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A las aladas almas de las rosas
del almendro de nata te requiero,
que tenemos que hablar de muchas cosas,
compañero del alma, compañero.

Elegía a Ramón Sijé (1936)
Miguel Hernández
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Introduction

This volume presents a collection of articles to honour Prof. Jaime Muñoz Masqué
on the occasion of his 65th birthday. Jaime was born on 20 September 1950 in
Sabadell, Barcelona (Spain), to his parents, Manuel and Rosenda. He attended high
school in his home village, initially showing an inclination towards literature and
poetry, which he subsequently combined with a strong interest in mathematical
problems. He devoted more time to the latter; for instance, he spent a summer of his
adolescence exploring the intriguing question of the unsolvability of the equations
defined by fifth degree polynomials. This clearly indicated that his destiny was to
study mathematics, which he did at the University of Barcelona.

During his studies at the university, Jaime made acquaintance of two important
persons: First, María Sicilia, his future wife, who was also studying mathematics,
and second, Pedro Luis García Pérez, with whom he decided to do his Ph.D. As
Prof. García held a post in the University of Salamanca, the newly established
family moved to this city after both María and Jaime had completed their studies in
1973. Jaime won his position as High School Professor (Catedrático) in 1975,
working first in Zamora and then in Alba de Tormes (Salamanca). Jaime helped
some of his colleagues at the High School María de Molina to prepare for their
national-level exams in order to obtain permanent positions. They all remember
these years with affection.

In the meantime, Jaime had also begun to lecture at the University of Salamanca.
In 1983, Jaime defended his doctoral thesis at that university, entitled
Hamilton-Cartan Theory for higher-order variational problems on fibered mani-
folds (Teoría de Hamilton-Cartan para los problemas variacionales de orden
superior sobre variedades fibradas). He also began his fruitful scientific career with
the publication of his papers. In his first article, Higher-order structure forms and
infinitesimal contact transformations (Formes de structure et transformations
infinitésimales de contact d’ordre supérieur, CR Acad Sci Paris Sér I Math 1984;
298, no. 8:185–8), he formalized the geometry behind the natural lift of vector
fields from a bundle to its jet extension for arbitrary degree. This tool was essential
for his work on higher-order variational calculus, the topic of his thesis, on which
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he became a world expert. At the same time, his family grew as María and Jaime
had their three children: Ana, Joaquín and Teresa.

From 1984 to 1989, Jaime was first Assistant Professor and then Associate
Professor at the University of Salamanca, where he continued his scientific work,
mainly in the fields of differential geometry and algebra. In 1989 he was appointed
as Researcher at CSIC (Spanish National Research Council) and the family moved
to Madrid. While working in his new position he added cryptography to the list of
his interests, and joined research projects in this field. He continued collaborating in
CSIC and has carried out research on these topics until now.

In parallel with his scientific work, Jaime delivered courses in different uni-
versities where he showed his rare talent of explaining complex mathematics in a
clean, simple and rigorous language. In association with this academic work, he has
been the advisor for nine doctoral theses (Marco Castrillón López, Raúl Durán
Díaz, Víctor Fernández Mateos, Roberto Ferreiro, Ángel Martín del Rey, Alberto
Peinado Domínguez, Luis Pozo Coronado, Eugenia Rosado María, Antonio
Valdés) covering a varied collection of topics in geometry and algebra, from
variational calculus, Riemannian geometry and theory of invariants to cryptogra-
phy. We have borne in mind this versatility for choosing the title of this volume,
which offers an indication of Jaime’s vast knowledge and wide-ranging scientific
works. In this respect, the database of the Mathematical Reviews of the AMS
includes as many as 162 contributions from Jaime, including both books and
articles, on which he has worked with 39 collaborators.

The general consensus among the people who work with Jaime is that he is not
only a hard worker but also possesses a very broad knowledge of mathematics and
physics (as well as poetry and philosophy!) and an incredible capability to tackle
problems in very different areas in an interdisciplinary atmosphere. We all enjoy his
warm personality, the conversations with him over a cup of coffee and especially
his generosity, in all senses of the word. Jaime is a person who loves mathematics
and with whom one feels that excitement which accompanies the search for a
solution or the thrilling experience of finding those hidden mathematical gems
accessible only to a select group—a group of which Jaime is undoubtedly a
member.

Marco Castrillón López
Luis Hernández Encinas
Pedro Martínez Gadea

Mª Eugenia Rosado María

xii Introduction



A Survey on Homogeneous Structures
on the Classical Hyperbolic Spaces

Wafaa Batat, P.M. Gadea and José A. Oubiña

Dedicated to our colleague and friend Jaime Muñoz Masqué, a
good mathematician, with affection and admiration, on the
occasion of his 65th birthday

Abstract This is a survey on homogeneous Riemannian, Kähler or quaternionic
Kähler structures on the real, complex or quaternionic hyperbolic spaces RH(n),
CH(n) and HH(n), respectively.

