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Preface

The material presented in this book crowns my long-term activity in the field of
conjugate periodic heat transfer. Its first stage had passed under the scientific
supervision of my teacher Professor Labuntsov (1929—1992), starting by publica-
tion in 1977 of our first article and finishing in 1984 by publishing our book in
Russian: Labuntsov D.A., Zudin Y.B., “Processes of heat transfer with periodic
intensity.” This stage was marked by the defense in 1980 of my Candidate Thesis:
Zudin Y.B., “Analysis of heat transfer processes with periodic intensity.” The
subsequent period of interpreting the already gained results and accumulation of
new knowledge had taken seven years. In 1991 I started working on a new series of
publications on this subject, which culminated in this book, the first edition of
which appeared in 2007, and the second one (refreshed and extended), in 2011.
This stage was also marked with my habilitation (Zudin Y.B., “Approximate theory
of heat transfer processes with periodic intensity,” 1996), as well as with fruitful
scientific collaboration with my respected German colleagues: Prof. U. Grigull,
Prof. F. Mayinger, Prof. J. Straub and Prof. T. Sattelmayer (TU Miinchen),
Prof. W. Roetzel (Uni BW Hamburg), Prof. J. Mitrovic and Prof. D. Gorenflo
(Uni Paderborn), Prof. K. Stephan, Prof. M. Groll, and Prof. B. Weigand
(Uni Stuttgart).

The objective of the present monograph is to give an exhaustive answer to the
question of how thermophysical and geometrical parameters of a body govern the
heat transfer characteristics under conditions of thermohydraulic pulsations. An
applied objective of this book is to develop a universal method for the calculation
of the average heat transfer coefficient for the periodic conjugate processes of heat
transfer.

As a rule, real “steady” processes of heat transfer can be looked upon as steady
ones only on the average. In the actual fact, periodic, quasiperiodic, and various
random fluctuations of parameters (velocities, pressure, temperatures, momentum
and energy fluxes, vapor content, interface boundaries, etc.) around their average
values always exist in any type of fluid flow, except for purely laminar flows.
Owing to the conjugate nature of the interface “fluid flow-streamlined body,” both
the fluctuation and the average values of temperatures and heat fluxes on the heat
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transfer surface generally depend on thermophysical and geometrical characteristics
of a heat transferring wall.

This suggests the principle question about the possible effect of the material and
the thickness of the wall on the key parameter of convective heat transfer, namely,
the heat transfer coefficient. Such an effect was earlier manifested in experimental
investigations of heat transfer at nucleate boiling, dropwise condensation, and in
some other cases. In these studies, the heat transfer coefficients, as defined as the
ratio of the average heat flux on the surface and the average temperature difference
“wall-fluid”, could differ markedly for various materials of the wall (and also for
different thicknesses of walls).

In 1977, a concept of a true heat transfer coefficient was first proposed in the
work of Labuntsov and Zudin. According to this concept, the actual values of the
heat transfer coefficient (for each point of the heat transferring surface and at each
moment of time) are determined solely by the hydrodynamic characteristics of the
fluid flow; as a result, they are independent of the parameters of a body.
Fluctuations of parameters occurring in the fluid flow will result in the respective
fluctuations of the true heat transfer coefficient, which is also independent of the
material and thickness of the wall. This being so, from the solution of the heat
conduction equation with a boundary condition of third kind, it is possible to find
the temperature field in the body (and, hence, on the heat transfer surface), and as a
result, to calculate the required experimental heat transfer coefficient as the ratio
of the average heat flux to the average temperature difference. This value
(as determined in traditional heat transfer experiments and employed in applied
calculations) should in general case depend on the conjugation parameters.

The study of the relations between the heat transfer coefficients averaged by
different methods (the true and experimental ones) laid the basis for the first edition
of the present book, in which the following fundamental result was obtained: the
average experimental value of the heat transfer coefficient is always smaller than the
average true value of this parameter.

The first edition of this book (2007) involved seven chapters. The second edition
(2011) was augmented with two new chapters. The third edition, incorporating
(without any changes) the content of the second editions, contains three new
chapters (8, 9, and 10). Below we give a brief summary of the contents of this book.

Chapter 1 gives a qualitative description of the method for investigations of
periodic conjugate convective—conductive problems “fluid flow—streamlined body.”
An analysis of physical processes representing heat transfer phenomena with
periodic fluctuations is also given.

