
Advances in Industrial Control

Péter Gáspár
Zoltán Szabó
József Bokor
Balázs Németh

Robust Control 
Design for Active 
Driver Assistance 
Systems
A Linear-Parameter-Varying Approach



Advances in Industrial Control

Series editors

Michael J. Grimble, Glasgow, UK
Michael A. Johnson, Kidlington, UK



More information about this series at http://www.springer.com/series/1412



Péter Gáspár • Zoltán Szabó
József Bokor • Balázs Németh

Robust Control Design
for Active Driver Assistance
Systems
A Linear-Parameter-Varying Approach

123



Péter Gáspár
Computer and Automation Research
Institute

Hungarian Academy of Sciences
Budapest
Hungary

Zoltán Szabó
Computer and Automation Research
Institute

Hungarian Academy of Sciences
Budapest
Hungary

József Bokor
Computer and Automation Research
Institute

Hungarian Academy of Sciences
Budapest
Hungary

Balázs Németh
Computer and Automation Research
Institute

Hungarian Academy of Sciences
Budapest
Hungary

ISSN 1430-9491 ISSN 2193-1577 (electronic)
Advances in Industrial Control
ISBN 978-3-319-46124-3 ISBN 978-3-319-46126-7 (eBook)
DOI 10.1007/978-3-319-46126-7

Library of Congress Control Number: 2016951980

MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive,
Natick, MA 01760-2098, USA, http://www.mathworks.com.

© Springer International Publishing Switzerland 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has an
impact on all areas of the control discipline. New theory, new controllers, actuators,
sensors, new industrial processes, computer methods, new applications, new design
philosophies, new challenges. Much of this development work resides in industrial
reports, feasibility study papers, and the reports of advanced collaborative projects.
The series offers an opportunity for researchers to present an extended exposition of
such new work in all aspects of industrial control for wider and rapid dissemination.

Road transportation has experienced significant control research and develop-
ment over the last few decades. The introduction into vehicles and traffic-flow
systems of reliable computing and information technologies along with robust
sensor devices has produced a considerable change in the driving experience. Now
prototype driverless vehicles are even appearing in the transport system. Creating a
top-down view this control research in road transportation provides a useful
framework for understanding the ongoing developments.

There are four major aspects to control research in road transport:

i. the classes of vehicles;
ii. the road transport infrastructure;
iii. the environmental conditions; and
iv. the issues arising from “human-in-the-loop” control.

These aspects then give rise to various interactions depending on the
vehicle/traffic/environment situation being investigated. The “classes of vehicles”
include: motor cycles, automobiles, light goods vehicles, heavy goods vehicles, and
specialized vehicles (fire engines,and refuse-collection vehicles, for example). Each
of these vehicle classes will have different travel objectives and quite different
dynamics. However as more and more autonomy is introduced into vehicle control,
the inclusion of the “human-in-the-loop” adds an addition level of complexity to
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vehicle control. Road transport “infrastructure” includes urban road networks, rural
road networks and then freeways, autobahns, or motorways. The quality of road
surfaces, the density of traffic, the amount of roadside instrumentation, and the
purpose of all these transport networks will differ considerably. Driving conditions
as provided by the environment will depend on such factors as the weather, and the
road topology. This type of overview can easily be transcribed into an interesting
hierarchical diagram. Such an overview is useful to Series Editors as it enables them
to place the many strands of road transport control research into a framework and
allows them to identify new potential contributions for developing a well-balanced
and up to date group of titles in the series.

One of the very few monographs in the Advances in Industrial Control series to
deal with the characteristics of “human-in-the-loop” issues is the 1998 monograph
Modelling and Simulation of Human Behaviour in System Control by Pietro C.
Cacciabue (ISBN 978-3-540-76233-1, 1998). The practical issues of the balance
between autonomy and human control intervention (from a driver, pilot, or oper-
ator) will undoubtedly receive more research input in future years across many
different control application fields.

In the hierarchy of road transport, “infrastructure” is an important classifier with
different types of network exhibiting different control requirements. The Advances
in Industrial Control series has two monographs reporting developments in this
growing field. The monograph Feedback Control Theory for Dynamic Traffic
Assignment by Pushkin Kachroo and Kaan Özbay (ISBN 978-1-85233-059-0,
1998) is a seminal contribution (a second edition is currently in preparation) and the
monograph Hybrid Predictive Control for Dynamic Transport Problems by Alfredo
Núñez, Doris Sáez and Cristián E. Cortés (ISBN 978-1-4471-4350-5, 2012) reports
some recent research on bus transport in urban road networks.

As evidenced by the frequent sessions at the IEEE control conferences, the
exploitation of advanced control ideas for the automobile class of vehicles has
received far more research input and the Advances in Industrial Control monograph
series has several contributions:

• Dry Clutch Control for Automotive Applications by Pietro J. Dolcini, Carlos
Canudas de Wit and Hubert Béchart (ISBN 978-1-84996-067-0, 2010);

• Active Braking Control Systems Design for Vehicles by Sergio M. Savaresi and
Mara Tanelli (ISBN 978-1-84996-349-7, 2010); and

• Optimal Control of Hybrid Vehicles by Bram de Jager, Thijs van Keulen and
John Kessels (ISBN 978-1-4471-5988-9, 2015).