Keywords Homogeneous Riemannian structures · Classical hyperbolic spaces

1 Introduction

Real, complex and quaternionic hyperbolic spaces and the Cayley hyperbolic plane
are known to be important spaces and have been and are subject of much research.
Two general references are Chen and Greenberg [10] and Ratcliffe [22].

On the other hand, homogeneous Riemannian structures were introduced by
Ambrose and Singer [3], and further studied in depth by Tricerri and Vanhecke
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2 W. Batat et al.

(see for instance [25]) and then by other authors. There exist three basic geometric
types,S1,S2,S3. Later, homogeneous Kähler structures were defined and studied
by Abbena and Garbiero in [1] and then by several authors. This time there are four
basic types,K1, . . . ,K4. Further, homogeneous quaternionic Kähler structures were
introduced by Fino [11], who moreover gave a Lie-theoretical description of the five
basic types,QK 1, . . . ,QK 5, and then studied by several authors. (In the sequel we
shall denoteSi ⊕ Sj simply bySij;Ki ⊕ Kj byKij;QK i ⊕ QK j byQK ij, and
so on.)

Homogeneous Riemannian structures have found some useful applications. Two
of them are: The characterization ofRH(n),CH(n) andHH(n) by such structures and
the characterization of the homogeneous spin Riemannian manifolds whose Dirac
operator is like that on a Riemannian symmetric spin space (see [15]). In our opinion,
Tricerri’s and Vanhecke’s classification of geometric types is so natural, that more
nice applications are to be expected.

The present survey is on the characterization of each of the classical hyperbolic
spaces by linear homogeneous structures and on the geometric types of homoge-
neous structures on them. Recall that the characterization ofRH(n) by homogeneous
Riemannian structures of typeS1 was given by Tricerri and Vanhecke in [25], that of
CH(n) in terms of homogeneous Kähler structures of typeK24 was obtained in [16],
and that of HH(n) by homogeneous quaternionic Kähler structures of type QK 123

with nonzero projection toQK 3 (actually, of type QK 3) was given in [7].
The vector spacesS1,K24 andQK 123 have dimension growing linearly accord-

ing to the dimension of the homogeneous manifold admitting some homogeneous
structure in each of them, that is, hyperbolic spaces. For this reason, these struc-
tures are sometimes called of linear type. However, this is not the unique type that
hyperbolic spaces admit.

As for the contents, we recall in Sect. 2 some definitions on homogeneous Rie-
mannian, Kähler and quaternionic Kähler structures, and recall the classification of
geometric types for each of the three cases.

In Sect. 3we give some results on the types of homogeneous structures thatRH(n),
CH(n) or HH(n) admit.

2 Homogeneous Riemannian, Kähler or Quaternionic
Kähler Structures

2.1 Homogeneous Riemannian Structures

A homogeneous structure on a Riemannian manifold (M, g) is a tensor field S of
type (1, 2) satisfying

˜∇g = 0, ˜∇R = 0, ˜∇S = 0, (1)
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where ˜∇ is (see [25]) the connection determined by ˜∇ = ∇ − S, ∇ being the Levi–
Civita connection of g. The condition ˜∇g = 0 is equivalent to SXYZ = −SXZY , where
SXYZ = g(SXY , Z).

Ambrose and Singer [3] gave the following characterization of homogeneous
Riemannian manifolds: A connected, simply connected and complete Riemannian
manifold (M, g) is homogeneous if and only if it admits a homogeneous structure S.

Let V be a real vector space endowed with an inner product 〈·, ·〉, which is the
model for each tangent space TpM, p ∈ M, of a (homogeneous) Riemannian mani-
fold. Consider the vector spaceS (V ) of tensors of type (0, 3) on (V, 〈·, ·〉) satisfying
the same algebraic symmetry that a homogeneous Riemannian structure S, that is,
S (V ) = {S ∈ ⊗3V ∗ : SXYZ = −SXZY , X, Y , Z ∈ V }.

