Óptica básica

Daniel Malacara

Daniel Malacara estudió física en la UNAM y es doctor en óptica por la Universidad de Rochester, en EUA. Fue fundador del Centro de Investigaciones en Óptica, en Léon, Guanajuato, y es investigador emérito nacional. Tiene como línea de investigación principal la instrumentación óptica.

EDICIONES CIENTÍFICAS UNIVERSITARIAS

Serie Texto Científico Universitario

DANIEL MALACARA

ÓPTICA BÁSICA

FONDO DE CULTURA ECONÓMICA

Primera edición (Monografías Especializadas), 1989 Segunda edición (Ciencia y Tecnología), 2004 Tercera edición (Ediciones Científicas Universitarias), 2015

Malacara, Daniel

Óptica básica / Daniel Malacara. — 3^a ed. — México : FCE, 2015 600 p. : ilus. ; 27×19 cm — (Colec. Ediciones Científicas Universitarias) ISBN 978-607-16-3215-9

1. Óptica 2. Física I. Ser. II. t.

LC QB335

Dewey 535 M325o

Diseño de portada: Laura Esponda Aguilar

D. R. © 1989, Fondo de Cultura Económica Carretera Picacho-Ajusco, 227; 14738 México, D. F. Empresa certificada ISO 9001:2008

Comentarios: editorial@fondodeculturaeconomica.com www.fondodeculturaeconomica.com Tel. (55) 5227-4672; fax (55) 5227-4694

Se prohíbe la reproducción total o parcial de esta obra, sea cual fuere el medio, sin la anuencia por escrito del titular de los derechos.

ISBN 978-607-16-3215-9

Impreso en México • Printed in Mexico

Prefacio Introducción histórica	19 23
I. Fundamentos de la óptica geométrica	29
I.1. Introducción	29
I.1.1. Definición de rayo de luz	30
I.2. Principio de Fermat	30
1.3. Leyes de la reflexión y la refracción	33
I.3.1. Reflexión	33
I.3.2. Refracción	34
I.3.3. Forma vectorial de la ley de reflexión	34
I.3.4. Forma vectorial de la ley de la refracción	35
I.3.5. Ángulo crítico	35
I.4. Trazo de rayos en una superficie esférica	36
I.5. Fórmula de Gauss	39
I.6. Trazo de rayos por el método <i>y</i> – <i>nu</i>	40
I.7. Formación de imágenes	41
1.8. Teoremas del seno y de Lagrange	43
I.9. Amplificación lateral y longitudinal	44
I.10. Representación matemática de una superficie óptica	45
I.11. Materiales ópticos	46
I.12. Fibras ópticas	49
I.13. Gradiente de índice de refracción	51
Lecturas recomendadas	51
Problemas	52
II. Lentes delgadas y espejos esféricos	55
II.1. Lentes delgadas	55
II.1.1. Fórmula para lentes delgadas	56
II.2. Formación de imágenes	58
II.2.1. Puntos conjugados y amplificación lateral	58
II.2.2. Lentes convergentes	60
II.2.3. Lentes divergentes	61
II.3. Puntos nodales de una lente delgada	62

Índice	general

II.4. Espejos esféricos	63
II.4.1. Formación de imágenes	64
II.5. Lentes de Fresnel	65
Lecturas recomendadas	66
Problemas	66
III. Lentes gruesas y sistemas de varias lentes	69
III.1. Distancias focales efectivas y planos principales	69
III.1. Potencia de un sistema óptico	70
III.2. Amplificación lateral y puntos conjugados	71
III.3. Puntos nodales	72
III.3.1. Determinación experimental de distancias	70
focales efectivas	73
III.4. Lentes gruesas	74
III.4.1. Distancia focal efectiva	74
III.4.2. Distancia focal posterior	75
III.5. Sistema de dos lentes delgadas	75
III.5.1. Distancia focal efectiva	76
III.5.2. Distancia focal posterior	77
III.6. Iris, pupila de entrada y pupila de salida de un sistema	77
III.6.1. Sistemas telecéntricos	79
Lecturas recomendadas	79
Problemas	79
IV. Prismas, espejos planos y prismas cromático	
dispersores	81
IV.1. Transformaciones sobre la orientación de la imagen	81
IV.1.1. Diagrama de túnel	82
IV.2. Prismas con reflexión total interna	83
IV.2.1. Prismas deflectores	83
IV.2.2. Sistemas retrovisores	86
IV.2.3. Prismas inversores y reversores	88
IV.2.4. Prismas inversores y reversores	
	89
IV.3. Prismas divisores de haz	92
IV.4. Prismas cromático dispersores	92
IV.4.1. Prisma equilátero	93
IV.4.2. Prisma de desviación constante	94
IV.5. Algunos fenómenos atmosféricos	95
IV.5.1. Arcoíris.	95
IV.5.2. Halos en la Luna o en el Sol	97
Lecturas recomendadas	97
Problemas	98
V. Teoría de las aberraciones	99
V.1. Introducción	99
V.1.1. Aberraciones de primer orden y alto orden	99
V.2. Aberración cromática axial	100
V.2.1. Cálculo de un doblete acromático	100
V.2.2. Cálculo de un doblete apocromático	102
V.3. Aberración cromática de amplificación	102
V.3.1. Cálculo de un doblete acromático con dos	102
componentes separadas	103
V.4. Aberración de esfericidad.	103

V.4.1. Superficies esféricas refractoras libres de aberración	
de esfericidad	104
V.4.2. Aberración de esfericidad en un sistema centrado	
de superficies esféricas	107
V.4.3. Aberración de esfericidad en lentes simples delgadas	107
V.4.4. Superficies asféricas reflectoras libres de aberración	100
de esfericidad	108
V.4.5. Superficies asféricas refractoras libres de aberración	100
de esfericidad	109
V.5. Aberración de coma	110
V.6. Astigmatismo	113 115
V.6.1. Ecuaciones de Coddington	115
V.7.1. Eliminación de la curvatura de Petzval	118
V.8. Distorsión	119
V.9. Corrección de aberraciones y diseño de lentes	120
V.9.1. Sistemas simétricos	120
V.10. Deformaciones del frente de onda	122
V.11. Aberraciones transversales	124
Lecturas recomendadas	126
Problemas	126
11001011145	120
VI. Instrumentos ópticos	129
VI.1. Lupa simple	129
VI.1.1. Algunos diseños de lupas	130
VI.2. Cámara fotográfica	130
VI.2.1. Objetivos fotográficos	133
VI.2.2. Telefotos y objetivos de campo ancho	135
VI.2.3. Lentes zoom	135
VI.3. Cámaras fotográficas astronómicas	136
VI.3.1. Cámara Schmidt	137
VI.3.2. Cámara Maksútov	137
VI.4. Proyectores de imágenes	138
VI.4.1. Proyectores de diapositivas y electrónicos	
de cristal líquido	138
VI.4.2. Retroproyector	140
VI.5. Microscopios	140
VI.5.1. Sistema básico	141
VI.5.2. Objetivos de microscopio	142
VI.5.3. Oculares de microscopio	144
VI.5.4. Iluminadores y condensadores	145
VI.5.5. Microscopio confocal	146 147
VI.5.6. Lectores de disco compacto (CD y DVD)	147
VI.6.1 Telescopios refractores	146
	149
VI.6.2. Telescopio de Galileo	150
VI.6.4. Telescopios reflectores	150
VI.6.5. Telescopios catadióptricos	153
VI.6.6. Resolución de un telescopio astronómico y óptica activa	154
VI.6.7. Periscopios	156
VI.6.8. Oculares de telescopio	157
VI.7. Refractómetros	158