In this same group of topics falls this monograph Robust Control Design for
Active Driver Assistance Systems: An LPV Approach by Péter Gáspár, Zoltán
Szabó, József Bokor and Balázs Németh. This particular monograph not only
reports on control designs for driver-assist systems but is virtually a tutorial and
case-study work on how to use the linear-parameter-variable method. This makes
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the volume doubly welcome in the Advances in Industrial Control monograph
series being both applications- and technique-oriented. The readership for this
monograph will not only encompass the specialist engineer in automotive engi-
neering but will undoubtedly include the broader control engineering community.

Michael J. Grimble
Michael A. Johnson

Industrial Control Centre
University of Strathclyde
Glasgow Scotland, UK
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Chapter 1
Introduction

Driver Assistance Systems

Active driver assistance systems are able to assist the driver in enhancing passenger
comfort, road holding, the efficiency and safety of transport, etc. At the same time
the responsibility remains with the driver, since the driver is able to override the
assistance. The demand for vehicle control methodologies that include the driver,
the vehicle and the road arises at several research centers and automotive suppliers.

The book focuses on active driver assistance systems, which influence the dynam-
ics of the vehicle. On the level of the individual vehicle components the control prob-
lem is formulated and solved by a unified modeling and design method provided by
the linear parameter varying (LPV) framework. The requested global behavior is
achieved by a judicious interplay between the individual components guaranteed by
an integrated control mechanism. The integrated control problem is also formalized
and solved in the LPV framework.

The main contributions of the book include

• application of the LPV paradigm in the modeling and control design methodology,
• application of the robust LPV design as a unified framework for setting control
tasks related to active driver assistance,

• formulation and solution proposals for the integrated vehicle control problem,
• proposal for a reconfigurable and fault-tolerant control architecture.

Design Tools

Modeling and control ofmechanical systems forman important class of nonlinear and
linear systems, which have widespread application in science and industry. There are
three approaches to describe the equation of motion for mechanical systems: New-
tonian, Lagrangian, and Hamiltonian mechanics. Newtonian mechanics is used for
simple mechanical systems because it is an intuitive and non-systematic method. By
contrast, Lagrangian and Hamiltonian mechanics are used for complex multi-body
mechanical systems because they are systematic approaches. A mechanical system

© Springer International Publishing Switzerland 2017
P. Gáspár et al., Robust Control Design for Active Driver Assistance Systems,
Advances in Industrial Control, DOI 10.1007/978-3-319-46126-7_1
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2 1 Introduction

is usually nonlinear in nature. Since the problem formulation of the output-feedback
nonlinear control problemusually results in highly nonlinear partial differential equa-
tions and in a large number of theoretical and practical difficulties, it is difficult to
solve in practice.

In modern control design, the approximation of nonlinear models with linear
models is often based on a quasi LPV (qLPV) description. This approach is based
on the possibility of rewriting the plant in a form in which nonlinear terms can
be hidden by using suitably defined scheduling variables. For a successful analysis
and design, it is crucial to obtain a model that captures the essential behaviors of
the system under consideration. An advantage of qLPV models is that in the entire
operational interval nonlinear systems can be defined while a well-developed linear
system theory to analyze and design nonlinear control system can be used.

The purpose of modeling is control design, thus the model of the systems must be
augmented with performance specifications and model uncertainties. Performance
signals show the quantitative behavior of the controlled system, i.e., control systems
are designed to maintain the system outputs at a desired value. In control systems
usually a great number of predefined performance specifications must be formal-
ized, e.g., passenger comfort, road holding, suspension deflection, tire load variation,
energy consumption. The purpose of the control system is to guarantee the perfor-
mance specifications. However, one of the properties might only be improved to the
detriment of other properties, i.e., if one of the performance properties is enhanced
at the same time another performance is usually degraded or hurt. For example, the
performance demands of improving passenger comfort and road holding are in con-
flict. The conflict between different performance demands must be resolved in such
a way that a balance between performances is achieved.

Uncertainties of themodel are caused by neglected components, unknownor little-
known parameters. The uncertainties are modeled by both unmodeled dynamics and
parametric uncertainties. In the vehicle model there are unknown parameters which
vary in normal operation both in a short time period, e.g., mass, and in a long time
period, abrasion. The estimation of the uncertain interval around its nominal value
is important in the control design. If the uncertain interval is selected too large, the
designed controller will be conservative. In this case the controller is designed in
such a way that it will guarantee performances even in extreme conditions that do
not occur. The unmodeled dynamics must be reduced by using a more appropriate
estimation of the difference between the model and the actual plant. If parametric
uncertainties of mechanical components are known, the uncertainties for unmodeled
dynamics can also be reduced.

Weighting functions are applied to the performance signals to meet performance
specifications and guarantee a trade-off between performances. The uncertainties are
modeled by both unmodeled dynamics and parametric uncertainties. As a result of
this construction, a linear fractional transformation (LFT) interconnection structure,
which is the basis of control design, is achieved.