In Chap. 2, a boundary problem for the two-dimensional unsteady heat con-
duction equation with a periodic boundary condition of third kind is examined. To
characterize the thermal effects of a solid body on the average heat transfer, a
concept of the factor of conjugation was introduced. The quantitative effect of the
conjugation in the problem was shown to be rather significant.

Chapter 3 puts forward the construction of a general solution for the boundary
value problem for the equation of heat conduction with a periodic boundary con-
dition of third kind. Analytic solutions were obtained for the characteristic laws
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of variation of the true heat transfer coefficient, namely, the harmonic, inverse
harmonic, stepwise and delta-like ones.

In Chap. 4, a universal algorithm of a general approximate solution of the
problem is developed. On its basis, solutions are obtained for a series of problems
with different laws of periodic fluctuations of the true heat transfer coefficient.

Chapter 5 deals with conjugate periodic heat transfer for involved cases of
external heat supply: the heat transfer at a contact either with environment or with a
second body. A generalized solution for the factor of conjugation for the bodies
of the “standard form” is obtained. A problem of conjugate heat transfer for the case
of bilateral periodic heat transfer is also investigated. The cases of asymmetric and
non-periodic fluctuations of the true heat transfer coefficient are examined.

Chapter 6 includes some applied problems of the periodic conjugate heat transfer
theory such as jet impingement onto a surface, dropwise condensation, and nucleate
boiling.

Chapter 7 is concerned with effects of the thermophysical parameters and the
channel wall thickness on the hydrodynamic instability of the so-called “density
waves.” The boundary of stability of fluid flow in a channel at supercritical pres-
sures is found analytically. As an application, the problem of dealing efficient
performance a thermal regulation system for superconducting magnets is
considered.

In Chap. 8 the Landau problem on the evaporation front stability is generalized
to the case of finite thickness of the evaporating liquid layer. The analysis of the
influence of additional factors, the impermeability condition of solid wall and
resulting pulsations of mass velocity, is carried out. Parametric calculations
of the stability boundary are performed when changing the liquid film thickness and
the relationship between phase densities in the framework of asymptotic Landau
approach for the large Reynolds number. Approximate evaluation of the influence
of liquid viscosity on the stability boundary has been done.

Chapter 9 deals with the hyperbolic heat conduction equation. An extension
of the algorithm of computation of the factor of conjugation is given. The limiting
case described by the telegraph equation is considered. The boundary between the
Fourier and Cattaneo—Vernotte laws is found.

Chapter 10 is concerned with the derivation of the generalized Rayleigh equation
that describes the dynamics of a gas bubble is given. Its solution has spherical and
cylindrical asymptotics. A periodic quantum mechanical model is offered for the
process of homogeneous bubble nucleation. The droplet size distribution in a tur-
bulent flow is examined.

Chapter 11 examines the periodic slug flow in a two-phase media. One of the
important parameter of periodic two-phase flows (the rise velocity of the Taylor
bubbles in round pipes) is determined.

Chapter 12 develops an analytic method for calculation of heat exchange for a
turbulent flow in a channel of fluid in a region of supercritical pressures. This
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method is capable of taking into account the effect of variability of thermophysical
properties of a fluid on the heat transfer coefficient, as averaged over the period of
turbulent pulsations.

In Appendix A, proofs are given of some properties of the two-dimensional
unsteady equation of heat conduction with a periodic boundary condition of third
kind. As a corollary, we find the limiting values of the factor of conjugation.

Appendix B examines the eigenfunctions of the solution to the two-dimensional
unsteady equation of heat conduction, as obtained by the method of separation of
variables.

In Appendix C, the problem of convergence of infinite continued fraction was
considered. An extension of the proof of Khinchin’s third theorem to the case where
the terms in the fraction possess a negative sign was obtained.

In Appendix D, a proof of divergence of infinite series obtained in Chap. 3 for
the particular solution of the heat conduction equation is given.

In Appendix E the approximate solutions from Chap. 4 are corrected for various
laws of oscillation of the THTC (harmonic law, inverse harmonic law, and step
law).