Tricerri and Vanhecke studied the decomposition of S (V ) into invariant and
irreducible subspaces Si(V ), i = 1, 2, 3, under the action of the orthogonal group
O(n) given by (aS)XYZ = Sa−1X a−1Y a−1Z , a ∈ O(n). The inner product on V induces
in a natural way an inner product onS (V ), given by 〈S, S′〉 = ∑n

i,j,k=1 Seiejek S′
eiejek

,
where {ei} is an orthonormal basis of V . Let c12(S)(Z) = ∑n

i=1SeieiZ , Z ∈ V .
From the theory of representations of the orthogonal group (cf. [26, pp. 153–159])

it follows that S (V ) decomposes into the orthogonal direct sum of three invariant
and irreducible subspaces under the action of O(n). Specifically, the subspace of
c12-traceless tensors of the subspace Y of ⊗3V ∗ corresponding to the nonstandard
Young symmetrizer id + (12) − (23) − (132), the n -dimensional subspace of ten-
sors corresponding to the above c12-trace, and the subspace ∧3V ∗. Then, one has

Theorem 1 ([25]) If dim V � 3, then S (V ) decomposes into the orthogonal direct
sum of subspaces which are invariant and irreducible under the action of O(n),
S (V ) = S1(V ) ⊕ S2(V ) ⊕ S3(V ), where

S1(V ) = {S ∈ S (V ) : SXYZ = 〈X, Y〉θ(Z) − 〈X, Z〉θ(Y), θ ∈ V ∗},
S2(V ) = {S ∈ S (V ) : SXYZSXYZ = 0, c12(S) = 0},
S3(V ) = {S ∈ S (V ) : SXYZ + SYXZ = 0},

with dimensions n, 1
3n(n2 − 4), 1

6n(n − 1)(n − 2), respectively. If dim V = 2 then
S (V ) = S1(V ).

We say that the homogeneous Riemannian structure S on (M, g) is of type {0},Si

(i = 1, 2, 3),Sij (1 � i < j � 3), orS123 if, for each point p ∈ M, S(p) ∈ S (TpM)

belongs to {0},Si(TpM), Sij(TpM) or S123(TpM), respectively.
The similar terminology and notation will be used for the homogeneous Kähler

(Sect. 2.2) and homogeneous quaternionic Kähler (Sect. 2.3) geometric types, that
is, for the different types obtained from the basic typesKi (i = 1, . . . , 4) andQK i

(i = 1, . . . , 5), respectively.
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2.2 Homogeneous Kähler Structures

An almost Hermitian manifold (M, g, J) is called a homogeneous almost Hermitian
manifold if there exists a Lie group of almost complex isometries acting transitively
and effectively onM. In [24], Sekigawa proved that a simply connected and complete
almost Hermitian manifold (M, g, J) is homogeneous if and only if it admits a tensor
field S of type (1, 2) satisfying the Ambrose–Singer equations (1) and ˜∇J = 0. Such
a tensor field S is called a homogeneous almost Hermitian structure (or a homoge-
neousKähler structure if (M, g, J) isKähler).Moreover, a homogeneousRiemannian
structure on a Kähler manifold (M, g, J) is a homogeneous Kähler structure if and
only if SZXY = SZ JX JY for all vector fields X, Y , Z on M.

The classification of homogeneous Kähler structures was obtained byAbbena and
Garbiero. We recall here their result: Let V be a 2n-dimensional real vector space
(which is the model for the tangent space at any point of a manifold equipped with a
Kähler homogeneous structure) endowedwith a complex structure J and a Hermitian
inner product 〈 , 〉, that is, J2 = −I , 〈JX, JY〉 = 〈X, Y〉, X, Y ∈ V , where I denotes
the identity isomorphism of V .

Denoting complexifications by a superscript c, we now consider the decomposi-
tions in (±i)-eigenspaces V c = V 1,0 ⊕ V 0,1 and V ∗c = λ1,0 ⊕ λ0,1, with respect to
the complexified Jc of the complex structure J . In Salamon’s notation [23], let λp,q

denote the space of forms of type (p, q), which is isomorphic to Λpλ1,0 ⊗ Λqλ0,1.
We can decompose the spaceS (V )c = {S ∈ ⊗3V : SXYZ = −SXZY }, X, Y , Z ∈ V c,
into two subspaces invariant under the action of U(n). One summand (that is,
S (V )c− = V ∗c ⊗ (λ2,0 ⊕ λ0,2)) is related to homogeneous almost Hermitian struc-
tures. The other summand is

S (V )c
+ = V ∗c ⊗ λ1,1 ∼= {S ∈ ⊗3V : SXYZ = −SXZY = SXJcYJcZ},

X, Y , Z ∈ V c, which is the complexified of Abbena–Garbiero’s space S (V )+ (see
[1]). The space S(V )+ decomposes ([12, (2.1)]) into four subspaces invariant and
irreducible under the action of U(n). The sum of the first and second subspaces cor-
responds with the irreducible complex representation of U(n) of the highest weight
(1, 1, 0, . . . , 0,−1). The related real tensors of trace zero and those corresponding to
that trace give rise to the first and second types in Theorem2 below. Similarly, the sum
of the third and four subspaces in that theorem, corresponds to the irreducible com-
plex representation of U(n) of the highest weight (2, 0, . . . , 0,−1). Taking traceless
real tensors one gets the third subspace and the fourth one comes from that trace.
We recall that Abbena and Garbiero [1, Theorem 4.4] proved the invariance and irre-
ducibility by using quadratic invariants. In [12], Young diagrams and symmetrizers
are used instead.