In model-based controller synthesis, a model describing the physical system is
used to determine the controller such that the specifications on the closed-loop sys-
tem are satisfied. However, the model used in the controller synthesis is just an
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approximation of the dynamics of the real physical system. In addition, there is
always a presence of disturbances and measurement noises, which enter the system
in an unpredictable way. The purpose of robust control methods is to design con-
trollers with model uncertainties and disturbances, and at the same time they must
satisfy the closed-loop system specifications.

Several control design methods have been proposed for linear or linearized mod-
els. In practice, the control design problem usually requires several control design
methods, and the selection of the appropriate controller is carried out in the imple-
mentation phase. The robust control design methods which are usually applied fit in
the so-called H∞ and the H∞/µ framework.

It is apparent that there is a great amount of analogy between classical adaptive
schemes and the qLPV design philosophy. The parameters that are estimated during
operational time and which are used to tune the actual controller in an adaptive
scheme play the same role as the scheduling variables in the qLPV context. From
this latter perspective the difference is in the acquisition of the scheduling variable,
i.e., in the adaptive case the values of the scheduling variable are not directly available
by measurement and need to be obtained by a specific estimation process based on
the directly available data. This observation leads us to propose a unified view of
both control design strategies cast in the qLPV design framework by extending the
set of scheduling variables with parameters that might not be directly measured but
estimated using a suitably designed procedure.

One of the advantages of the proposed general qLPV framework, i.e., a robust
adaptive control scheme using dynamic output feedback based on an LPV method-
ology, is that besides the introduction of the (parametric) model uncertainties in the
design the LPV method also makes it possible to consider the unknown parame-
ter variation rate, providing a framework to answer the long-standing question of
whether or not the adaptation is limited fundamentally to slowly varying systems.

The solution to the LPV control synthesis problem is formulated as a parameter
dependent linear matrix inequality (LMI) optimization problem, i.e., a convex prob-
lem for which efficient optimization techniques are available. This control structure
is applicable whenever the value of the parameter is available in real-time. The result-
ing controller is time varying and smoothly scheduled by the values of the scheduling
variables. Therefore qLPV models with LMIs, as the main design tool, seem to be
the most efficient approach to achieve robust and non-conservative results. The LMI
constraint set for qLPV problems is convex, however, it is usually not easily dealt
with, since it represents an infinite number of conditions. One way to overcome this
difficulty is to approximate the exact set by a tractable one. By choosing appropriate
inner/outer approximations one may develop computable lower/upper bounds for
certain performances, e.g., stability margins.

This basic setting for the controller synthesis can be varied depending on the
problem at hand and the actual demands. The information on the change rate of the
measured scheduling variables can also be introduced in the design.

A practically relevant control design task contains nonlinear components, e.g.,
the dynamics of the dampers and springs and nonlinear actuator dynamics. In order
to handle the high complexity of the problem the design of a two-level controller is
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proposed in the integrated control framework. The required control force is computed
by applying a high-level controller, which is designed using a LPV method. For the
control design, the model is augmented with weighting functions specified by the
performance demands and the uncertainty assumptions. The actuator generating the
necessary control force is modeled as a nonlinear system for which a low-level force-
tracking controller is designed. The proposed separation layers describe the intuitive
structure of the different subsystems, i.e., the chassis and the actuators while keeping
the complexity of the resulting control problems within reasonable bounds.

Each of the individual models is formulated in the LPV framework and contains
the performance specifications and typical uncertainties. Thus, the primary models
are augmented with the corresponding—preferably LPV—weights, which leads to
the unified generalized plant structure, which is the starting point of the robust control
design.

Integration of Vehicle Systems

Two different actuators might be able to influence the same vehicle dynamics. Thus,
the role of the integrated vehicle control is to coordinate the local components and
handle the interactions between them. Since the performance specifications of local
controllers are often in conflict, they must also guarantee a balance or trade-off
between them. This trade-off is formulated on the level of local controllers as a
result of engineering knowledge. However, when an event occurs, the preferences,
i.e., the trade-off levels, are subject to change.

The term configuration refers to a well-defined sensor and actuator set that is
associated with a given functionality. Control reconfiguration is motivated by the
following requirements: the achieved control performance in certain scenarios must
be improved and increased reliability in the presence of sensor or actuator faults
must be achieved. The term event is related to the occurrence of such a scenario. In
a normal situation a baseline configuration is formed by a single local component,
e.g., steering, otherwise it is composed of several local components that can cause
the same functional behavior, e.g., steering and brake for generating yaw moment.
The hierarchy of the configurations and corresponding scheduling variables ensure
that the additional actuator(s) considered improve the stability properties of the given
functionality.

The specification of the configuration sets and that of the corresponding recon-
figuration policy are cornerstones of the proposed method and it may be a highly
nontrivial task requiring considerable engineering knowledge. However, the analy-
sis of the configurations, events, and possible reconfigurations is necessary for any
reconfiguring control strategy.

The control solutions create a balance between driving (or road holding) and
comfort and guarantee safety all the time. This balance often leads to compromises
between vehicle functions, which may not be suitable for all the drivers. For example
a driver who wants to minimize the length of the trajectory in the bend selects the
curvature radius as small as possible, while the driver who requires comfort selects a
larger curvature radius.At the same time, however, the selection of different curvature
radiuses also corresponds to the possible speed selection, e.g., the larger radius allows
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the driver to select larger speed. The control solutions in practice are based on the
drivers’ behavior, which is learnt by the system during the journey. The driver input
is not only a function of the planned trajectory but it also affects the dynamics of the
vehicle.

