response to Sunlight Intensity	314
21.5	Batch Reaction Kinetics	316
••	ndix A: VBA Primer: Brief on VBA Programming – Excel in Office 2013 ndix B: Leapfrogging Optimizer Code for Steady-State Models	319 328
Арре	ndix C: Bootstrapping with Static Model	341
Refer	rences and Further Reading	350
Index		355

Series Preface

The Wiley-ASME Press Series in Mechanical Engineering brings together two established leaders in mechanical engineering publishing to deliver high-quality, peer-reviewed books covering topics of current interest to engineers and researchers worldwide.

The series publishes across the breadth of mechanical engineering, comprising research, design and development, and manufacturing. It includes monographs, references and course texts.

Prospective topics include emerging and advanced technologies in Engineering Design; Computer-Aided Design; Energy Conversion & Resources; Heat Transfer; Manufacturing & Processing; Systems & Devices; Renewable Energy; Robotics; and Biotechnology.

Preface

Utility

Mathematical models are important.

Engineers use mathematical models to describe the natural world and then rearrange the model equations to answer the question, "How do I create an environment that makes Nature behave the way I want it to?" The answer to the mathematical rearrangement of the model equations reveals how to design processes, products, and procedures. It also reveals how to operate, use, monitor, and control them. Modeling is a critical underpinning for engineering analysis, design, control, and system optimization.

Further, since mathematical models express our understanding of how Nature behaves, we use them to validate our understanding of the fundamentals about processes and products. We postulate a mechanism and then derive a model grounded in that mechanistic understanding. If the model does not fit the data, our understanding of the mechanism was wrong or incomplete. Alternately, if the model fits the data we can claim our understanding may be correct. Models help us develop knowledge.

These models usually have coefficients representing some property of Nature, which has an unknown value (e.g., the diffusivity of a new molecule in a new medium, drag coefficient on a new shape, curing time of a new concrete mix, a catalyst effective surface area per unit mass, a heat transfer fouling factor). Model coefficient values must be adjusted to make the model match the experimentally obtained data, and obtaining the value of the coefficient adds to knowledge.

The procedure for finding the model coefficient values that makes a model best fit the data is called regression.

Although regression is ages old, there seem to be many opportunities for improvements related to finding a global optimum; finding a universal, effective, simple, and single stopping criterion for nonlinear regression; validating the model; balancing model simplicity and sufficiency with perfection and complexity; discriminating between competing models; and distinguishing functional sufficiency from prediction accuracy.

I developed and used process and product models throughout my 13-year industrial career. However, my college preparation for the engineering career did not teach me what I needed to know about how to create and evaluate models. I recognized that my fellow engineers, regardless of their *alma mater*, were also underprepared. We had to self-learn as to what was needed. Recognizing the centrality of modeling to engineering analysis, I have continued to explore model development and use during my subsequent academic career. This textbook addresses nonlinear regression from a perspective that balances engineering utility with scientific perfection, a view that is often missing in the classroom, wherein the focus is often on the mathematical analysis, which pretends that there are simple, first-attempt solutions. Mathematical analysis is intellectually stimulating and satisfying, and sometimes useful for the practitioner. Where I think it adds value, I included analysis in this book. However, development of a model, choosing appropriate regression features, and designing experiments to generate useful data are iterative procedures that are guided by insight from progressive experience. It would be a rare event to jump to the right answers on the first try. Accordingly, balancing theoretical analysis, this book provides guides for procedure improvement.

This work is a collection of what I consider to be best practices in nonlinear regression modeling, which necessarily includes guides to design experiments to generate the data and guides to interpret the models. Undoubtedly, my view of best has been shaped with my particular uses for the models within the context of process and product modeling. Accordingly, this textbook has a focus on models with continuous-valued variables (either deterministic, discretized, or probabilities) as opposed to rank or classification, nonlinear as opposed to linear, constrained as opposed to not, and of a modest number of variables as opposed to Big Data.

This textbook includes the material I wish I had known when starting my engineering career and now what I would like my students to know. I hope it is useful for you.

The examples and discussion presume basic understanding of engineering models, regression, statistics, optimization, and calculus. This textbook provides enough details, explicit equation derivations, and examples to be useful as an introductory learning device for an upper-level undergraduate or graduate. I have used much of this material in the undergraduate unit operations lab course, in my explorations of model-based control on pilot-scale units, and in modeling of diverse processes (including the financial aspects of my retirement and the use of academic performance in the first two college years to project upper-level success). A person with an engineering degree and some experience with regression should be able to follow the concepts, analysis, and discussion.