Índice	general
--------	---------

VII.7.1. Defendation due de Delfairle	150
VI.7.1. Refractómetro de Pulfrich	158
VI.7.2. Refractómetro de Abbe	159
VI.7.3. Refractómetro de Hilger-Chance	160
Lecturas recomendadas	161
Problemas	161
VII El de hamana	1.60
VII. El ojo humano	163
VII.1. El ojo humano	163
VII.1.1. Constantes ópticas del ojo	163
VII.2. Componentes anatómicas del ojo	163
VII.2.1. Córnea	164
VII.2.2. Pupila	165
VII.2.3. Cristalino	165
VII.2.4. Humor vítreo	166
VII.2.5. Retina	166
VII.3. Sensibilidad retiniana	167
VII.3.1. Sensibilidad cromática	167
VII.3.2. Sensibilidad direccional	168
VII.3.3. Respuesta temporal	168
VII.4. Defectos de refracción del ojo	169
VII.4.1. Presbicia	170
VII.4.2. Miopía	171
VII.4.3. Hipermetropía	171
VII.4.4. Astigmatismo	172
VII.4.5. Keratocono	173
VII.4.6. Aberraciones del ojo humano	173
VII.5. Agudeza visual y su evaluación subjetiva	174
VII.5.1. Poder resolutor	174
VII.5.2. Carteles de prueba	174
VII.6. Visión binocular	176
VII.6.1. Estereoscopía	176
1	
VII.6.2. Errores de la visión binocular	177
VII.7. Lentes oftálmicas, de contacto e intraoculares	177
VII.7.1. Lentes esféricas	180
VII.7.2. Lentes prismáticas	180
VII.7.3. Lentes esfero-cilíndricas	182
VII.7.4. Lentes bifocales y progresivas	184
VII.7.5. Lentes de contacto	186
VII.7.6. Lentes intraoculares	187
VII.7.6.1. Cálculo de las lentes intraoculares	188
VII.7.6.2. Fórmulas para el cálculo de la potencia	
de la lente intraocular	189
VII.8. Corrección de ametropías con cirujía ocular	
(keratotomía radiada y LASIK)	190
VII.9. Instrumentos usados en oftalmología y optometría	191
VII.9.1. Lensómetros o vertómetros	191
VII.9.2. Optómetros y autorrefractores	192
VII.9.2.1. Optómetro de Badal y disco de Scheiner	192
VII.9.2.2. Optómetros con láser	194
VII.9.2.3. Autorrefractómetros	194
VII.9.3. Oftalmoscopios	194
VII.9.4. Retinoscopio y retinoscopía	196
VII.9.5. Oftalmómetro o keratómetro	198
v	

VII.9.6. Topógrafo corneal	199
VII.9.7. Lámpara de hendidura	201
Lecturas recomendadas	203
Problemas	204
VIII. Fundamentos de la óptica física	205
VIII.1. Teorías sobre la naturaleza de la luz	205
VIII.1.1. Teoría corpuscular	205
VIII.1.2. Teoría ondulatoria	205
VIII.2. Representación matemática de una onda luminosa	206
VIII.2.1. Ecuación de onda	206
VIII.2.2. Disturbio eléctrico	207
VIII.2.3. Representación de una onda mediante	
números complejos	209
VIII.3. Superposición de ondas a lo largo	
de una trayectoria común	210
VIII.3.1. Superposición de dos ondas con la misma longitud	
de onda	211
VIII.3.2. Superposición de dos o más ondas con longitudes	211
de onda diferentes	211
VIII.3.3. Superposición de dos ondas viajando en diferentes	211
direcciones	213
VIII.4. Velocidades de fase, de grupo y de señal	214
VIII.5. Espectros luminosos y sus trenes de onda	216
VIII.5.1. Espectros discretos. Series de Fourier	218
VIII.5.1. Espectros discretos. Series de Fourier VIII.5.2. Espectros continuos. Transformadas de Fourier	218
VIII.5.2. Espectios continuos. Transjormatas de Fourier	223
VIII.5.3. Teorema de Farseval	223
VIII.6. Coherencia de un haz luminoso	224
	224
VIII.6.1. Coherencia temporal	228
VIII.6.3. El teorema de van Cittert-Zernike	229
VIII.7. Propagación de ondas en medios transparentes	
VIII.7.1. Ley de Snell	230 231
VIII.7.1. Ley de Snett	
	231
VIII.7.3. Fórmulas para lentes delgadas Lecturas recomendadas	231
	232
Problemas	233
IX. Interferencia e interferómetros	235
IX.1. Producción de los fenómenos de interferencia	235
IX.1.1 Interferencia de dos fuentes puntuales separadas	236
· · · · · · · · · · · · · · · · · · ·	236
IX.2. Interferencia por división de frente de onda	236
IX.2.1. Doble rendija de Young	238
IX.2.2. Interferómetros de Lloyd, Fresnel y Billet	
IX.2.3. Interferómetro estelar de Michelson	239
IX.3. Interferencia por división de amplitud	241
IX.3.1. Franjas de igual grueso. Franjas de Newton	243
IX.3.2. Franjas de igual inclinación. Franjas de Haidinger	244
IX.4. Interferómetro de Michelson	245
IX.4.1. Requisitos de coherencia	246
IX.4.2. Tipos de franjas observadas	246

11

IX.5. Interferómetros de Mach-Zehnder y de Jamin	248
IX.6. Interferometro de Twyman-Green	249
IX.6.1. Prueba de componentes ópticas	249
IX.6.2. Espectroscopía de Fourier	251
IX.7. Interferómetro de Fizeau	252
IX.8. Interferometros de desplazamiento lateral	253
IX.9. Interferometros de Gabry-Perot	255
IX.9.1. Diferencia de camino óptico y poder resolutor	256
IX.9.2. Usos de este interferómetro	258
· ·	261
IX.10. Otros interferómetros con múltiples reflexiones	262
IX.11. Películas delgadas de interferencia	262
IX.11.1. Películas simples	265
IX.11.2. Multicapas	265
IX.12. Interferómetro de Sagnac	
IX.13. Franjas de moiré	267
IX.14. Formación de patrones de moteado	268
IX.14.1. Interferometría de moteado	269
IX.15. Interferometría de desplazamiento de fase	270
IX.16. Tomografía de coherencia óptica (OCT)	271
Lecturas recomendadas	272
Problemas	273
V D!C!/.	255
X. Difracción	275
X.1. Difracción	275
X.1.1. Principio de Huygens	275
X.1.2. Teoría de la difracción de Kirchhoff	276
X.2. Difracción de Fresnel	279
X.2.1. Rendija simple. Espiral de Cornu	279
X.2.2. Abertura circular	282
X.2.3. Placa zonal de Fresnel. Cámara de agujero	284
X.3. Difracción de Fraunhofer. Transformadas de Fourier	285
X.3.1. Rendija simple y abertura rectangular	288
X.3.2. Abertura circular	289
X.3.3. Rejilla con transmisión senoidal	291
X.4. Principio de Babinet	292
X.5. Conservación de energía en los fenómenos de interferencia	202
y difracción	293
Lecturas recomendadas	294
Problemas	295
XI. Aplicaciones de la difracción y tomografía óptica	297
XI.1. Teoría de las rejillas de difracción	297
XI.1.1. Direcciones de máxima irradiancia	297
XI.1.2. Distribución angular de la luz	297
XI.1.3. Poder cromático dispersor	299
	300
XI.1.4. Poder resolutor	301
XI.1.5. Distribución de energía entre los diferentes órdenes	303
XI.1.6. Diferentes tipos de rejillas de difracción	303
XI.1.7. Rejillas de fase	304
XI.1.8. Efecto Talbot	304
XI.2.1. Lentes formadoras de imágenes	306
XI.2.2. Función de transferencia de una lente	309
M.2.2. I uncion de nansjerencia de una tente	509