Consequently, a driver model must be combined with the vehicle model in order
that the driver behaviors and requirements are incorporated in the design of the
control system. In the driver assistance system the interaction between the vehicle
and the driver is taken into consideration.

The main chapter of this part offers a detailed presentation of the integrated con-
trol framework. An integrated control system is designed in such a way that the
effects of a control system on other control functions are taken into consideration in
the design process by selecting the various performance specifications. In order to
impose performance requirements, a tight coupling among the elements of the inte-
grated structure is needed, which is realized through a set of well-defined additional
monitoring signals.

The plant can be considered as a core system which communicates with the
environment through different peripheral components, while the controller is a pro-
gram that executes a given task on the core system function of the available set of
peripheries. In this respect, there is an analogy between a modern computer with
its operating system and application programs and which is equipped with a set of
peripheries. An important point here is that the actual peripheral subsystem plugged
into this architecture can fulfill its intended task and the applications can use it quite
flexiblywithout previous knowledge of the operation systemabout the internal details
of the specific subsystem. The only constraint is that the information flow between
these components should respect some well-defined protocols. This plug-and-play
paradigm has been proven to be very fruitful in computer science and is considered
to be a model that can be applied to the design of control systems as well.

In the context of control systems a plug-and-play control architecture provides the
possibility to use sensors and actuators supplied by different vendors interchangeably
on a system by guaranteeing a performance level and leaving the global controller
intact. If a new control component is added, an old control is replaced by a new one,
or an old component is removed, the structure of the system (or the control) changes.
In these cases, the conventional control should be redesigned, which is expensive
and takes a long time. In the integrated concept the control logic must be modified
on the highest level.

Once the local controllers have been designed it is possible to perform an analysis
step in the robust control on a global level to prove both global stability and perfor-
mance. The presence of competing multiobjective criteria makes the applicability of
the global approach difficult. It is a great challenge for research since the proof of
global performance leads to a highly computation-intensive procedure. Although the
analysis of global stability is an intensively researched area there are only few theo-
retical results. Moreover, although the analysis is fundamental in terms of distributed
control, it is a fully open research field.

The advantage of the integrated control is to provide reconfigurable and fault-
tolerant structures. If a performance degradation or fault occurs in the system and it
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has been detected, the role of the degraded controller may be substituted by another
controller. The fault-tolerant local controllers also require components formonitoring
fault information. Faults in the operation of an actuator can be usually detected by
using a built-in self-diagnostic method. In this case, fault information is sent by the
actuator itself to the supervisor. Any reconfiguration scheme relies on a suitable fault
detection and isolation (FDI) component.

The basic objective of a fault detection methodology applied to dynamic systems
is to provide techniques for the detection and isolation of failed components. Using a
mathematical model of the system it is possible to exploit the principle of analytical
redundancy, which allows to check discrepancies between the real behavior of the
system and its idealized mathematical description or model. Model-based FDI relies
on analytical redundancy to generate fault indicators, called residuals.

There are many analytical redundancy methods for linear and nonlinear systems
available in the literature.While recent nonlinear approaches are useful for the analy-
sis, and partly in the design of detection filters, they are largely incapable of solving
synthesis problems because of the computational burden they usually pose to the
implementation.

As a high-level approach, the FDI filter design problem can often be cast in the
model matching framework. To achieve robustness in the presence of disturbances
and uncertainty, multiobjective optimization-based FDI schemes can be proposed
where an appropriately selected performance index must be chosen to enhance sen-
sitivity to the faults and to simultaneously attenuate disturbances.

This is a typical worst-case filtering problem and the corresponding design crite-
ria can be formulated as a convex optimization problem by using LMIs. The main
problem here is that the sensitivity and robustness conditions are in conflict. In the
linear time invariant (LTI) framework, it means that sensitivity to faults and insensi-
tivity to unknown inputs cannot be achieved simultaneously at the same frequencies.
Faults having similar frequency characteristics to those of disturbances might go
undetected. While the design problem is nonconvex, in general, a scheme that can
handle the problem by using LMI techniques is presented.

Structure of the Book

Thebook includes three parts and appendix.Thefirst part focuses on themodeling and
control of LPV systems. InChap.2, the construction of the LPVmodel of the physical
system and the linearization methods are presented. Two examples are presented,
i.e., the LPV modeling of the vertical dynamics and that of the yaw–roll dynamics.
Since the parameters of the LPV models usually are not necessarily known, a gray-
box identification method is applied. In Chap.3 the model is augmented with the
performance specifications and uncertainties in order to form a control-oriented LPV
model. Both constant Lyapunov function and parameter varying Lyapunov functions
are applied for stability and L2 performance. Finally, they are extended to LPV
systems when the measured varying parameters do not exactly fit the real one. The
theoretical part is extended by several important components in the Appendix.