My objective is to help you answer these questions:

- How to choose model inputs (variables, delays)?
- How to choose model form (linear, quadratic, or higher order, or equivalent model structures or architectures such as dimension or number of neurons)?
- How to design experiments to obtain adequate data (in number, precision, and placement) for determining model coefficient values?
- What to use for the regression objective (vertical least squares, total least squares, or maximum likelihood)?
- How to define goodness of model (*r*-square, fitness for use, utility, simplicity, data-based validation, confidence interval for prediction)?
- How to choose the right model between two different models?
- What optimization algorithm should be used for the regression to be able to handle the confounding issues of hard or soft constraints, discontinuities, discrete and continuous variables, multiple optima, and so on?
- What convergence criteria should be used to stop the optimizer (to recognize when it is close enough to optimum)?
- Should you linearize and use linear regression or use nonlinear regression?

- How to recognize outliers?
- How can you claim that a model properly captures some natural phenomena?

The underlying techniques needed for the answers include propagation of uncertainty, probability and statistics, optimization, and experience and heuristics. The initial chapters review/develop the basics. Subsequent chapters provide the application techniques, description of the algorithms, and guides for application.

Access to Computer Code

Those interested can visit the author's web site, www.r3eda.com, for open access to Excel VBA macros to many of the procedures in this book.

Years back our college decided to standardize with Visual Basic for Applications (VBA) for the undergraduate computer programming course. As a result, routines supporting this text are written in VBA, which is convenient to me, and also a widely accessible platform. However, VBA is not the fastest, and some readers may not be familiar with that language. Therefore, this text also provides a VBA primer and access to the code so that a reader may convert the VBA code to some other personally preferred platform. If you understand any structured text procedures, you can understand the VBA code here.

Preview of the Recommendations

Some of the recommendations in this book are counter to traditional practice in regression and design of experiments (DoE), which seem to be substantially grounded in linear regression. As a preview, opinions offered in this textbook are:

- 1. If the equation is nonlinear in the coefficients, use nonlinear regression. Even if the equation can be log-transformed into a linear form, do not do it. Linearizing transformations distort the relative importance of data points within the data set. Unless data variance is relatively low and/or there are many data points, linearizing can cause significant error in the model coefficient values.
- 2. Use data pre-processing and post-processing to eliminate outliers.
- 3. Use direct search optimizers for nonlinear regression rather than gradient-based optimizers. Although gradient-based algorithms converge rapidly in the vicinity of the optimum, direct search optimizers are more robust to surface aberrations, can cope with hard constraints, and are faster for difficult problems. Leapfrogging is offered as a good optimizer choice.
- 4. Nonlinear regression may have multiple minima. No optimizer can guarantee finding the global minimum on a first trial. Therefore, run the optimizer for *N* trials, starting from random locations, and take the best of the *N* trials. *N* can be calculated to meet the user desire for the probability of finding an optimum within a user-defined best fraction. The equation is shown.
- 5. Pay as much attention to how constraints are defined and included in the optimization application as you do to deriving the model and objective function (OF) statement. Constraints can have a substantial influence on the regression solution.

- 6. The choice of stopping criteria is also influential to the solution. Conventional stopping criteria are based on thresholds on the adjustable model coefficient values (decision variables, DVs), and/or the regression target (usually the sum of squared deviations) that we are seeking to optimize (OF). Since the right choice for the thresholds requires *a priori* knowledge, is scale-dependent, and requires threshold values on each regression coefficient (DV) and/or optimization target (OF), determining right threshold values requires substantial user experience with the specific application. This work recommends using steady-state identification to declare convergence. It is a single criterion (only looking at one index statistical improvement in OF relative to data variability from the model), which is not scale-dependent.
- 7. Design the experimental plan (sequence, range, input variables) to generate data that are useful for testing the validity of the nonlinear model. Do not follow conventional statistical DoE methods, which were devised for alternate outcomes to minimize uncertainty on the coefficients in nonmechanistic models, in linear regression, within idealized conditions.
- 8. Design the experimental methods of gathering data (measurement protocol, number and location of data sets) so that uncertainty on the experimental measurements has a minimal impact on model coefficient values.
- 9. Use of the conventional least-squares measure of model quality, $\sum (y_{data} y_{model})^2$, is acceptable for most purposes. It can be defended by idealizing maximum likelihood conditions. Maximum likelihood is more compatible with reality and can provide better model coefficient values, but it presumes knowledge of the variance on both experimental inputs and output, and requires a nested optimization. Maximum likelihood can be justified where scientific precision is paramount, but adds complexity to the optimization.
- 10. Akaho's method is a computationally simple improvement for the total east-squares approximation to maximum likelihood.
- 11. Establish nonlinear model validity with statistical tests for bias and either autocorrelation or runs. Do not use *r*-square or ANOVA techniques, which were devised for linear regression under idealized conditions.
- 12. Eliminate redundant coefficients, inconsequential model terms, and inconsequential input variables.
- 13. Perform both logic-based and data-based tests to establish model validity.
- 14. Model utility (fitness for use) and model validity (representation of the truth about Nature) are different. Useful models often do not need to be true. Balance perfection with sufficiency, complexity with simplicity, rigor with utility.