I am deeply grateful to Prof. Wilfried Roetzel (Helmut-Schmidt-
Universitdt/Universitdt der Bundeswehr Hamburg), the meeting with whom in
1995 served as a starting point in planning the present book and in the formation of its
ideology. During each subsequent stay in Germany I enjoyed fruitful discussions with
Prof. Roetzel, which have substantially helped me in the preparation of the book.

I would like to deeply thank the Director of the ITLR, Series Editor
Mathematical Engineering of Springer-Verlag, Prof. Dr.-Ing. habil. Bernhard
Weigand for his strong support of my aspiration to successfully accomplish this
work, as well as for his numerous valuable advices and fruitful discussions. My
collaboration with Prof. Bernhard Weigand (Universitat Stuttgart) started in 2005,
who actively supported my idea to write a book and repeatedly invited me to visit
the Institute of Aerospace Thermodynamics to perform joint research.

I am deeply indebted to Dr. Jan-Philip Schmidt, Editor of Springer-Verlag, for
his keen interest in the publication of this book and his successful marketing of this
book.

The publication of all three editions of this book would have been impossible
without the long-term financial support of my activity in German universities (TU
Miinchen, Uni Paderborn, Uni Stuttgart, HSU/Uni Bundeswehr Hamburg) from the
German Academic Exchange Service (DAAD), which I very gratefully acknowl-
edge. Being happy sevenfold (!) grantee of DAAD, I would like to express my
sincere gratitude to the people who have made it possible: Dr. T. Prahl,
Dr. G. Berghorn, Dr. P. Hiller, Dr. H. Finken, Dr. W. Trenn, and also to all other
DAAD employees both in Bonn, and in Moscow.
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Particular gratitude is due to my wife Tatiana, who always served me as an
invaluable moral support in my lifelong scientific activity. I am greatly obliged to
my beloved spouse for my academic degree of Prof. Dr.-Ing. habil. and also for the
appearance of all three editions of my book.

I dare to hope that the third edition of this book will be so favorably accepted by
readers, as the first and second ones.

Stuttgart, Germany Yuri B. Zudin
October 2016
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Chapter 1
Introduction

1.1 Heat Transfer Processes Containing Periodic
Oscillations

1.1.1 Oscillation Internal Structure of Convective Heat
Transfer Processes

Real stationary processes of heat transfer, as a rule, can be considered stationary
only on the average. Actually (except for the purely laminar cases), flows are
always subjected to various periodic, quasiperiodic, and other casual oscillations of
velocities, pressure, temperatures, momentum and energy fluxes, vapor content, and
interphase boundaries about their average values. Such oscillations can be smooth
and periodic (wave flow of a liquid film or vapor, a flow of a fluctuating coolant
over a body), sharp and periodic (hydrodynamics and heat transfer at slug flow of a
two-phase media in a vertical pipe; nucleate and film boiling process), on can have
complex stochastic character (turbulent flows). Oscillations of parameters have in
some cases spatial nature, in others they are temporal, and generally one can say
that the oscillations have mixed spatiotemporal character.

The theoretical base for studying instantly oscillations and at the same time
stationary on the average heat transfer processes are the unsteady differential
equations of momentum and energy transfer, which in case of two-phase systems
can be notated for each of the phases separately and be supplemented by trans-
mission conditions (transmission conditions). An exhaustive solution of the prob-
lem could be a comprehensive analysis with the purpose of a full description of any
particular fluid flow and heat transfer pattern with all its detailed characteristics,
including various fields of oscillations of its parameters.

However, at the time being such an approach cannot be realized in practice. The
problem of modeling turbulent flows [1] can serve as a vivid example. As a rule at
its theoretical analysis, Reynolds-averaged Navier—Stokes equations are considered,
which describe time-averaged quantities of fluctuating parameters, or in other words
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turbulent fluxes of the momentum and energy. To provide a closed description of
the process, these correlations by means of various semi-empirical hypotheses are
interrelated with time-averaged fields of velocities and enthalpies. Such schemati-
zation results in the statement of a stationary problem with spatially variable
coefficients of viscosity and thermal conductivity. Therefore, as boundary condi-
tions here, it is possible to set only respective stationary conditions on the heat
transfer surface of such a type as, for example, “constant temperature,” “constant
heat flux.”