In the second part of the book, the control methods for both vertical and longitudi-
nal vehicle dynamics are presented. In Chap.4 both the linearH∞ methods and LPV

http://dx.doi.org/10.1007/978-3-319-46126-7_2
http://dx.doi.org/10.1007/978-3-319-46126-7_3
http://dx.doi.org/10.1007/978-3-319-46126-7_4


1 Introduction 7

methods are applied for the control design. This chapter also presents the hierarchical
structure of the control design. The high-level control focuses on the performance
specifications and calculates a required control signal. The required signal is tracked
by a low-level controller by setting the actuator dynamics. In Chap. 5, active anti-roll
bars are applied for preventing the rolling over. It is combined with the active brake
in order to improve the efficiency of the LPV control design method. Moreover, this
combination guarantees the fault-tolerant operation of the control system. In Chap. 6,
a classical control problem is presented, i.e., the adaptive cruise control in the lon-
gitudinal dynamics. In the robust control design both the driving and the braking
systems are combined. The control algorithm is implemented in a SIL environment.
An extension of the adaptive cruise control is the speed design in which several road
and traffic conditions must be taken into consideration in order to reduce the control
energy and keep the time requirement.

In the third part of the book, the control systems focus on the lateral dynamics.
Since the control systemsmayaffect the samevehicle dynamics, their operationsmust
be integrated. An integrated control system is designed in such a way that the effects
of a control system on other vehicle functions are taken into consideration in the
design process by selecting the various performance specifications. The principles
of the design methods are presented in Chap.7. In this chapter, the operation of
the integrated control is presented through trajectory tracking as a driver assistance
system. In the integrated control three control components are applied simultaneously
such as the brake, the steering and the suspension systems. Concerning the lateral
vehicle dynamics the variable-geometry suspension system plays an important role.
In Chap.8, the modeling and control of the variable-geometry suspension system
is presented. Moreover, the integration of the construction and the control design is
also presented. In Chap.9, the control design of the in-wheel motors for a trajectory
tracking problem is presented. It leads also a hierarchical control, in which the retired
longitudinal force and the yaw moment are calculated in the high-level while the
torques of the in-wheel motors are designed in the low level. In Chap.10, the drivers’
behavior is analyzed. In the control design a simplified driver model is combined
with the control-oriented vehicle model.

In the Appendix, further components of the modeling and robust control of LPV
systems are included. The modeling part presents the basic terms of the analysis,
the identifiability, the adaptive observers and the geometric approach of the FDI
design. The robust control presents the structured uncertainty, the components of the
nonlinear H∞ methods and the LFT-based qLPV design.

http://dx.doi.org/10.1007/978-3-319-46126-7_5
http://dx.doi.org/10.1007/978-3-319-46126-7_6
http://dx.doi.org/10.1007/978-3-319-46126-7_7
http://dx.doi.org/10.1007/978-3-319-46126-7_8
http://dx.doi.org/10.1007/978-3-319-46126-7_9
http://dx.doi.org/10.1007/978-3-319-46126-7_10
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Chapter 2
Modeling of LPV Systems

Introduction

In general terms, control theory can be described as the study of how to design the
process of influencing the behavior of a physical system to achieve a desired goal.
An open-loop control is one in which the control input is not affected in any way
by the actual (measured) outputs. If the system changes during the operational time
then the control performance can be severely reduced. In a closed-loop system the
control input is affected by the measured outputs, i.e., a feedback is being applied
to that system. Very often a reference input is given, which is directly related to the
desired value of system outputs, and the purpose of the controller will be to minimize
the error between the actual system output and the desired (reference input) value.

There are two main features in the analysis of a control system: system modeling,
which means expressing the physical system under examination in terms of a model
(or models) which can be readily dealt with and understood, and the design stage, in
which a suitable control strategy is both selected and implemented in order to achieve
a desired system performance. Forming a mathematical model which represents the
characteristics of a physical system is crucially important as far as the further analysis
of that system is concerned.

Traditionally controllability and observability are the main issues in the analysis
of a system before deciding the best control strategy to be applied, or whether it is
possible to control or stabilize the system. Controllability is related to the possibility
of forcing the system into a particular state by applying an appropriate control signal
while observability is related to the possibility of reconstructing, through output
measurements, the state of a system.

The model should not be over simple so that important properties of the system
are not included, something that would lead to an incorrect analysis or an inadequate
controller design. In some cases the nonlinear characteristics are so important that
they must be dealt with directly, and this can be quite a complex procedure.

© Springer International Publishing Switzerland 2017
P. Gáspár et al., Robust Control Design for Active Driver Assistance Systems,
Advances in Industrial Control, DOI 10.1007/978-3-319-46126-7_2
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Gain-scheduling is a technique widely used to control such systems in a variety
of engineering applications. In the classical gain scheduling approach, having strong
roots in flight control applications, the controller synthesis is based on local descrip-
tions of the nonlinear system, that can most often be approximated by linear system
properties. The gains of the gain-scheduled controllers are typically chosen using
linear control design techniques and is a two step process. First, several operating
points are selected to cover the range of system dynamics. At each of these points,
the designer makes an LTI approximation to the plant and then, designs a linear com-
pensator for each linearized plant. This process gives a set of linear feedback control
laws that perform satisfactorily when the closed-loop system is operated near the
respective operating points. A global nonlinear controller for the nonlinear system
is then obtained by interpolating, or scheduling, the gains from the local operating
point designs.