Philosophy

I am writing to you, the reader, in a first-person personal voice, a contrast to most technical works. There are several aspects that led me to do so, but all are grounded in the view that humans will be implementing the material.

I am a believer in the Scientific Method. The outcomes claimed by a person should be verifiable by any investigator. The methodology and analysis that led to the outcomes should be grounded in the widely accepted best practices. In addition, the claims should be tempered and accepted by the body of experts. However, the Scientific Method wants decisions to be purely rational, logical, and fact based. There should be no personal opinion, human emotion, or human bias infecting decisions and acceptances about the truth of Nature. To preserve the image of no human involvement, most technical writing is in the third person. However, an author's choice of idealizations, acceptances, permissions, assumptions, givens, basis, considerations, suppositions, and such, are necessary to permit mathematical exactness, proofs, and the consequential absolute statements. However, the truth offered is implicitly infected by the human choices. If a human is thinking it, or if a human accepts it, it cannot be devoid of that human's perspective and values. I am not pretending that this book is separate from my experiences and interpretations so I am writing in the first person.

Additionally, consider the individuals applying techniques. They are not investigating a mathematical analysis underlying the technique, but need to use the technique to get an answer for some alternate purpose. Accordingly, utility with the techniques is probably as important as understanding the procedure basis. Further, the application situation is not an idealized simplification. Nature confounds simplicity with complexity. Therefore, as well as proficiency in use, a user must understand and interpret the situation and choose the right techniques. The human applies it and the human must choose the appropriate technique. Accordingly, to make a user functional, it is important for a textbook to understand the limits and appropriateness of techniques. The individual is the agent and primary target, the tool is just the tool. The technique is not the truth, so I am writing to the user.

It is also essential that a user truly understands the basis of a tool, to use it properly. Accordingly, in addition to discussing the application situations, this text develops the equations behind the methods, includes mathematical analysis, and reveals nuances through examples. The book also includes exercises so the user can develop skills and understanding.

In the 1950s Benjamin Bloom chaired a committee of educators that subsequently published a taxonomy of Learning Objectives, which has come to be known as Bloom's Taxonomy. One of the domains is termed the Cognitive, related to thinking/knowing. There are six levels in the Taxonomy. Here is my interpretation for engineering (Table 1).

Notably most of classroom instruction has the student working in the lower three levels, where there are no user-choices. There is only one way to spell "cat," only one right answer to the calculation of the required orifice diameter using the ideal orifice equation and givens in the word problem, and so on. In school, the instructor analyzes the situation, synthesizes the exercise, and judges the correctness of the answer. By contrast, competency and success in professional and personal life requires the individual to mentally work in the upper levels where the situation must be interpreted, where the approach must be synthesized, and where the propriety of the approach and answer must be evaluated. When instruction prevents the student from working in the upper cognitive levels, it misrepresents the post-graduation environment, which does a disservice to the student and employers who have to redirect the graduate's perspective. Accordingly, my aim is to facilitate the reader's mental activity in the upper levels where human choices have to be made. I am therefore writing to the human, not just about the technology.

A final perspective, on the philosophy behind the style and contents of this book is grounded in a list of desired engineering attributes. The members of the Industrial Advisory Committee for our School helped the faculty develop a list of desired engineering attributes, which we use to shape what we teach and shape the student's perspectives. Engineering is an activity, not a body of knowledge. Engineering is performed by humans within a human environment; it is not the intellectual exercise about isolated mathematical analysis. There are opposing ideals in judging engineering and the list of Desired Engineering Attributes reveals them. The opposing ideals are highlighted in bold (Table 2).