It is necessary to specially note, that the replacement of the full “instant”s model
description with the time-averaged one inevitably results in a loss of information on
the oscillations of fluid flow and heat transfer parameters (velocities, temperatures,
heat fluxes, pressure, friction) on a boundary surface. Thus the theoretical basis for
an analysis of the interrelation between the temperature oscillations in the flowing
ambient medium and in the body is omitted from the consideration. And generally
saying, the problem of an account for possible influence of thermophysical and
geometrical parameters of a body on the heat transfer at such on approach becomes
physically senseless. For this reason, such a “laminarized” form of the turbulent
flow description is basically not capable of predicting and explaining the wall
effects on the heat transfer characteristics, even if these effects are observed in
practice. The problem becomes especially complicated at imposing external oscil-
lations on the periodic turbulent structure that takes place, in particular, flows over
aircraft and spacecraft. Unresolved problems of closing the Navier—Stokes equa-
tions in combination with difficulties of numerical modeling make a problem of
detailed prediction of a temperature field in the flowing fluid very complicated. In
some cases, differences between the predicted and measured local “heat transfer
coefficient” (HTC) exceeds 100 %.

In this connection, the direction in the simulation of turbulent flows based on the
use of the primary transient equations [2] represents significant interest. The present
book represents results of numerical modeling of the turbulent flows in channels
subjected to external fields of oscillations (due to vortical generators, etc.). It is
shown that in this case an essentially anisotropic and three-dimensional flow pattern
emerges strongly different from that described by the early theories of turbulence
[1]. In the near-wall zone, secondary flows in the form of rotating “vortical streaks”
are induced that interact with the main flow. As a result, oscillations of the thermal
boundary layer thickness set on, leading to periodic enhancement or deterioration of
heat transfer. Strong anisotropy of the fluid flow pattern results in the necessity of a
radical revision of the existing theoretical methods of modeling the turbulent flows.
So, for example, the turbulent Prandtl number being in early theories of turbulence
[1] a constant of the order of unity (or, at the best, an indefinite scalar quantity),
becomes a tensor.

It is necessary to emphasize that all the mentioned difficulties are related to the
nonconjugated problem when the role of a wall is reduced only to maintenance of a
“boundary condition” (BC) on the surface between the flowing fluid and the solid
wall.
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1.1.2 Problem of Correct Averaging the Heat Transfer
Coefficients

The basic applied task of the book is the investigation into the effects of a body (its
thermophysical properties, linear dimensions, and geometrical configuration) on the
traditional heat transfer coefficient (HTC), measured in experiments and used in
engineering calculations. Processes of heat transfer are considered stationary on
average and fluctuating instantly. A new method for investigating the conjugate
problem “fluid flow—body” is presented. The method is based on a replacement of
the complex mechanism of oscillations of parameters in the flowing coolant by a
simplified model employing a varying “true heat transfer coefficient” specified on a
heat transfer surface.

The essence of the developed method can be explained rather simply. Let us
assume that we have perfect devices measuring the instant local values of tem-
perature and heat fluxes at any point of the fluid and heated solid body. Then the
hypothetical experiment will allow finding the fields of temperatures and heat fluxes
and their oscillations in space and in time, as well as their average values and all
other characteristics. In particular, it is possible to present the values of tempera-
tures (exact saying, temperature heads or loads, i.e., the temperatures counted from
a present reference level) and heat fluxes on a heat transfer surface in the following
form:

9= (V) +9 (1.1)
qa=1{(q)+q (1.2)

i.e., to write them as the sum of the averaged values and their temporal oscillations.
For the general case of spatiotemporal oscillations of characteristics of the process,
the operation of averaging is understood here as a determination of an average with
respect to time T and along the heat transferring surface (with respect to the
coordinate Z). The “true heat transfer coefficient” (THTC) is determined on the
basis of Egs. (1.1-1.2) according to Newton’s law of heat transfer [3, 4]

h= (1.3)

4
0

This parameter can always be presented as a sum of an averaged part and a fluc-
tuating additive

h=(h)+h (1.4)

Averaged True Heat Transfer Coefficient
It follows from here that the correct averaging of the HTC is as follows:
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=2 s

Therefore we shall call parameter (h) an “averaged true heat transfer coefficient”
(ATHTC). The problem consists in the fact that the parameter (k) cannot be directly
used for applied calculations, since it contains initially the unknown information of

oscillations 19, g. This fact becomes evident if Eq. (1.5) is rewritten with the help of