Since the synthesized controllers are guaranteed to satisfy specifications only
locally, the designer typically cannot assess a priori the stability, robustness, and
performance properties of gain-scheduled controller designs. While the local con-
troller synthesis can be performed using the well established techniques of the linear
system theory, it remains a non-trivial procedure to map the linear controllers such
that non-local specifications of the closed loop system are kept.

The LPV paradigm provides a remedy to this problem, Shamma and Athans
(1990), Shamma (1992). Initiated in Shamma and Athans (1991) LPV modeling
techniques have gained a lot of interest, especially those related to vehicle and
aerospace control, Becker and Packard (1994), Balas et al. (1997), Marcos and Balas
(2001), Szászi et al. (2005). LPV systems have recently become popular as they pro-
vide a systematic means of computing gain-scheduled controllers. In this framework
the system dynamics are written as a linear state-space model with the coefficient
matrices functions of external scheduling variables. Assuming that these scheduling
variables remain in some given range then analytical results can guarantee the level
of closed loop performance and robustness. The parameters are not uncertain and
can often be measured in real-time during system operation. However, it is gener-
ally assumed that the parameters vary slowly in comparison to the dynamics of the
system. LPV based gain-scheduling approaches are replacing ad-hoc techniques and
are becoming widely used in control design.

Many of the control system design techniques using LPV models can be cast or
recast as convex problems that involve LMIs. Significant progress has been made
recently in the use of LMI and H∞ optimization in gain-scheduled control. One
such control design technique, described by Apkarian et al. (1995), is the Lyapunov
function/quadratic H∞ approach wherein a single Lyapunov function is sought to
bound the performance of the LPV system. Such a framework generally has a strong
form of robust stability with respect to time-varying parameters. However, due to the
continuous variation of scheduling parameters,such a synthesis approach is generally
associated with a convex feasibility problem with infinite constraints imposed on the
LMI formulation. This problem can be addressed by using affine LPV modeling that
reduces the infinite constraints imposed on the LMI formation to a finite number.
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Such a modeling approach has been used to solve design problems by Becker (1992),
Sun and Postlethwaite (1998).

The above pure LPV model is not quite matched to the control problems where
the scheduling variables are in fact system states (e.g., vehicle speed), rather than
bounded external variables. An approach to this problem is to generate so-called
quasi-LPV models, which are applicable when the scheduling variables are measured
states, the dynamics are linear in the inputs and other states, and there exist inputs to
regulate the scheduling variables to arbitrary equilibrium values.

These methods concentrate on robust performance, hence, robust stability of the
controlled system. In this more general context such robust control problems—both
analysis and synthesis—can be formulated using a generalized plant technique based
on an LFT description of the uncertain LPV system, see, e.g., Iwasaki and Hara
(1998), Iwasaki and Shibata (2001), Wu (2001). The controller synthesis leads to
bilinear matrix inequalities (BMI) but often it is possible to reduce the problem to
the solution of a finite set of LMIs, for details see, e.g., Scherer et al. (1997), Scherer
(2001), Wu (2001).

2.1 LPV Model Structures

The mathematical model of a dynamic evolution of a nonlinear, non-autonomous
physical system is usually formulated as a state space representation in terms of the
input u(t) ∈ R

m , output y(t) ∈ R
p and state signals x(t) ∈ R

n related by a first-order
differential equation:

ẋ = f (x, u, w), (2.1)

y = h(x, u, w), (2.2)

subject to the initial condition x(t0) = x0. Usually the model also describes the effect
of the outer disturbances, which are modeled through the signal w(t) ∈ R

d . In what
follows for the sake of simplicity we concentrate on the undisturbed system, i.e., w

will be suppressed from the model.
According to the LPV paradigm, parameter-dependent systems are linear systems,

whose state-space descriptions are known functions of time-varying parameters.
While the time variation of each of the parameters is not known in advance, it is
assumed to be measurable in real time. Thus, in the LPV controller synthesis step
the parameters are regarded as freely varying parameters taking arbitrary values in
the region Ω and, hence, the LPV description will differ from the nonlinear system.
The larger this difference, the more conservatism is introduced in the LPV controller
synthesis step. LPV descriptions of nonlinear systems are not unique: it is desirable
to have an LPV description that in some sense is close to the nonlinear system for
all parameter values.
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Thus, the aim of the LPV modeling procedure is to find an LPV description of
the nonlinear model on the form

ẋ = A(ρ)x + B(ρ)u � f (x, u), ρ ∈ Ω (2.3)

y = C(ρ)x + D(ρ)u � h(x, u), (2.4)

where ρ is the, possibly state dependent, parameter vector varying within a region
Ω , such that the known relation ρ = σ(y, r) depends only on the measured signals
y and exogenous signals r whose values are known in operational time.

This guarantees that the parameter values are available to the controller and that
an explicit nonlinear feedback controller can be obtained from the designed LPV
controller. In order to ensure that trajectories of the original nonlinear system are
equal or at least closed to the trajectories of the LPV description, (2.3) should be as
close to the nonlinear system as possible for all parameter values in the region Ω .