Level	Name	Function – person does	Examples
6	Evaluation (E)	Judge goodness, sufficiency, and completeness of something, choose the best among options, know when to stop improving. Must consider all aspects	Decide that a design, report, research project, or event planning is finished when considering all issues (technical completeness, needs of all stakeholders, ethical standards, safety, economics, impact, etc.)
5	Synthesis (S)	Create something new: purposefully integrate parts or concepts to design something new that meets a function	Design a device to meet all stakeholders' approvals within constraints. Create a new homework problem integrating all relevant technology, design a procedure to meet multiple objectives, create a model, create a written report, design experiments to generate useful data
4	Analysis (An)	Two aspects related to context One. Separate into parts or stages, define and classify the mechanistic relationships of something within the whole	<i>One.</i> Describe and model the sequence of cause-and-effect mechanisms: tray-to-tray model that relates vapor boil-up to distillate purity, impact of transformer start-up on the entire grid, impact of an infection on the entire body and person health
			<i>Two</i> . Define and compute metrics that quantify measures of utility
3	Application (Ap)	Independently apply skills to fulfill a purpose within a structured set of "givens"	Properly follow procedures to calculate bubble point, size equipment, use the Excel features to properly present data, solve classroom "word problems"
2	Understanding/ comprehension (U/C)	Understand the relation of facts and connection of abstract to concrete	Find the diameter of a 1-inch diameter pipe, convert units, qualitatively describe staged equilibrium separation phenomena, explain the equations that describe an RC circuit, understand what Excel cell equations do
1	Knowledge (K)	Memorize facts and categorization	Spell words, recite equations, name parts of a valve, read resistance from color code, recite the six Bloom levels

Table 1Bloom's taxonomy

Table 2 Desired engineering attributes

Engineering is an activity that delivers solutions that work for all stakeholders. Desirably engineering:

- Seeks simplicity in analysis and solutions, while being comprehensive in scope.
- Is careful, correct, self-critical, and defensible; yet is performed with a sense of urgency.
- Analyzes individual mechanisms and integrates stages to understand the whole.
- Uses state-of-the-art science and heuristics.
- Balances sufficiency with perfection.
- Develops **sustainable solutions** profitable and accepted **today**, without burdening **future stakeholders**.
- Tempers personal gain with benefit to others.
- Is creative, yet follows codes, regulations, and standard practices.
- Balances probable loss with probable gain but not at the expense of EHS&LP manages risk.
- Is a collaborative, partnership activity, energized by individuals.
- Is an intellectual analysis that leads to implementation and fruition.
- Is scientifically valid, yet effectively communicated for all stakeholders.
- Generates concrete recommendations that honestly reveal uncertainty.
- Is grounded in technical fundamentals and the human context (societal, economic, and political).
- Is grounded in allegiance to the bottom line of the company and to ethical standards of technical and personal conduct.
- Supports enterprise harmony while seeking to cause beneficent change.

Engineering is not just about technical competence. State-of-the-art commercial software beats novice humans in speed and completeness with technical calculations. Engineering is a decision-making process about technology within human enterprises, value systems, and aspirations, and I believe this list addresses a fundamental aspect of the essence of engineering. As a complement to fundamental knowledge and skill of the core science and technical topics, instructors need to understand the opposing ideals, the practice of application, so that they can integrate the issues into the student's experience and so that student exercises have students practice right perspectives as they train for technical competency.

A straight line is very long. Maybe the line goes between pure science on one end and pure follow-the-recipe and accept-the-computer-output on the other end. No matter where one stands, the line disappears into the horizons to the left and to the right. No matter where one stands, it feels like the middle, the point of right balance between the extremes. However, the person way to the left also thinks they are in the middle. If Higher Education is to prepare graduates for industrial careers, instructors need to understand the issues surrounding Desired Engineering Attributes from an industrial perspective, not their academic/science perspective. Therefore, I am writing to the human about how to balance those opposing ideals when using nonlinear regression techniques for applications.

Acknowledgments

My initial interest in modeling processes and products arose from my engineering experience within industry, and most of the material presented here benefited from the investigations of my graduate students as they explored the applicability of these tools, guidance from industrial advisors as they provided input on graduate projects and undergraduate education outcomes, and a few key mentors who helped me see these connections. Thank you all for revealing issues, providing guidance, and participating in my investigations.