XI.3. Espectroscopios, espectrógrafos y monocromadores	312
XI.3.1. Prismas cromáticos dispersores	312
XI.3.2. Espectrómetros y espectrógrafos de prisma	314
XI.3.3. Espectrógrafos de rejilla de difracción	315
XI.4. Teoría de Abbe del microscopio	316
XI.4.1. Microscopio de contraste de fase	317
XI.4.2. Filtraje espacial de imágenes	318
XI.5. Reconstrucción de frentes de onda	319
XI.5.1. Hologramas delgados	322
XI.5.2. Hologramas gruesos	323
XI.6. Propagación de ondas moduladas en amplitud	
y de pulsos luminosos	324
XI.6.1. Observación de los componentes de Fourier de una onda	324
XI.6.2. Propagación de pulsos o de una onda modulada	
en amplitud	325
XI.6.3. Propagación de pulsos luminosos	325
XI.6.3.1. Propagación de un pulso en un material	
cromático dispersor	325
XI.6.3.2. Propagación de pulsos en un medio no lineal	326
XI.6.3.3. Solitones	327
XI.6.3.4. Propagación en un sistema de dos rejillas de difracción	327
XI.7. Haces de Bessel	327
XI.8. Tomografía computarizada (CAT) y tomografía óptica	329
XI.8.1. Tomografía óptica	331
Lecturas recomendadas	332
Problemas	332
	333
XII. Velocidad de la luz y efectos relativistas	333 333
XII. Velocidad de la luz y efectos relativistas	
XII. Velocidad de la luz y efectos relativistas	333
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau	333 333 334
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio	333 333 334 335
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico	333 333 334
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson	333 333 334 335 336 337
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand	333 333 334 335 336 337 338
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas	333 333 334 335 336 337
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas XII.1.8. Velocidad de la luz en materia densa	333 333 334 335 336 337 338 339
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas XII.1.8. Velocidad de la luz en materia densa XII.1.9. Relaciones entre las velocidades de fase y de grupo	333 333 334 335 336 337 338 339 340 341
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas XII.1.8. Velocidad de la luz en materia densa XII.1.9. Relaciones entre las velocidades de fase y de grupo XII.2. Efectos relativistas en la propagación de la luz	333 334 335 336 337 338 339 340 341 341
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas XII.1.8. Velocidad de la luz en materia densa XII.1.9. Relaciones entre las velocidades de fase y de grupo XII.2. Efectos relativistas en la propagación de la luz XII.3. Experimento de Michelson-Morley	333 333 334 335 336 337 338 339 340 341 341 342
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas XII.1.8. Velocidad de la luz en materia densa XII.1.9. Relaciones entre las velocidades de fase y de grupo XII.2. Efectos relativistas en la propagación de la luz XII.3. Experimento de Michelson-Morley XII.4. Teoría de la relatividad especial	333 334 335 336 337 338 339 340 341 341 342 344
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas XII.1.8. Velocidad de la luz en materia densa XII.1.9. Relaciones entre las velocidades de fase y de grupo XII.2. Efectos relativistas en la propagación de la luz XII.3. Experimento de Michelson-Morley XII.4. Teoría de la relatividad especial XII.4.1. Consecuencias de la teoría de la relatividad especial	333 334 335 336 337 338 339 340 341 341 342 344 346
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas XII.1.8. Velocidad de la luz en materia densa XII.1.9. Relaciones entre las velocidades de fase y de grupo XII.2. Efectos relativistas en la propagación de la luz XII.3. Experimento de Michelson-Morley XII.4. Teoría de la relatividad especial XII.4.1. Consecuencias de la teoría de la relatividad especial XII.4.2. Dilatación del tiempo	333 334 335 336 337 338 339 340 341 341 342 344 346 346
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas XII.1.8. Velocidad de la luz en materia densa XII.1.9. Relaciones entre las velocidades de fase y de grupo XII.2. Efectos relativistas en la propagación de la luz XII.3. Experimento de Michelson-Morley XII.4. Teoría de la relatividad especial XII.4.1. Consecuencias de la teoría de la relatividad especial XII.4.2. Dilatación del tiempo XII.4.3. Contracción del espacio	333 334 335 336 337 338 339 340 341 341 342 344 346
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas XII.1.8. Velocidad de la luz en materia densa XII.1.9. Relaciones entre las velocidades de fase y de grupo XII.2. Efectos relativistas en la propagación de la luz XII.3. Experimento de Michelson-Morley XII.4. Teoría de la relatividad especial XII.4.1. Consecuencias de la teoría de la relatividad especial XII.4.2. Dilatación del tiempo XII.4.3. Contracción del espacio XII.4.4. Simultaneidad de dos eventos para diferentes	333 334 335 336 337 338 339 340 341 341 342 344 346 346 346
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas XII.1.8. Velocidad de la luz en materia densa XII.1.9. Relaciones entre las velocidades de fase y de grupo XII.2. Efectos relativistas en la propagación de la luz XII.3. Experimento de Michelson-Morley XII.4. Teoría de la relatividad especial XII.4.1. Consecuencias de la teoría de la relatividad especial XII.4.2. Dilatación del tiempo XII.4.3. Contracción del espacio XII.4.4. Simultaneidad de dos eventos para diferentes observadores	333 334 335 336 337 338 339 340 341 341 342 344 346 346 348
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas XII.1.8. Velocidad de la luz en materia densa XII.1.9. Relaciones entre las velocidades de fase y de grupo XII.2. Efectos relativistas en la propagación de la luz XII.3. Experimento de Michelson-Morley XII.4. Teoría de la relatividad especial XII.4.1. Consecuencias de la teoría de la relatividad especial XII.4.2. Dilatación del tiempo XII.4.3. Contracción del espacio XII.4.4. Simultaneidad de dos eventos para diferentes observadores XII.4.5. Adición de velocidades.	333 334 335 336 337 338 339 340 341 341 342 344 346 346 348
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas XII.1.8. Velocidad de la luz en materia densa XII.1.9. Relaciones entre las velocidades de fase y de grupo XII.2. Efectos relativistas en la propagación de la luz XII.3. Experimento de Michelson-Morley XII.4. Teoría de la relatividad especial XII.4.1. Consecuencias de la teoría de la relatividad especial XII.4.2. Dilatación del tiempo XII.4.3. Contracción del espacio XII.4.4. Simultaneidad de dos eventos para diferentes observadores XII.4.5. Adición de velocidades. XII.4.6. Equivalencia entre masa y energía	333 334 335 336 337 338 339 340 341 342 344 346 346 348
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas XII.1.8. Velocidad de la luz en materia densa XII.1.9. Relaciones entre las velocidades de fase y de grupo XII.2. Efectos relativistas en la propagación de la luz XII.3. Experimento de Michelson-Morley XII.4. Teoría de la relatividad especial XII.4.1. Consecuencias de la teoría de la relatividad especial XII.4.2. Dilatación del tiempo XII.4.3. Contracción del espacio XII.4.4. Simultaneidad de dos eventos para diferentes observadores XII.4.5. Adición de velocidades. XII.4.6. Equivalencia entre masa y energía XII.5. Algunos fenómenos ópticos relativistas	333 334 335 336 337 338 339 340 341 341 342 344 346 346 348 349 351 351 352
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas XII.1.8. Velocidad de la luz en materia densa XII.1.9. Relaciones entre las velocidades de fase y de grupo XII.2. Efectos relativistas en la propagación de la luz XII.3. Experimento de Michelson-Morley XII.4. Teoría de la relatividad especial XII.4.1. Consecuencias de la teoría de la relatividad especial XII.4.2. Dilatación del tiempo XII.4.3. Contracción del espacio XII.4.4. Simultaneidad de dos eventos para diferentes observadores XII.4.5. Adición de velocidades. XII.4.6. Equivalencia entre masa y energía XII.5. Algunos fenómenos ópticos relativistas XII.5.1. La aberración de la luz	333 334 335 336 337 338 339 340 341 342 344 346 346 348 349 351 352 352
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas XII.1.8. Velocidad de la luz en materia densa XII.1.9. Relaciones entre las velocidades de fase y de grupo XII.2. Efectos relativistas en la propagación de la luz XII.3. Experimento de Michelson-Morley XII.4. Teoría de la relatividad especial XII.4.1. Consecuencias de la teoría de la relatividad especial XII.4.2. Dilatación del tiempo XII.4.3. Contracción del espacio XII.4.4. Simultaneidad de dos eventos para diferentes observadores XII.4.5. Adición de velocidades. XII.4.6. Equivalencia entre masa y energía XII.5. Algunos fenómenos ópticos relativistas XII.5.1. La aberración de la luz XII.5.2. Reflexión de la luz en un espejo móvil	333 334 335 336 337 338 339 340 341 342 344 346 346 348 349 351 352 352 354
XII. Velocidad de la luz y efectos relativistas XII.1. Mediciones de la velocidad de la luz XII.1.1. Medición de Rømer XII.1.2. Medida de Fizeau XII.1.3. Medidas con espejo rotatorio XII.1.4. Medidas con obturador electroóptico XII.1.5. Medida de Anderson XII.1.6. Medida de Bergstrand XII.1.7. Otras medidas XII.1.8. Velocidad de la luz en materia densa XII.1.9. Relaciones entre las velocidades de fase y de grupo XII.2. Efectos relativistas en la propagación de la luz XII.3. Experimento de Michelson-Morley XII.4. Teoría de la relatividad especial XII.4.1. Consecuencias de la teoría de la relatividad especial XII.4.2. Dilatación del tiempo XII.4.3. Contracción del espacio XII.4.4. Simultaneidad de dos eventos para diferentes observadores XII.4.5. Adición de velocidades. XII.4.6. Equivalencia entre masa y energía XII.5. Algunos fenómenos ópticos relativistas XII.5.1. La aberración de la luz	333 334 335 336 337 338 339 340 341 342 344 346 346 348 349 351 352 352