Hence, an LPV model is defined as a linear model whose state-space matrices
depend on a vector ρ of time-varying parameters of the form

ẋ = A(ρ)x + B(ρ)u, (2.5)

y = C(ρ)x + D(ρ)u, (2.6)

where it is often suppose that the parameter dependency has an explicit structure:
namely either affine, polynomial, polytopic or an LFT dependency. Accordingly, if

S(ρ) =
n∑

i=0

∑

| j |=i

ρ j Si, j , (2.7)

where ρ j = ρ
j1
1 ρ

j2
2 · · · ρ jk

k with ρl are the components of the parameter vector ρ,
| j | = ∑k

l=1 ik and

S ∼
(
A B
C D

)
, Si, j ∼

(
Ai, j Bi, j

Ci, j Di, j

)
,

then n = 1 corresponds to the affine models. Affine models are mostly involved in
applications where geometric techniques are to be used.

For polytopic LPV models the system matrix S(ρ) varies within a fixed polytope
of matrices: it is a convex combination S(ρ) ∈ convex{ S1, S2, . . . , Sk } of the system
matrices (vertex systems), i.e.,

S(ρ) =
k∑

i=1

ρi Si , ρi ≥ 0,

k∑

i=1

ρi = 1. (2.8)
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Fig. 2.1 Lower and upper
LFT representations

Since polytopic models are well suited for Lyapunov-based analysis and design, they
are very popular model candidates in the LPV framework.

A more general representation is the LFT, see Fig. 2.1. LFT is a representation of
a system using a feedback interconnection between two operators, a known causal
system

M =
(
M11 M12

M21 M22

)

and a causal bounded system Δ of proper dimension:

FL(M,Δ) =M11 + M12Δ(I − ΔM22)
−1M21 (2.9)

FU (M,Δ) =M22 + M21Δ(I − ΔM11)
−1M12 (2.10)

Δ is typically norm-bounded, ||Δ||∞ ≤ 1, but otherwise unrestricted in form
(structured/un-structured) or type (nonlinear/time-varying/constant). If some of the
components in the Δ operator are scheduling parameters an LPV system is obtained.
This form is obtained by extracting a varying parameter from a system and placing it
into a feedback loop, such that the remaining system, M , is time-invariant. Models
with affine or polynomial parameter dependencies can be transformed exactly to a
LFT. An important property of LFT systems is that their interconnection (e.g., sum,
concatenation) and also the inversion, if it exists, always results in another LFT.

We emphasize that an LPV plant can be viewed either as an LTI plant subject to a
time-varying parametric uncertainty ρ(t), see, e.g., the LFT LPV structure or as a set
of models of linear time-varying (LTV) plants, where each LTV system corresponds
to a specific parameter trajectory. In the analysis and design process we chose the
most convenient interpretation that fit the actual technique that we might use.

2.2 Linearization Through LPV Modeling

Practically, concerning the structure of the models, prior to the design and analysis
phase there is no significant difference between LPV models and those used for gain
scheduling. All of them can be obtained by using different, application specific,
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methods. The direct linearization schemes applied to nonlinear systems can be
roughly classified into the following types: linearization about an equilibrium, lin-
earization about a parametrized state trajectory and global linearization. In the first
case the system is represented as an LTI system locally around an equilibrium condi-
tion, while in the second approach the nonlinear system is to follow some prescribed
trajectory around that it can be approximated by a family of parametrized lineariza-
tions. In the third case the original nonlinear system is approximated by a set of
trajectories of a linear differential inclusion (LDI) which can represent it in the entire
operation range. However, in this case there might be trajectories of the LPV model
that are not actual trajectories of the original system. This might lead to a conservative
analysis or design.

In what follows some of the most common techniques, e.g., classical, fuzzy and
the off-equilibrium approaches, see, e.g., Leith and Leithead (2000), will be sketched.

2.2.1 Jacobian Linearization

Often in industrial settings, a finite collection of linear models is used to describe
the behavior of a system throughout an operating envelope. The linearized models
describe the small signal behavior of the system at a specific operating point and the
collection is parametrized by one or more physical variables whose values represent
this specific point. If the state variables have physical meaning, then it makes sense to
develop polynomial least squares fits of the state-space matrices to get a continuous
parameterization of the operating envelope.

The classical approach, using Jacobian linearization of the nonlinear model about
a manifold of constant equilibria, constant operating points or set-points, is called
linearization-based scheduling. When a corresponding scheduling variable ρ is cho-
sen appropriately to parameterize the set of linear models, a parameterized family of
linearized models representing the original nonlinear model results.

Considering the nonlinear plant dynamics an equilibrium or constant operating
point (xe, ue) is defined by the equilibrium condition f (xe, ue) = 0. Assuming f is
continuously differentiable at the equilibrium point, the nonlinear model is approx-
imated by

δ ẋ = Aδx + Bδu (2.11)

δy = Cδx + Dδu, (2.12)

where

δu = u − ũ, δy = y − ỹ, δx = x − x̃,

and

A = ∂x f (xe, ue), B = ∂u f (xe, ue), C = ∂xh(xe, ue), D = ∂uh(xe, ue).
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By considering an entire equilibrium family (xe, ue) ∈ Ωe yields to a linear
parameter-dependent linearization family S(ρe), locally describing the nonlinear
model:

δ ẋ = A(ρe)δx + B(ρe)δu

δy = C(ρe)δx + D(ρe)δu.