Some of the techniques in this text are direct outcomes of the research performed by Gaurav Aurora, R. Paul Bray, Phoebe Brown, Songling Cao, Chitan Chandak, Sandeep Chandran, Solomon Gebreyohannes, Anand Govindrajanan, Mahesh S. Iyer, Suresh Jayaraman, Junyi Li, Upasana Manimegalai-Sridhar, Siva Natarajan, Jing Ou, Venkat Padmanabhan, Anirudh (Andy) Patrachari, Neha Shrowti, Anthony Skach, Ming Su, John Szella, Kedar Vilankar, and Judson Wooters.

A special thanks goes to Robert M. Bethea (Bob) who invited me to coauthor the text *Applied Engineering Statistics*, which was a big step toward my understanding of the interaction between regression, modeling, experimental design, and data analysis. Another special thank you to Richard M. Felder, always a mentor in understanding and disseminating engineering science and technology.

As a professor, funding is essential to enable research, investigation, discovery, and the pursuit of creativity. I am grateful to both the Edward E. and Helen Turner Bartlett Foundation and the Amoco Foundation (now BP) for funding endowments for academic chairs. I have been fortunate to be the chair holder for one or the other, which means that I was permitted to use some proceeds from the endowment to attract and support graduate students who could pursue ideas that did not have traditional research support. This book presents many of the techniques explored, developed, or tested by the graduate students.

Similarly, I am grateful for a number of industrial sponsors of my graduate program who recognized the importance of applied research and its role in workforce development.

Most of all, career accomplishments of any one person are the result of the many people who nurtured and developed the person. I am of course grateful to my parents, teachers, and friends, but mostly to Donna, who for the past 26 years has been everything I need.

Nomenclature

Accept	Not reject. There is not statistically sufficient evidence	
	to confidently claim that the null hypothesis is not true.	
	There is not a big enough difference. This is equivalent	
	to the not guilty verdict, when the accused might have	
	done it, but the evidence is not beyond reasonable	
	doubt. Not guilty does not mean innocent. Accept	
	means cannot confidently reject and does not mean	
	correct.	
Accuracy	Closeness to the true value, bias, average deviation. In	
	contrast to precision.	
AIC	Akiake Information Criterion, a method for assessing	
	the balance of model complexity to fit to data.	
A priori	Latin origin for "without prior knowledge."	
Architecture	The functional form of the mathematical model.	
ARL	Average run length, the average number of samples to	
	report a confident result.	
Autocorrelation	One value of a variable that changes in time is related to	
	prior values of that variable.	
Autoregressive	A mathematical description that one value of a variable	
0	that changes in time is related to prior values of that	
	variable; the cause would be some fluctuating input that	
	has a persisting influence.	
Batch regression	The process of regression operates on all of the data in	
0	one operation.	
Best-of-N	Start the optimizer N times with independent	
·	initializations and take the best of the N trials as the	
	answer.	
Bias	A systematic error, a consistent shift in level, an average	
	deviation from true.	
Bimodal	A pattern in the residuals that indicates there are two	
	separate distributions, suggesting two separate	
	treatments affected the data.	
Bootstrapping	A numerical, Monte Carlo, technique for estimating the	
	uncertainty in a model-predicted value from the	
	- I	

	inherent variability in the data used to regress model coefficient values.
Cardinal	Integers, counting numbers, a quantification of the
Curanta	number of items.
Cauchy's technique	An optimization approach of successive searches along
v 1	the line of local steepest descent.
CDF	The cumulative distribution function, the probability of
	obtaining an equal or smaller value.
Chauvenet's criterion	A method for selecting data that could be rejected as an
	outlier.
Class	The variable that contains the name of a
	classification – nominal, name, category.
Coefficient correlation	When the optimizer does not find a unique solution,
	perhaps many identical or nearly identical OF values for
	different DV values, a plot of one DV value w.r.t.
	another reveals that one coefficient is correlated to the
	other. Often termed parameter correlation.
Coefficient or model coefficient	A symbol in a model that has a fixed value from the
	model use perspective. Model constants or parameters.
	Some values are fundamental such as Pi or the 2 in
	square root. Other values for the coefficients are
	determined by fitting model to data. Such coefficient
Confilmen	values will change as new data is added.
Confidence Constraints	The probability that a statement is true. Boundaries that cannot be violated, often rational limits
Constraints	for regression coefficients.
Convergence	The optimizer trial solution has found the proximity of
Convergence	the optimum within desired precision.
Convergence criterion	The metric used to test for convergence – could be
convergence enterion	based on the change in DVs, change in OF, and so on.
Correlation	Two variables are related to each other. If one rises, the
	other rises. The relation might be confounded by noise
	and variation, and represent a general, not exact
	relation. The relation does not have to be linear.
Cross correlation	Two separate variables are related to each other.
	Contrast to autocorrelation in which values of one
	variable are related to prior values.
Cumulative sum	CUSUM, cumulative sum of deviations scaled by the
	standard deviation in the data.
CUSUM	Cumulative sum of deviations scaled by the standard
	deviation in the data.
Cyclic heuristic	CH, an optimizer technique that makes incremental
	changes in one DV at a time, taking each in turn. If the
	OF is improved, that new DV value is retained and the
	next increment for that DV will be larger. Otherwise, the