Egs. (1.1-1.2)
_ /e +4
) = <<q9> +q§> (1.6)

Experimental Heat Transfer Coefficient

The purpose of the heat transfer experiment is the measurement of averaged values
on averaged temperature () and a heat flux (g) on the surfaces of a body and
determination of the traditional HTC

P.C) (1.7)

)

The parameter h, is fundamental for carrying out engineering calculations,
designing heat transfer equipment, composing thermal balances, etc. However it is
necessary to point out that transition from the initial Newton’s law of heat transfer
(1.3) to the restricted Eq. (1.7) results in the loss of the information of the oscil-

—~

lations of the temperature ¥ and the heat fluxes g on the wall.

Thus, it is logical to assume that the influence of the material and the wall
thickness of the body taking part in the heat transfer process on HTC #,, uncovered
in experiments is caused by non-invariance of the value of &,, with respect to the
Newton’s law of heat transfer. For this reason we shall refer further to the parameter
h,, as to an “experimental heat transfer coefficient” (EHTC).

Distinction Between (%) and the £,

Thus, we have two alternative procedures of averaging the HTC: true Eq. (1.5) and
experimental Eq. (1.7). The physical reason of the distinction between (k) and the
h,, can be clarified with the help of the following considerations:

e Local values () and (g) on a surface where heat transfer takes place are formed
as a result of the thermal contact of the flowing fluid and the body.

e Under conditions of oscillations of the characteristics of the coolant, temperature
oscillations will penetrate inside the body.

e Owing to the conjugate nature of the heat transfer in the considered system, both

fluctuating o, g, and averaged (), (q) parameters on the heat transfer surface
depend on the thermophysical and geometrical characteristics of the body.
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e The ATHTC (h) directly follows from Newton’s law of heat transfer (1.3)
(which is valid also for the unsteady processes) and consequently it is deter-
mined by hydrodynamic conditions in the fluid flowing over the body.

e The EHTC #h,, by definition does not contain the information on oscillations

15, g, and consequently it is in the general case a function of parameters of the
interface between fluid and solid wall.

e Aprioristic denying of dependence of the EHTC on material properties and wall
thickness is wrong, though under certain conditions quantitative effects of this
influence might be insignificant.

From the formal point of view, the aforementioned differences between the true
(1.5) and experimental (1.7) laws of averaging of the actual HTC is reduced to a
rearrangement of the procedures of division and averaging. This situation is illus-
trated evidently in Fig. 1.1.

Using the concepts introduced above, the essence of a suggested method can be
explained rather simply. We shall assume that for the case under investigation the
HTC h is known:h = h(Z, t), where Z and 7 are the coordinate along a surface
where heat transfer takes place and the time, respectively. According to the internal
structure of the considered processes this parameter should have periodic,
quasiperiodic or generally fluctuating nature, varying about its average value (h):

h = (h) + h(Z, 7). This information is basically sufficient for the definition of
actual driving temperature difference ¥ (Z, 7) heat fluxes ¢ (Z, ) in a massive of a
heat transferring body, and, hence, on the heat transfer surface. Thus, the calcu-
lation is reduced to a solution of a boundary value problem of the unsteady heat
conduction equation [5]

Fig. 1.1 True and q4 (a)
experimental laws of the
averaging of the heat transfer
coefficient: a heat flux density <g |-
on the heat transfer surface,
b temperature difference
“wall-ambience”, ¢ heat
transfer coefficient

34 (b)

A\ 4

h4 (c)

v
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o=\ Y az) Ty (18)

319 8219 82’19 qv
cp

with the boundary condition (BC) of the third kind on the heat transfer surface

o9
k X ht (1.9)
and suitable BC on the external surfaces of the body.