Índice genei	ral
--------------	-----

	XII.5.6. Experimento de Fizeau y arrastre de Fresnel	358
	XII.5.7. Experimento de Airy	359
	XII.5.8. Corrimiento de frecuencia en una rejilla	
	de difracción móvil	359
	Lecturas recomendadas	360
	Problemas	360
XIII	Luz polarizada	361
	XIII.1. Introducción.	361
	XIII.1.1. Luz no polarizada y linealmente polarizada.	501
	Ley de Malus	361
	XIII.2. Interferencia de luz polarizada	363
	XIII.2.1. Luz elíptica y circularmente polarizada	363
	XIII.2.2. Esfera de Poincaré	366
	XIII.2.3. Luz natural y parcialmente polarizada	368
	XIII.2.4. Las matrices de Mueller para el análisis de elementos	200
	polarizadores	371
	XIII.3. Detección e identificación de luz polarizada	373
	XIII.3.1. Sensibilidad del ojo humano a la luz polarizada	373
	XIII.3.2. Identificación de los diferentes tipos de luz polarizada	373
	XIII.4. Producción de luz linealmente polarizada	376
	XIII.4.1. Por absorción. Tipos de polarizadores	376
	XIII.4.2. Por reflexión o refracción. Prisma polarizador	378
	XIII.4.3. Por doble refracción	380
	XIII.4.4. Por esparcimiento	380
	XIII.5. Algunos usos de los polarizadores y de la luz polarizada	380
	XIII.5.1. Anteojos polarizadores y filtros para cámara	381
	XIII.5.2. Filtros antirreflectores para pantallas de osciloscopios	
	o de televisión	381
	XIII.5.3. Análisis fotoelástico	382
	XIII.5.4. Sacarimetría	383
	Lecturas recomendadas	383
	Problemas	384
VIII	Teoría electromagnética de la luz	205
AIV.	_	385
	XIV.1. Definición de algunas cantidades eléctricas	385 386
		386
	XIV.2.1. Ley de Faraday	387
	XIV.2.2. Ley de Gauss	387
	XIV.2.3. Ley de Ampère	389
	XIV.3. Ecuación de onda	
	XIV.3.1. Forma vectorial	389 390
	XIV.3.2. Forma escalar	390
	XIV.4. Solución de la ecuación de onda	390
	XIV.4.1. Ondas electromagnéticas en dieléctricos	391
	XIV.4.2. Ondas electromagnéticas en metales	393
	<u> </u>	393
	XIV.5. Campo magnético	394
	XIV.5.2. Ondas estacionarias	393
	XIV.5.3. Presión de radiación	390
	Lecturas recomendadas	398
	Problemas	398
	I I OUICHIUS	220

XV. Teoría electromagnética de la reflexión y la refracción	399
XV.1. Teoría electromagnética de la reflexión y la refracción	399
XV.1.1. Condiciones a la frontera	399
XV.2. Reflexión y refracción en dieléctricos	402
XV.2.1. Coeficientes de reflexión y transmisión	402
XV.2.2. Reflexión externa. Ángulo de Brewster	404
XV.2.3. Reflexión interna. Ángulo límite	405
XV.2.4. Cambios de fase bajo reflexión	407
XV.2.5. Relaciones de Stokes	410
XV.3. Reflexión en metales	412
XV.3.1. Coeficientes de reflexión	412
XV.3.2. Ángulo de incidencia principal y azimut principal	413
XV.3.3. Cambios de fase bajo reflexión	415
Lecturas recomendadas	416
Problemas	416
XVI. Teoría microscópica del esparcimiento, reflexión,	
transmisión y absorción	417
•	417
XVI.1. Esparcimiento. Dipolo eléctrico	417
XVI.1.1. Esparcimiento de Rayleigh	
XVI.1.2. Esparcimiento de Mie	423
con el esparcimiento	423
XVI.2. Reflexión	423
XVI.2. Renexion XVI.2.1. Punto de vista microscópico de la reflexión	424
XVI.3. Transmisión	427
XVI.3.1. Materia transparente	427
XVI.3.1. Materia transparente	428
XVI.3.2. Materia opaca:	428
XVI.3.4. Dispersión anómala en dieléctricos	430
XVI.4. Absorción	431
XVI.4.1. Transmisión y reflexión en metales	431
XVI.4.2. Dispersión en metales	432
XVI.4.3. Materia coloreada	433
Lecturas recomendadas	434
Problemas	434
XVII. Cristales.	435
XVII.1. Naturaleza del estado cristalino	435
XVII.1.1. Sistemas cristalinos	436
XVII.1.2. Elipsoide de Fresnel	437
XVII.1.3. Superficie de onda en cristales uniaxiales	440
XVII.1.4. Superficies de onda en cristales biaxiales	441
XVII.1.5. Propagación de luz en cristales uniaxiales	442
XVII.1.6. Propagación de la luz en cristales biaxiales	446
XVII.2. Análisis de cristales con luz polarizada	448
XVII.2.1. Análisis con luz colimada	448
XVII.2.2. Análisis con luz convergente	449
XVII.2.3. Microscopio polarizador	451
XVII.3. Pleocroísmo	452
XVII.4. Retardadores de fase	452
XVII.4.1. Retardadores cristalinos	452
XVII.4.2. Compensadores de Soleil y Babinet	452

Índice g	general
----------	---------

XVII.4.3. Retardadores cuasicristalinos	453
XVII.5. Algunos usos ópticos de los cristales	453
XVII.5.1. Prismas de Nicol y Glan Thompson	453
XVII.5.2. Prismas triangulares de calcita	455
XVII.5.3. Prismas de Rochon y Wollaston	455
XVII.5.4. Filtro de Lyot	456
XVII.5.5. Otros usos de los cristales	457
XVII.6. Actividad óptica	457
XVII.6.1. Naturaleza microscópica	459
XVII.6.2. Explicación de Fresnel de la actividad óptica	459
XVII.6.3. Actividad óptica en cristales isotrópicos y anisotrópicos	460
XVII.6.4. Actividad óptica en líquidos	460
XVII.6.5. Aplicaciones de la actividad óptica	460
XVII.7. Cristales líquidos	461
Lecturas recomendadas	463
Problemas	463
11000011145	103
XVIII. Electroóptica y magnetoóptica	465
XVIII.1. Campo eléctrico aplicado a la fuente de luz.	100
Efecto Stark	465
XVIII.2. Campo magnético aplicado a la fuente de luz.	100
Efecto Zeeman	466
XVIII.3. Efectos no lineales	468
XVIII.3.1. Generación de armónicas de luz	469
XVIII.3.2. Interacción entre dos haces luminosos	471
XVIII.3.3. Conjugación de fase	471
XVIII.4. Campo eléctrico aplicado al medio transparente	473
XVIII.4.1. Doble refracción eléctrica	473
XVIII.4.2. Efecto Kerr	473
XVIII.4.3. Efecto Pockels	474
XVIII.5. Campo magnético aplicado al medio transparente	476
XVIII.5.1. Efecto Voigt	476
XVIII.5.2. Efecto Faraday	477
	477
XVIII.5.3. Efecto Cotton-Mouton	479
XVIII.5.4. Efecto magnetoóptico de Kerr	
Lecturas recomendadas	479 479
Problemas	4/9
XIX. Radiación de cuerpo negro	481
XIX.1. Introducción	481
XIX.2. Hipótesis cuántica de Planck	482
XIX.2.1. Modos de vibración dentro de una cavidad	482
XIX.2.2. Energía promedio de los osciladores	404
con una frecuencia dada	484
XIX.3. Leyes de la radiación	486
XIX.3.1. Ley de Planck	486
XIX.3.2. Leyes de Wien y de Rayleigh-Jeans	488
XIX.3.3. Ley del desplazamiento de Wien	489
XIX.3.4. Ley de Stefan-Boltzmann	490
XIX.4. Cuerpo gris. Temperatura de color.	491
XIX.5. Importancia y aplicaciones de esta teoría del cuerpo negro	491
Lecturas recomendadas	493
Problemas	493