	old DV value is retained and the next increment for that
	DV will be both smaller and in the opposite direction.
Data	As a singular data point (set of conditions) or as the
	plural set of all data points.
Data-based validation	The comparison of model to data to judge if the model
	properly captures the underlying phenomena.
Data model	The calculation procedure used to take experimental
	measurements to generate data for the regression
	modeling, the method to calculate <i>y</i> and <i>x</i> experimental
	from sensor measurements.
Data reconciliation	A method for correcting a set of measurements in light
	of a model that should make the measurements
	redundant.
Decision variables	DVs are what you adjust to minimize the objective
	function (OF). In regression, the DVs are the model
	coefficients that are adjusted to make the model best fit
	the data.
Dependent variable	The output variable, output from model, result, impact,
	prediction, outcome, modeled value.
Design	Devising a procedure to achieve desired results.
Design of experiments	DoE, the procedure/protocol/sequence/methodology of
	executing experiments to generate data.
Deterministic	The model returns one value representing an average, or
D	parameter value, or probability.
Deviation	A variable that indicates deviation from a reference
	point (as opposed to absolute value).
Direct search	An optimization procedure that uses heuristic rules
	based on function evaluations, not derivatives.
	Examples include Hooke–Jeeves, leapfrogging, and
	particle swarm.
Discrete	A variable that has discrete (as opposed to continuum)
Discrimination	values – integers, the last decimal value.
Discrimination	Using validation to select one model over another.
Distribution	The description of the diversity of values that might
	result from natural processes (particle size), simulations (stochastic process, Monte Carlo simulation), or an
DoE	event probability. Design of experiments.
DV	Decision variable.
Dynamic	The process states are changing in time in response to
Dynamic	an input, often termed transient.
EC	Equal concern – a scaling factor to balance the impact
	of several measures of undesirability in a single
	objective function. Essentially, the reciprocal of the
	Lagrange multiplier.
	Lugrange maniphen.

Empirical	The model has a generic mathematical functional relation (power series, neural network, wavelets, orthogonal polynomials, etc.) with coefficients chosen to best shape the functionalities to match the experimentally obtained data.
Ensemble	A model that uses several independent equations or procedures to arrive at predictions, then some sort of selection to choose the average or representative value.
Equal concern factor	The degree of violation of one desire that raises the same level of concern as a specified violation of another desire, weighting factors in a penalty that are applied as divisors as opposed to Lagrange multipliers.
Equality constraints	A constraint that relates variables in an equality relation, useful in reducing the number of DVs.
EWMA	Exponentially weighted moving average, a first-order filtered value of a variable.
EWMV	Exponentially weighted moving variance, a first-order filtered value of a variance.
Experiment	A procedure for obtaining data or results. The experiment might be physical or simulated.
Exponentially weighted moving average	EWMA, a first-order filtered value of a variable.
Exponentially weighted moving variance	EWMV, a first-order filtered value of a variance.
Final prediction error	FPE, Ljung's take on Akaike's approach to balancing model complexity with reduction in SSD. Concepts are similar in Mallows' Cp and Akaike's information criterion.
First principles	An approach that uses a fundamental mechanistic approach to develop an elementary model. A phenomenological model, but not representing an attempt to be rigorous or complete.
First-order filter	FOF – an equation for tempering noise by averaging, an exponentially weighted moving average, the solution to a first-order differential equation, the result of an RC circuit for tempering noise on a voltage measurement.
FL	Fuzzy logic – models that use human linguistic descriptions, such as: "Its cold outside so wear a jacket." This is not as mathematically precise as, "The temperature is 38 °F, so use a cover with an insulation R -value of 12," but fully adequate to take action.
FOF FPE	First-order filter. Final prediction error, which is Ljung's take on Akaike's approach to balancing model complexity with reduction in SSD. Concepts are similar in Mallows' Cp and Akaike's information criterion.