It is essential for our analysis that up to the same extent in which the information
about the function & = h(Z, 1) is trustworthy, the computed parameters ¥ (Z, t)
and g (Z, 1) are determined also authentically. The basis for such a statement is the
fundamental theorem of uniqueness of the solution of a boundary value problem for
the heat conduction equation [5]. In other words, the temperature field ¢ and heat
fluxes g found in the calculation should appear identical to the actual parameters,
which could be in principle measured in a hypothetical experiment. Further basing
on the known distributions ¥ and ¢, it is possible to determine corresponding
average values (¥) and (g), and finally (from Eq. (1.7)) the parameter h,,, which
appears to be a function of the parameters of conjugation. It follows from the basic
distinction of procedures of averaging of Eqs. (1.5) and (1.7) that an experimental
value of the actual HTC is not equal to its averaged true value

by # (h) (1.10)

The analytical method schematically stated above, in which “from the hydrody-
namic reasons” the following relation is stated:

h(z,7) = (h) + h(Z, 1) (1.11)

and further from the solution of the heat conduction equation in a body the
parameter #,, is determined, outlines the basic essence of the approach developed in
the present book. Different aspects of this method are discussed below in more
detail.

1.2 Physical Examples

For the practical realization of this method it is necessary for each investigated
process to specify the parameter i (Z, t) (i.e., THTC) periodically varying with
respect to its average value. A difficulty thus consists in the fact that, generally
speaking, a valid function outlining the change of the THTC (with all its details) is
unknown for any real periodic process. Therefore, the specification of this
parameter is possible only approximately. This freedom in choice of the THTC
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inevitably makes results of the analysis dependent on the accepted approximations
and assumptions. Thus the approximate nature of the developed method consists
namely in this aspect. From the mathematical point of view, all constructions,
solutions, estimations, and conclusions are obtained quite strictly and precisely.
Physical features of some characteristic processes of heat transfer with periodic
oscillations are discussed below.

Slug Flow of a Two-Phase Medium

A schematic image of this type of flow frequently met in engineering applications is
given in Fig. 1.2. Oscillations of the heat transfer intensity in each section of the
channel are caused here by the periodic passage of a large steam bubble and a liquid
volume. Instant picture of the HTC variation over the height of a pipe is shown in
the same figure. The thickness of the liquid film J; formed on a wall during passage
of a steam bubble, can be determined using known recommendations documented
in [6, 7]. The THTC is practically equal to thermal conductivity of a liquid layer
ks /0r, where kr is the heat conductivity of the liquid phase. During the passage of
the liquid, the heat transfer intensity is determined by the relations for heat transfer
to a turbulent flow. Thus the character of the variation of the THTC with respect to
time and to the vertical coordinate can be considered periodic step function. The
curve of d; (Z, t) here will move upwards with speed of movement of the steam
bubbles along the wall of a pipe. For the considered case, it is essential that the
function & (Z, ) is determined by fluid flow peculiarities in the two-phase medium
and consequently does not depend on the thermophysical properties and thickness
of the wall.

Flow Over a Body in the Vicinity of the Stagnant Point

The schematization of this type of flow is shown in Fig. 1.3. It is easy to show that
in the presence of the periodic oscillations of the velocity of a fluid about its average
value, the heat transfer intensity will be also periodic in time. In other words, if the
period of change in the fluid velocity is essentially larger than the time needed for
the individual particles of a liquid to pass by zone where heat transfer is studied (in
the vicinity of the frontal stagnation point K), the instant behavior of heat transfer

Fig. 1.2 Slug flow of a (a)

two-phase fluid: a schematic

of the process, b variation of 2 ) } ) 2 ) —
the THTC with the

longitudinal coordinate (b)
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Fig. 1.3 Flow over a body in u
the vicinity of a critical point

can be considered quasi-stationary, with the function % (7) being equal to the sta-
tionary dependence £ [ug (7)].

In the considered case, the time variation of the heat transfer intensity follows
from the hydrodynamic conditions of flow, and THTC remains actually constant for
various materials of the surface.

Flow in a Laminar Boundary Layer

Let us consider stationary flow in a laminar boundary layer on which periodic
velocity oscillations are imposed. From the same reasons, as in the example of the
fluid flow over a body in the vicinity of a stagnation point considered above, the
process of heat transfer here can be considered quasi-stationary: A(t) = hfuo(7)].
For a case where the amplitude of the velocity oscillations is comparable to the
velocity’s average value, it is necessary to expect backward influence of the
imposed oscillations on the average level of heat transfer. As known [4], a sta-
tionary HTC hy in a laminar boundary layer depends on the velocity as

ho = C\/u (1.12)