XX. Teoría cuántica de la luz e interacciones	
entre la luz y la materia	495
XX.1. Teoría cuántica de la luz	495
XX.1.1. Efecto fotoeléctrico	495
XX.1.2. Hipótesis de De Broglie	497
XX.1.3. Efecto Compton	498
XX.1.4. Principio de incertidumbre de Heisenberg	500
XX.1.5. Explicación cuántica de la interferencia y la difracción	502
XX.1.6. Interferometría de intensidades.	
Experimento de Brown y Twiss	503
XX.1.7. Explicación cuántica de la polarización	505
XX.2. Teoría cuántica de la emisión y la absorción de luz	506
XX.2.1. Teoría atómica de Bohr	506
XX.2.2. Teoría cuántica moderna	508
XX.2.3. Validez de la teoría clásica	509
XX.3. Interacciones entre la luz y la materia	510
XX.3.1. Emisiones espontánea y estimulada	510
XX.3.2. Ensanchamiento de líneas espectrales	512
XX.3.3. Radiación de resonancia	514
XX.3.4. Fluorescencia y fosforescencia	514
XX.3.5. Esparcimiento de Raman	515
Lecturas recomendadas	516
Problemas	516
11001011111	010
XXI. Láseres	519
XXI.1. Breve historia del láser	519
XXI.2. Amplificación de la luz por emisión estimulada	519
XXI.3. Láser	522
XXI.3.1. Niveles de energía en un láser	522
XXI.3.2. Teoría elemental del láser	523
XXI.4. Cavidades resonantes	524
XXI.4.1. Haces gaussianos	526
XXI.5. Coherencia temporal de la luz de láser	529
XXI.5.1. Láseres de multimodo	530
XXI.5.1.1. Láseres de fase acoplada	531
XXI.5.1.2. Láseres de oscilación libre	532
XXI.5.1.3. Láseres con dos modos longitudinales	532
XXI.5.2. Láseres de modo simple	533
XXI.6. Coherencia espacial de la luz de láser	533
XXI.7. Principales tipos de láseres	533
XXI.7.1. Láseres de gas	534
XXI.7.2. Láseres sólidos	536
XXI.7.3. Láseres líquidos	537
XXI.8. Aplicaciones de la luz de láser	538
Lecturas recomendadas	538
Problemas	539
1 TOURNING.	557
XXII. Fotometría, radiometría y detectores	541
XXII.1. Unidades fotométricas y radiométricas	541
XXII.1.1. Descripción de unidades	541
XXII.1.2. Relación entre unidades radiométricas y fotométricas	542
XXII.2. Iluminación producida por fuentes de luz	543
XXII.2.1. Fuentes de luz puntuales	543
T	_

17

XXII.2.2. Emitancia radiante de una fuente de luz extendida	544
XXII.2.3. Iluminación de una superficie con una fuente	
de luz extendida	545
XXII.2.4. El faro	547
XXII.3. Iluminación de imágenes en sistemas ópticos	548
XXII.3.1. Radiancia de una imagen extendida	548
XXII.3.2. Irradiancia sobre una imagen extendida	549
<i>XXII.3.3.</i> Ley de $\cos^4\theta$	550
XXII.3.4. Imagen de fuentes de luz puntuales	550
XXII.4. Fotometría	551
XXII.4.1. El observador estándar	552
XXII.4.2. Flujo luminoso de un espectro continuo	552
XXII.5. Detectores de radiación	
XXII.5.1. Detectores térmicos	553
XXII.5.2. Detectores cuánticos	
XXII.6. Detectores de imágenes	556
XXII.6.1. Los primeros detectores de imagen	
XXII.6.2. Emulsiones fotográficas	
XXII.6.3. Dispositivos de carga acoplada (CCD)	
XXII.7. Radiación infrarroja y ultravioleta	
Lecturas recomendadas	
Problemas	562
Trobeinus	302
XXIII. Visión del color y fuentes luminosas	563
XXIII.1. La visión en color	
XXIII.1.1. Breve revisión de las diferentes teorías	
XXIII.1.2. Daltonismo	
XXIII.1.3. Otros efectos cromático-visuales	566
XXIII.2. Teoría tricromática	
XXIII.2. 1 Eura di Cionadica	
XXIII.2.1. Functiones de igudiación de color	
XXIII.2.2. valores de triestimulo	
XXIII.3. Diagrama de cromaticidad de la CIE	571
XXIII.4. Aplicaciones del diagrama de cromaticidad	
XXIII.5. Influencia de la iluminación y de los filtros en el color	575
XXIII.6. Mezclas de color	577
XXIII.6.1. Adición de color	577
XXIII.6.2. Sustracción de color	578
XXIII.7. Otras representaciones del color	579
XXIII.8. Fuentes de luz e iluminantes	582
XXIII.9. Colorímetros	583
XXIII.10. Fuentes luminosas.	583
XXIII.10.1. Lámparas incandescentes	583
XXIII.10.2. Lámparas de descarga eléctrica en gas vapor de metal	584
XXIII.10.3. Lámparas fluorescentes	585
XXIII.10.4. Diodos emisores de luz	585
Lecturas recomendadas	587
Problemas	588
4 11 121	
Índice analítico	589

Prefacio

a primera edición de este libro se publicó en 1989. Desde entonces se han introducido copiosos cambios debido a muy diversas razones. La principal de ellas es que la ciencia de la óptica ha avanzado vertiginosamente, y, segundo, la consulta continua realizada por los estudiantes ha permitido encontrar nuevas formas de describir algunas partes con mayor claridad. Este libro está escrito para los estudiantes de física, ingeniería, optometría, o cualquier otra carrera relacionada directa o indirectamente con la óptica, con el fin de que se obtenga un conocimiento general aunque no muy profundo en algunos temas de la óptica contemporánea. La óptica es una de las antiguas ramas de la física que ha tenido un resurgimiento muy rápido en las últimas décadas. El resultado de este inesperado renacimiento es que muchos importantes nuevos conceptos son desconocidos por los estudiantes no especializados. Los nuevos avances han sido sumamente valiosos, con grandes aplicaciones en la ciencia, la medicina y muchos otros campos, que han permitido grandes adelantos tecnológicos. En este libro se trata de establecer el puente entre los conceptos clásicos elementales y los más recientes. Aquí se estudian los más recientes innovaciones tales como el diseño automático de lentes, las películas delgadas de interferencia, los hologramas, los filtros espaciales, la óptica lineal, los láseres y otros más.

El nivel de este libro es el adecuado para un curso de óptica en licenciatura o posgrado. Se ha intentado cubrir aquí la mayor cantidad posible de temas, de tal forma que se le pueda dar la orientación deseada al lector simplemente seleccionando los capítulos específicos. Todas las ecuaciones mencionadas se han demostrado a partir de principios elementales, siempre que ha sido posible hacerlo brevemente.

A fin de comprender el contenido en toda su extensión y profundidad, es indispensable una base sólida en álgebra, trigonometría y cálculo. Para la comprensión de los últimos capítulos son deseables conocimientos básicos de electricidad, magnetismo y física atómica.

Este libro está compuesto de 23 capítulos: seis de los cuales están dedicados a la óptica geométrica e instrumental, uno al estudio del ojo humano, cinco a la óptica física y de ondas, uno a la relatividad especial y el resto a la física óptica, incluyendo los láseres y un capítulo sobe la teoría del color.

El capítulo I cubre las leyes fundamentales de la óptica geométrica y las leyes de reflexión y refracción en superficies esféricas. Aquí se derivan las leyes de reflexión y refracción en forma vectorial y el teorema óptico del seno. Se incluye una breve descripción de la óptica de gradiente.

Prefacio

El capítulo II estudia las propiedades de las lentes delgadas y los espejos esféricos. Los espejos esféricos son considerados aquí como un caso particular de las superficies refractoras, pero con un índice de refracción negativo.

El capítulo III estudia las propiedades de las lentes gruesas y los sistemas formados por varias lentes. Aquí se introducen los conceptos de *iris*, *pupila de entrada* y *pupila de salida* de un sistema óptico.

El capítulo IV describe algunos de los tipos más comunes de prismas que se emplean en instrumentos ópticos. Se estudian la dispersión cromática y algunos fenómenos atmosféricos relacionados con ella.

El capítulo V describe las aberraciones ópticas de los sistemas de lentes y la manera de corregirlas. Se incluyen el estudio de las aberraciones de onda y las aberraciones de alto orden.

El capítulo VI describe algunos de los instrumentos ópticos más comunes, así como algunos de los usados en astronomía, fotografía e investigación y algunos que han sufrido grandes cambios recientemente debido a los nuevos avances tecnológicos.

El capítulo VII considera al ojo humano como instrumento óptico y analiza los efectos de refracción que puede tener. También se estudian las lentes oftálmicas y los instrumentos más usados en optometría y oftalmología. De manera especial se describen las lentes intraoculares.