To obtain an LPV description for a nonlinear model, an interpolation of the sta-
tionary linearizations can be applied: e.g., by using a linear interpolation then system
can be written as

δ ẋ(t) = A(ρ)δx(t) + B(ρ)δu(t)

with

A(ρ) =
p∑

i=1

Aiρi , B(ρ) =
p∑

i=1

Biρi ,C(ρ) =
p∑

i=1

Ciρi , D(ρ) =
p∑

i=1

Diρi ,

(2.13)

where

k∑

i=1

ρi = 1, ρi ≥ 0, δx = x − xe(ρ) , δu = u − ue(ρ)

the points (xie, u
i
e) ∈ Ωe being stationary. The procedure, however, may give an LPV

system that does not include the original nonlinear system. But if the stationary points
can be chosen such that

{(∂ f x (x, u), ∂ f u(x, u))} ⊂ convex{(∂ f x (xie, uie), ∂ f u(xie, uie))}

then the LPV description (2.13) will include the nonlinear system.
A typical choice for Ωe is to take a a specific trajectory (x̃, ũ, ỹ), i.e., to perform

the linearization of the nonlinear system (2.2) around a trajectory:

δ ẋ = ∂x f (x̃, ũ)δx + ∂u f (x̃, ũ)δu,

δy = ∂xh(x̃, ũ)δx + ∂uh(x̃, ũ)δu,

where

δu = u − ũ, δy = y − ỹ, δx = x − x̃ .
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By taking the parameters of the specific trajectory (flight envelop) as measurable
scheduling variables, the desired LPV model will be of the form

ξ̇ = A(ρ)ξ + B(ρ)δu

δy = C(ρ)ξ + D(ρ)δu.

A parameterized family of linearized models resulting from linearization-based
scheduling or a number of black-box point-designs are only locally valid. In case an
LPV model is based on such a set of linearized models, the accuracy of the resulting
linear parameter-dependent model with respect to the original nonlinear model or
plant is unknown. Classical gain scheduling is mainly restricted to local controller
synthesis in stationary points. Even though nonlinear systems can be linearized along
a trajectory, no gain scheduling approaches available in the literature that extends
the stability region using a family of linearizations along different trajectories.

2.2.2 Off-Equilibrium Linearization

A disadvantage of classical linearization-based scheduling is the restriction to
equilibrium-point modeling. Using the so-called velocity-based or off-equilibrium
linearizations it is possible to enable linearization at every operating point: consid-
ering the nonlinear system

ẋ = f (x, u), y = h(x, u),

the velocity linearization at a point (x0, u0) reads as

ẋ = ζ

ζ̇ = ∂ f x |(x0,u0)ζ + ∂ f u |(x0,u0)u̇

ẏ = ∂hx |(x0,u0)ζ + ∂hu |(x0,u0)u̇.

In this way there is a velocity-based linearization associated with every operating
point of the original nonlinear system and the solutions may be pieced together.
Thus, the resulting velocity-based linearization family, parameterized by ρ, globally
approximates the trajectories of the nonlinear model to an arbitrary degree of accu-
racy. The velocity linearization is not limited to equilibrium points: as no restriction
to equilibrium operating points is present, linear approximation of transient dynamics
and operating points far from equilibrium operating points is also enabled.

Interpolation of linear controller based on velocity linearizations can be performed
in a similar way to classical gain scheduling. However, since the velocity linearization
is not an approximation in the same sense as a standard linearization scheme, it is
easier to interpolate linearizations in a way such that the nonlinear system is included
in the LPV description.
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2.2.3 Fuzzy Linearization

One approach to gain scheduling, and thus, to LPV modeling, uses ideas from fuzzy
systems, see Takagi and Sugeno (1985) to describe the nonlinear system: the plant
dynamics is formulated as a blended multiple model representation such as a Takagi-
Sugeno model or local model network of the form

ẋ =
∑

i

fi (x, u)μi (φ),

y =
∑

i

hi (x, u)μi (φ)

where the function φ(x, u) is the scheduling variable and the scalar blending weights
μi ≥ 0 often are normalized to

∑
i μi = 1.

After a linearization and blending of the individual components the typical form
of the LPV model will be of the form:

(
ẋ
y

)
= S(ρ)

(
x
u

)
, (2.14)

with

S(ρ) = S0 +
∑

i∈I
ρi Si , (2.15)

where ρi will be the scheduling variables of the model.

2.2.4 qLPV Linearization

Quasi-LPV scheduling tries to overcome the general shortcomings of classical lin-
earization schemes regarding local validity of the resulting model: the idea is to trans-
form the nonlinear model to an LPV form hiding the nonlinear terms by including
them in the scheduling variable. Since this process involves a transformation rather
than a linearization, the resulting LPV model exactly equals the original nonlinear
model.

A qLPV model may arise by considering state transformations on a class of
nonlinear systems of the form:

ẋ1 = f1(x1) + A11(x1)x1 + A12(x1)x2 + B1(x1)u,

ẋ2 = f2(x1) + A21(x1)x1 + A22(x1)x2 + B2(x1)u,

y = x1.