Here C = 0.332p,¢7/ Pr?/3 /v /X, X is the distance from the initial stagnation
point of a plate. Imposing of harmonic velocity oscillations on the stationary flow
u — (u)[1+b cos(2nt/70)] results in corresponding oscillations of the THTC
—hy — ho(l + fz) so that Eq. (1.12) takes the following form:

ho(l—i—iz) Cv/(u)[1 +b cos(2mt/10)] (1.13)

Averaging Eq. (1.13) over the period of oscillations 7y gives
h = Cf(b)hy (1.14)
Here f(b) is a rather complex function of the oscillations amplitude, which weakly

decreases with increasing b: b=0,f(b)=1;b =1, f(b) = 0.9. Subtracting
Eq. (1.14) of Eq. (1.13) term by term, one can find the fluctuating component of the
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THTC. In the case of negligibly small amplitude » — 0, these oscillations will
look like as a cosine function

ho = C(b/2) cos(2mt/70) (1.15)

In a limiting case of the maximal amplitude b = 1, it can be deduced from
Eq. (1.13)

ho = C[r/2|cos(nt/70)| — 1] (1.16)

As it is obvious from Eq. (1.16), at transition from » — 0 to b = 1 oscillations of
the heat transfer intensity are strongly deformed: the period decreases twice, and the
form sharpens and is pointed from top to bottom. On the other hand, the average
heat transfer level changes thus only by =10 %: at maximal amplitude (b = 1) the
ATHTC equals to & =~ 0.9 hy. Thus, the strong change in the amplitude of oscil-
lations leads only to minor change of the average heat transfer level.

Wave Flow of a Liquid Film

At film condensation of a vapor on a vertical surface and also at evaporation of
liquid films flowing down, one can observe a wave flow of the film already at small
values of the film Reynolds numbers [6, 7]. Under these conditions, the wavelength
essentially exceeds the film thickness, and the phase speed of its propagation is of
the same order as the average velocity of the liquid in the film. As the Reynolds
numbers increase, the character of flow changes: a thin film of a liquid of
approximately constant thickness is formed on the surface, on which discrete
volumes of a liquid periodically roll down. At a wave mode of the film flow, the
THTC is rather precisely described by the dependence h(Z,t) = kr/op(Z, 1)
specified for the first time by Kapitsa in his pioneer works [8, 9]. It follows from
this dependence that at a harmonic film structure the THTC is characterized by an
inverse harmonic function (Fig. 1.4). At a flow with a “rolling down” liquid, a
description of the THTC can be constructed similar to the case of the slug flow of a
two-phase medium considered above, i.e., also independently of the thermal
influence of a solid body. At a wave mode of condensation of vapor of liquid metals
(sodium, potassium), nonequilibrium molecular-kinetic effects in the vapor phase
play a significant role, due to the process of capturing (condensation) of the
molecules of vapor. Therefore for a calculation of the heat transfer for vapor
condensation (as well as for liquid film evaporation) of a liquid metal, these effects
should be taken into account together with the thermal resistance of the liquid film
itself determined by the formula of Kapitsa.

Near-Wall Turbulent Flows

The structure of the hydrodynamic oscillations in the turbulent flows is very
complex and includes a wide spectrum of oscillations with various scales and
amplitudes. Along with the so-called stochastic noise, typical for casual processes
in a flow, there exist also large-scale periodic oscillations caused by periodic
entrainment of accelerated portions of a fluid from the core of the flow into the
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Fig. 1.4 Wave flow of a (a)
liquid film: a schematic of the

process, b variation of the

THTC with the longitudinal

coordinate (g is the g
gravitational acceleration)

(b)

2 4

near-wall region. The average time intervals between these periodic entrainments,
and also characteristics of oscillations of the wall friction have been determined in a
number of experimental investigations (see, for example, [10, 11]). On the basis of
the Reynolds analogy, it is possible to expect that the wall heat flux will also
undergo similar oscillations. It is essential for our analysis that oscillations of
parameters are connected with the movement of large turbulent vortical streaks and
are consequently caused by the hydrodynamics of the flow. It is again obvious in
the examined case that the THTC is independent of the material of a solid body.

1.3 Numerical Modeling of Conjugate
Convective-Conductive Heat Transfer

The needs of modern engineering applications (in particular, aerospace engineering)
dictate extremely strict requirements for thermal loaded surfaces and of critical
conditions of the flow aerodynamics. In order to meet these requirements, it is