El capítulo VIII introduce los conceptos básicos y fenómenos fundamentales relacionados con la naturaleza ondulatoria de la luz. Aquí se establecen los conceptos de *velocidad de grupo*, *velocidad de fase* y *de coherencia*.

El capítulo IX estudia los principales tipos de interferómetros y describe sus usos. Aquí se incluye una sección de espectroscopía de Fourier y una de películas delgadas de interferencia.

En los capítulos X y XI se estudia la teoría de refracción y sus aplicaciones. Aquí se describen las aplicaciones más recientes del fenómeno de difracción, tales como la holografía, la función de transferencia y el filtraje espacial. Se estudian los principios básicos de la tomografía.

En el capítulo XII se describen los principales métodos hasta ahora empleados para medir la velocidad de la luz. Aquí se ven también los fenómenos relativistas y los principios básicos de la relatividad especial relacionados con la propagación de la luz. Se demuestra la equivalencia entre el "conteo de franjas" en un interferómetro y la heterodinación de dos ondas donde una de ellas está afectada por el efecto Doppler.

En el capítulo XIII se introduce el concepto de *polarización* y se describen los principales fenómenos relacionados con la naturaleza transversal de las ondas de luz. Se incluyen descripciones de los estados de polarización por medio de los parámetros de Stokes y las matrices de Mueller.

En los capítulos XIV y XV se estudia la naturaleza electromagnética de la luz a partir de las ecuaciones de Maxwell. Aquí se describen también los fenómenos asociados con la reflexión de la luz en dieléctricos y en metales.

En el capítulo XVI se estudian los fundamentos de las interacciones entre la luz y la materia. Aquí se describen los procesos de esparcimiento, reflexión, transmisión y absorción de la luz en materiales. La reflexión y la refracción se consideran desde un punto de vista microscópico.

En el capítulo XVII se describen la anisotropía óptica y las principales propiedades y aplicaciones de los cristales, incluyendo la actividad óptica.

En el capítulo XVIII se estudian y explican en forma elemental los efectos electroópticos y magnetoópticos. Los efectos alineales en dieléctricos también se estudian en este capítulo.

En el capítulo XIX se describen las leyes de radiación del cuerpo negro.

Prefacio

El capítulo XX estudia la teoría cuántica de la luz y las interacciones entre la luz y la materia, incluyendo la emisión estimulada de la radiación como una introducción a los láseres.

El capítulo XXI describe las propiedades elementales de las fuentes luminosas en general, y de manera particular de los láseres, con especial énfasis en las propiedades ópticas de los láseres de gas.

El capítulo XXII contiene un breve estudio de las unidades radiométricas y fotométricas. Aquí se deducen las fórmulas radiométricas necesarias para calcular la irradiancia producida por fuentes de luz de varias formas. Las unidades se han cambiado en esta edición para adecuarlas a las nuevas definiciones adoptadas internacionalmente.

Por último, el capítulo XXIII da una descripción breve de las teorías de la visión en color. Aquí se estudian las matemáticas usadas para la especialización del color de combinaciones auditivas y sustractivas. Los principales sistemas en uso para la determinación y especificación del color se han ampliado.

Al final de cada capítulo se sugieren lecturas adicionales con el propósito de complementar la información ofrecida en este libro y no con el de dar el crédito debido a los descubridores o inventores.

Este libro es el resultado de impartir la clase de óptica en varias instituciones a lo largo de muchos años. Han colaborado con el autor sin ningún interés personal muchas personas, por lo que sería imposible nombrarlas a todas. Mencionaré únicamente unas pocas, entre quienes se encuentran el doctor Zacarías Malacara Hernández; mi hijo, el doctor Daniel Malacara Doblado; la doctora Cristina Solano, y mis estudiantes de varias generaciones en el Centro de Investigaciones en Óptica. Mi asistente, la licenciada Marissa Vázquez Martínez ha sido una constante ayuda a lo largo de varios años, la cual mucho agradezco. De manera muy especial deseo agradecer su cuidadosa y eficiente labor de coordinación editorial a Heriberto Sánchez, del Fondo de Cultura Económica.

Por último, deseo agradecer profundamente el estímulo de todos mis colegas, y de manera muy especial el constante aliento y comprensión de mi esposa María Isabel, de mis hijos Celia María, Daniel, Juan Manuel y Miguel Ángel, y en general de mi familia, a la que le quité tantas horas para poder concluir este trabajo.

Daniel Malacara-Hernández Centro de Investigaciones en Óptica, A. C. León, Guanajuato Octubre de 2015

Introducción histórica

l contacto más importante que tenemos con el mundo exterior se logra por medio del sentido de la vista; tal vez esto pueda explicar por qué la óptica es una de las ramas más antiguas de la ciencia. Para entender un poco cómo se ha desarrollado esta ciencia a lo largo de la historia, a continuación haremos una breve revisión histórica.

Mucho antes de que se comenzaran estudios serios de los fenómenos ópticos ya se construían espejos y lentes para mejorar la visión. Los espejos fueron usados por las mujeres para verse en ellos desde la época de los egipcios (1900 a. C.), como pudo comprobarse al encontrar uno cerca de la pirámide de Jajeperra Senusert (Senusert II). La primera referencia a las lentes se encuentra en los escritos de Confucio (500 a. C.), quien decía que las lentes mejoraban la visión, aunque probablemente no sabía nada acerca de la refracción.

La primera mención al fenómeno de la refracción la encontramos en el libro de Platón *República*. Euclides (300 a. C.) en su libro *Catóptrica* estableció por primera vez la ley de reflexión y algunas propiedades de los espejos esféricos. Por su parte, Herón de Alejandría (250 d. C.) casi obtuvo el principio de Fermat al decir que la luz al reflejarse sigue la mínima trayectoria posible, y Claudio Ptolomeo (130 d. C.) establece una forma aproximada de la ley de refracción para ángulos de incidencia pequeños.

Durante la Edad Media, la óptica, al igual que las demás ciencias, tuvo pocos avances. Este adelanto estuvo básicamente en manos de los árabes. Así Al-Kindī (ca. 813-880), de Basora y Bagdad, escribió algunas consideraciones generales acerca de la refracción de la luz, y Alhacén (ca. 965-1038) hizo el primer estudio realmente serio acerca de la refracción, probando la ley aproximada de Ptolomeo, y encontró una ley que daba las posiciones relativas de un objeto y su imagen formada por una lente convergente. Por otro lado, Roger Bacon (1214-1294), en Inglaterra, sugirió la forma en que se podría hacer un telescopio, aunque nunca llegó a construir uno.

Las lentes oftálmicas con el propósito de corregir los defectos refractivos del ojo se vienen usando desde hace varios siglos. Se cree que desde 1284 en Italia, Salvino degli Armati las inventó, pero no hay pruebas firmes. Sin embargo la primera evidencia sólida se tiene por una pintura del cardenal Hugo de Saint-Cher que se encuentra en la iglesia de San Nicolò, en Treviso, Italia, pintada por Tommaso da Modena (1326-1379) alrededor del año 1352 (figura 1).

Fue durante el Renacimiento cuando volvió a progresar la óptica a grandes pasos. El primer telescopio fue construido probablemente por Zacharias Jansen (1588-

Figura 1. Cardenal Hugo de Saint-Cher.

Figura 2. Galileo Galilei.

Figura 3. Telescopio de Galileo en el Museo de Historia de la Ciencia en Florencia, Italia.

Figura 4. Willebrord Snel.

Figura 6. Réplica del telescopio reflector de Newton presentado a la Royal Society of London en 1672.

1638) en los Países Bajos en 1604; sin embargo, sus imperfecciones eran tan grandes que tan sólo obtenía una amplificación aproximada de tres. Casi simultánea (1608) pero independientemente, Hans Lippershey (1570-1619), también en los Países Bajos, construyó otro. No obstante, el primer telescopio con calidad razonablemente buena fue construido por Galileo Galilei (1564-1642) en 1609, el cual tenía una amplificación aproximada de treinta (figuras 2 y 3).

No fue sino hasta después de que se construyeron los primeros telescopios, que en 1621 en Leiden, los Países Bajos, Willebrord Snel (1580-1626) descubrió la ley de la refracción, exacta para cualquier magnitud del ángulo de incidencia (figura 4). De manera independiente, en 1637 René Descartes (1596-1650) también encontró esta misma ley.

Francesco Maria Grimaldi (1618-1663), en Boloña, descubrió el fenómeno de la difracción, cuando observó en algunos experimentos que la orilla de la sombra en lugar de estar bien definida muestra algunas franjas claras y oscuras. Grimaldi supuso que el fenómeno estaba relacionado en cierta forma con un movimiento ondulatorio.

Robert Hooke (1635-1703) descubrió en 1665 el fenómeno de la interferencia al observar los brillantes colores de las pompas de jabón y las películas de aceite en agua. Hooke interpretó erróneamente sus observaciones, las que relacionó muy indirectamente con movimientos ondulatorios.

En 1672 sir Isaac Newton (1642-1727) publicó un documento científico en el que describía sus experimentos con el bien conocido fenómeno de la dispersión cromáti-

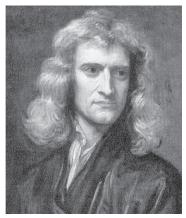


Figura 5. Sir Isaac Newton.

ca de la luz en prismas (figura 5). Además probó que se obtiene luz blanca con la superposición de todos los colores. Newton pensó que la luz estaba formada por corpúsculos de diferentes tamaños y velocidades, los cuales inducían vibraciones en el éter de acuerdo con su tamaño y velocidad. Estas ideas fueron mal interpretadas en su tiempo si se parte de que Newton postulaba una teoría completamente corpuscular. La influencia de esta mala interpretación fue tan grande que aun científicos tan importantes como sir David Brewster (1781-1868) se opusieron rotundamente a la teoría ondulatoria. Newton propuso el telescopio reflector como alternativa para evitar la aberración cromática de las lentes.

Una réplica de su telescopio se muestra en la figura 6.

Fue durante esta época (1674) cuando Anton van Leeuwenhoek (1632-1723) construyó en los Países Bajos el primer microscopio simple o lupa. Algunos años antes, en 1665, Robert Hooke había construido el primer microscopio compuesto.

Erasmus Bartholinus (1625-1698) descubrió en 1670 el fenómeno de la doble refracción en calcita, pero no pudo encontrar una explicación razonable.

Christiaan Huygens (1629-1695) en 1678, en los Países Bajos, supuso que la luz era de naturaleza ondulatoria, es decir, como una onda (figura 7). Con ayuda de su teoría Huygens explicó la reflexión, la refracción, la interferencia y la difracción, aunque sólo en forma cualitativa. Robert Hooke proponía que la luz consistía en ondas transversales; con ello introdujo el concepto de polarización de la luz. Con esta base se podía explicar la doble refracción, pero en ese tiempo no se veía cómo esto era posible. Pierre de Fermat (1608-1665) estableció en 1679 en Tolosa su muy famoso principio.

Thomas Young (1773-1829), médico de profesión y arqueólogo de gran éxito, describía en 1801 en Inglaterra algunos experimentos, entre los cuales el más importante era el de la doble rendija (figura 8). Con este experimento Young trataba de

revivir la teoría ondulatoria que ya casi se había olvidado por entonces. Catorce años más tarde Augustin-Jean Fresnel (1788-1827) en Normandía desarrollaba una teoría matemática ondulatoria de la luz más formal que las anteriores, con ésta se explicaban todos los fenómenos luminosos hasta entonces conocidos.

Al comenzar el siglo xvIII, William Hyde Wollaston (1776-1828), en 1802, y más tarde Joseph von Fraunhofer (1787-1826), en 1807, aplicaron el fenómeno de la dis-

persión cromática de la luz en prismas con el fin de construir un espectroscopio con propósitos astronómicos. Anders Jonas Ångström (1814-1874) hizo en Suecia el primer atlas del espectro solar.

Étienne-Louis Malus (1775-1812) descubrió en 1808 la polarización de la luz por medio de la reflexión. En 1815, Malus hizo, junto con sir David Brewster, un estudio bastante completo de este fenómeno. William Rowan Hamilton (1805-1865) demostró en 1831 que el concepto de rayo de luz se puede usar con bastante precisión si la frecuencia de la onda de luz es muy alta. Así quedó demostrado que la óptica geométrica es sólo un caso particular de la óptica de ondas. Carl Friedrich Gauss (1777-1855), en Alemania, estableció la teoría de primer orden de la óptica geométrica (figura 9).

Hippolyte L. Fizeau (1819-1896) midió en 1849 por primera vez en forma directa la velocidad de propagación de la luz, aunque ya Ole Rømer (1644-1710) la había medido antes, en 1673, de manera indirecta por métodos astronómicos. Léon Foucault (1819-1868) probó experimentalmente en 1850 que la velocidad de la luz es menor en un medio denso que en el vacío. Foucault también inventó la famosa prueba para espejos de telescopio que lleva su nombre.

Ernst Abbe (1840-1905) publica en 1873 su teoría de la formación de imágenes en los

microscopios. Abbe hace además muchas otras aportaciones científicas a la teoría del diseño óptico en este tiempo.

Hasta 1880 era completamente desconocido el tipo de onda que era la luz. En este año James Clerk Maxwell (1831-1879) derivó su teoría electromagnética de la luz con la que probó que la luz es una onda electromagnética transversal de la misma naturaleza que las ondas de radio, diferenciándose de éstas sólo en que su frecuencia es mucho mayor (figura 10). Maxwell tuvo tanto éxito con su teoría que pudo explicar cualitativa y cuantitativamente todos los fenómenos luminosos conocidos entonces y aun predecir otros más.

Gustav Kirchhoff (1824-1887) derivó en 1883 en Berlín su teoría escalar de la difracción (figura 11). Esta teoría se puede considerar como una aproximación de la de Maxwell o como una mejora de la de Fresnel. Heinrich Hertz (1857-1894) en 1886 en Alemania probó experimentalmente la existencia de las ondas de radio, confirmando así la teoría electromagnética de Maxwell. Hertz también descubrió el efecto fotoeléctrico.

Henry Augustus Rowland (1848-1901) hizo en 1882 en los Estados Unidos las primeras rejillas de la difracción de alta calidad con el fin de remplazar a los prismas

Figura 7. Christiaan Huygens.

Figura 8. Thomas Young.

Figura 9. Carl Friedrich Gauss.

Figura 10. James Clerk Maxwell.

Figura 11. Gustav Kirchhoff.

Introducción histórica

Figura 12. Albert A. Michelson.

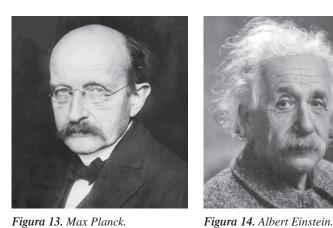


Figura 13. Max Planck.

Figura 15. Frits Zernike.

en espectroscopios. En 1902 Hendrik Antoon Lorentz (1853-1928) y Pieter Zeeman (1865-1943) recibieron el premio Nobel en Física por el descubrimiento del efecto electroóptico que lleva el nombre del segundo.

Albert A. Michelson (1852-1931) hizo en 1887 en Cleveland, asociado con Edward Morley (1838-1923), un experimento muy importante, por medio de un interferómetro especialmente diseñado para ello (figura 12). El resultado de este experimento fue el punto de partida para Albert Einstein (1879-1955) al desarrollar su teoría de la relatividad. Einstein supuso, por razones muy diferentes, pero explicando así el resultado de Michelson, que la velocidad de la luz en el vacío era una constante, independientemente del sistema de referencia del observador. Michelson también construyó algunos otros instrumentos ópticos muy precisos, como rejillas de difracción y telescopios. Además realizó una medida de la velocidad de la luz cuyo resultado fue mejorado sólo casi medio siglo después. Michelson recibió el premio Nobel en Física en 1907 por la construcción de instrumentos ópticos de precisión.

Gabriel Lippmann (1845-1921) inventó en 1891 en Francia un proceso que usaba el fenómeno de la interferencia en películas delgadas para obtener fotografías en color. Su proceso consistía en registrar en una emulsión fotográfica gruesa las ondas estacionarias de la luz al ser reflejada en un espejo plano y luego encontrarse

> con la onda incidente. Lippmann recibió el premio Nobel en Física en 1908 por esta invención.

> Los completos estudios ópticos y fisiológicos del ojo le hicieron merecer a Allvar Gullstrand (1862-1930) el premio Nobel en Medicina en el año de 1911.

> Con el fin de explicar las leyes de radiación del cuerpo negro, Max Planck (1858-1947) supuso en 1900 que la energía de la radiación podía emitirse sólo en forma discreta, en pequeños paquetes de energía (figura 13). Planck recibió el premio Nobel en Física en 1918 por el desarrollo de esta teoría.

> Después del descubrimiento de las leyes de radiación del cuerpo negro y del efecto fotoeléc-

trico fue necesario reconsiderar de nuevo la luz como corpúsculos, en forma similar a como lo había hecho Newton. Albert Einstein introdujo en 1905 el concepto de cuanto de luz o fotón, al explicar el efecto fotoeléctrico (figura 14). Einstein recibió el premio Nobel en Física en 1921.

Las teorías sobre la naturaleza de la luz eran entonces bastante conflictivas, pues por un lado se consideraba la luz como onda y por otro era necesario considerarla, en ciertos fenómenos, como en el efecto fotoeléctrico, como corpúsculos. Louis de Broglie (1892-1986) explicó en 1924 en Francia que ondas y corpúsculos eran en realidad dos puntos de vista diferentes de una misma cosa. Por lo tanto, si los fotones aparecen unas veces como ondas y otras como corpúsculos, entonces también los electrones, por analogía, deberían aparecer bajo ciertas circunstancias como corpúsculos y en otras como ondas, lo que se confirmó más tarde experimentalmente. De Broglie recibió el premio Nobel en 1929.

Frits Zernike (1888-1966) inventó en 1935 en los Países Bajos el microscopio de contraste de fase. Esta invención se consideró muy importante desde el punto de vista práctico debido a aplicaciones y desde el punto de vista teórico por ser una comprobación directa de la teoría del microscopio expuesta por Ernst Abbe. Zernike recibió el premio Nobel en Física en 1935 (figura 15).

Al principio del siglo xx A. E. Conrady estableció las principales bases teóricas del diseño de lentes. Sin embargo, los avances más impresionantes en este campo

Cuadro 1. Ganadores del premio Nobel por alguna investigación relacionada con la óptica

$A \tilde{n} o$	Galardonado	Campo	Investigación
1902	Hendrik A. Lorentz; Pieter Zeeman	Física	Efecto Zeeman
1907	Albert Abraham Michelson	Física	Instrumentos ópticos de precisión
1908	Gabriel Lippmann	Física	Fotografía en color por películas de interferencia
1911	Allvar Gullstrand	Medicina	Trabajos sobre la dióptrica del ojo
1918	Max Planck	Física	Teoría cuántica de la radiación del cuerpo negro
1921	Albert Einstein	Física	Teoría del efecto fotoeléctrico
1930	Chandrasekhara V. Raman	Física	Efecto Raman
1953	Frits W. Zernike	Física	Microscopio de contraste de fase
1955	Willis Eugene Lamb; Polykarp Kusch	Física	Estructura final del espectro del hidrógeno
1964	Charles H. Townes; Nikolay G. Basov;	Física	Invención del láser
1966	Aleksandr M. Prójorov Alfred Kastler	Física	Métodos ópticos para el estudio de las resonancias atómicas
1967	Haldan Keffer Hartline; George Wald; Ragnar Granit	Medicina	Descubrimiento de procesos visuales en el ojo
1971	Dennis Gabor	Física	Invención de la holografía
1979	Allan Cormack; Godfrey Hounsfield	Medicina	Desarrollo de la tomografía computarizada
1981	Nicolaas Bloembergen; Arthur L. Schawlow; Kai Siegbahn	Física	Espectroscopía láser y electrónica de alta resolución
1981	Torsten N. Wiesel	Medicina	Descubrimientos sobre procesamiento en el sistema visua.
1986	Ernst Ruska; Gerd Binnig; Heinrich Rohrer	Física	Microscopio electrónico y microscopio electrónico de barrido con efecto túnel
1991	Pierre-Gilles de Gennes	Física	Cristales líquidos y polímeros
1997	Steven Chu; Claude Cohen-Tannoudji; William D. Phillips	Física	Métodos para enfriar y atrapar átomos con luz láser
2000	Zhores I. Alferov; Herbert Kroemer; Jack S. Kilby	Física	Heteroestructuras semiconductoras para optoelectrónica
2005	Roy J. Glauber; John L. Hall	Física	Teoría de coherencia óptica
	Theodor W. Hänsch	Física	Espectroscopía láser
2009	Charles Kue Kao	Física	Descubrimientos sobre transmisión de la luz en fibras ópticas
	Willard S. Boyle; George E. Smith	Física	Invención del sensor de imágenes de
2014	Eric Betzig; Stefan W. Hell; William E. Moerner	Química	Desarrollo de la microscopía de fluorescencia de alta resolución
	Isamu Akasaki; Hiroshi Amano; Shuji Nakamura	Física	La invención del LED de luz azul que hizo posible la iluminación con bajo costo de energía

Introducción histórica

han venido después de que las computadoras electrónicas han estado disponibles. El primer diseño semiautomático de lentes se efectuó en la Universidad de Harvard en 1952. Con la posibilidad de diseñar mucho mejores lentes surgió la necesidad de mejores técnicas de evaluación de calidad. A fin de ayudar a satisfacer tal necesidad, E. W. H. Selwyn y J. L. Tearly inventaron en 1946 el concepto de la función de transferencia de una lente, que es el análogo de la respuesta de frecuencia de un amplificador electrónico.

Dennis Gabor (1900-1981) inventó en 1948 en Inglaterra los bien conocidos hologramas, que más tarde, al inventarse el láser, fueron mejorados por Emmett Leith y Juris Upatnieks. Gabor recibió el premio Nobel en Física por su invención en 1971. Basados en los estudios sobre bombeo óptico que realizó Alfred Kastler y por lo cual recibió el premio Nobel en Física en 1966, Charles H. Townes (1915), Nikolay G. Basov (1922-2001) y Aleksandr M. Prójorov (1916-2002) descubrieron en 1950 los principios físicos fundamentales que llevaron al descubrimiento del láser de rubí por Theodore H. Maiman en 1960 y de muchos otros más tarde. Townes, Basov y Prójorov compartieron el Premio Nobel en Física en 1964.

El láser ha ampliado repentina y grandemente los horizontes de la óptica. Vale la pena mencionar como ejemplo las enormes posibilidades de los efectos ópticos alineales descubiertos por Peter Franken y colegas en 1961 en la Universidad de Michigan.

Como podemos ver, la óptica ha jugado un papel preponderante en el desarrollo de la física contemporánea. Para comprobarlo una vez más, basta con revisar en el cuadro 1 la lista de los premios Nobel que han estado directa o indirectamente relacionados con la óptica.

La cadena de descubrimientos en óptica sigue sin romperse y continuamente se siguen logrando avances importantes, sin embargo, nuestra pregunta básica sobre la naturaleza de la luz sigue sin respuesta satisfactoria. Esperamos que el siglo xxI nos traiga la solución.

I. Fundamentos de la óptica geométrica

I.1. Introducción

A ÓPTICA es la ciencia que estudia los orígenes, la propagación y la detección de la luz. En esta definición se entiende por luz no sólo la radiación electromagnética visible, sino también la infrarroja y la ultravioleta. Las teorías acerca de la naturaleza de la luz son, en general, muy complicadas. En el capítulo VII se describirán brevemente las más importantes desde el punto de vista histórico. Para nuestros propósitos inmediatos será suficiente saber que la luz es una onda electromagnética, como una onda de radio, con la única diferencia de que su frecuencia es mayor y por lo tanto su longitud de onda mucho menor. Por ejemplo, la frecuencia de la luz amarilla es 5.4×10^8 MHz, a la que le corresponde una longitud de onda 5.6×10^{-5} cm. En el cuadro I.1 se comparan las longitudes de onda de la luz con las de las demás ondas electromagnéticas. Podemos observar en este cuadro que hay un hueco entre las microondas y el infrarrojo lejano, de 0.05 mm hasta 0.5 mm. En la naturaleza existen estas ondas electromagnéticas, de origen estelar, pero no hay detectores para ellas. Actualmente se está haciendo investigación para obtener estos detectores.

Cuadro I.1. Espectro electromagnético

		Tipo de onda	Límites aproximados de sus longitudes de onda
Dominio electrónico	{	Ondas de radio Microondas	1 000 m — 0.50 m 50 cm — 0.05 mm
Dominio óptico		Infrarrojo lejano Infrarrojo cercano Luz visible Ultravioleta Extremo ultravioleta	0.5 mm — $0.03 mm30 \mu\text{m} — 0.72 \mu\text{m}720 nm$ — $400 nm400 nm$ — $200 nm2000 Å$ — $500 Å$
Física de alta energía	{	Rayos X Rayos gamma	500 Å — 1 Å 1 Å — 0.1 Å