The standard representation of U(n) on V induces a representation of U(n) on
S (V )+ given by (A(S))XYZ = SA−1XA−1YA−1Z , A ∈ U(n). Moreover, the scalar prod-
uct in V induces in a natural way the scalar product in S (V ) given by 〈S, S′〉 =
∑2n

i,j,k=1 Seiejek S′
eiejek

, for any orthonormal basis {e1, . . . , e2n} of V . The expression of
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the tensors in each basic geometric type was given by Abbena and Garbiero and is
as follows.

Theorem 2 ([1]) If dim V � 6, S (V )+ decomposes into the orthogonal direct sum
of the following subspaces invariant and irreducible under the action of the group
U(n):

K1 = {S ∈ S (V ) : SXYZ = 1
2 (SYZX + SZXY + SJYJZX + SJZXJY ), c12(S) = 0},

K2 = {S ∈ S (V ) : SXYZ =〈X, Y〉θ1(Z) − 〈X, Z〉θ1(Y) + 〈X, JY〉θ1(JZ)

− 〈X, JZ〉θ1(JY) − 2〈JY , Z〉θ1(JX), θ1 ∈ V ∗},
K3 = { S ∈ S (V ) : SXYZ = − 1

2 (SYZX + SZXY + SJYJZX + SJZXJY ), c12(S) = 0},
K4 = { S ∈ S (V ) : SXYZ =〈X, Y〉θ2(Z) − 〈X, Z〉θ2(Y) + 〈X, JY〉θ2(JZ)

− 〈X, JZ〉θ2(JY) + 2〈JY , Z〉θ2(JX), θ2 ∈ V ∗},

X, Y , Z ∈ V , where c12 is defined by c12(S)(X) = ∑2n
i=1 SeieiX , for any X ∈ V and

{e1, . . . , e2n} being an orthonormal basis of V ; θ1(X) = (1/(2(n − 1)))c12(S)(X)

and θ2(X) = (1/(2(n + 1)))c12(S)(X) , X ∈ V . The dimensions are n(n + 1)(n − 2),
2n, n(n − 1)(n + 2) and 2n, respectively. If dim V = 4, thenS (V )+ = K2 ⊕ K3 ⊕
K4. If dim V = 2, then S (V )+ = K4.

2.3 Homogeneous Quaternionic Kähler Structures

Let (M, g, υ3)be an almost quaternion-Hermitian4n-manifold,υ3 being the structure
subbundle of the bundle of (1, 1) tensors on M and let ∇ denote the Levi–Civita
connection. The manifold is said to be quaternion-Kähler if one has locally (cf.
Ishihara [19]) that

∇XJ1 = τ 3(X)J2 − τ 2(X)J3, etc., (2)

for certain differential 1-forms τ 1, τ 2, τ 3. Here and in the sequel we write “etc.” to
indicate the similar formulas obtained by cyclic permutation of (123). The holonomy
group is contained in Sp(n)Sp(1) . A quaternion-Kähler manifold (M, g, υ3) is said
to be a homogeneous quaternion-Kähler manifold if it admits a transitive group of
isometries (cf. Alekseevsky and Cortés [2, p.218] and [7, Remark 2.2]). A connected,
simply connected and complete quaternion-Kähler manifold (M, g, υ3) is homoge-
neous if and only if it admits a homogeneous quaternionic Kähler structure, that is,
a (1, 2) tensor field S satisfying the Ambrose–Singer equations (1) and equations

˜∇XJ1 = τ̃ 3(X)J2 − τ̃ 2(X)J3, etc., (3)

for three differential 1-forms τ̃ 1, τ̃ 2, τ̃ 3. Let θa = τ a − τ̃ a, a = 1, 2, 3. Then, from
formulas (2) and (3) we have that

SXJ1YJ1Z − SXYZ = θ3(X)g(J2Y , J1Z) − θ2(X)g(J3Y , J1Z), etc.,
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which, together with the condition SXYZ = −SXZY , are the algebraic symmetries sat-
isfied by a homogeneous quaternionic Kähler structure S.

Denote byE the standard representation ofSp(n)onC2n, bySrE the rth-symmetric
power of E (so that S2E ∼= sp(n) ⊗ C), by K the irreducible Sp(n)-module of the
highest weight (2, 1, 0, . . . , 0) in E ⊗ S2E = S3E ⊕ K ⊕ E, and by H the standard
representation of Sp(1) ∼= SU(2) on C

2 , so that S2H ∼= sp(1) ⊗ C and S3H is the
4-dimensional irreducible representation of Sp(1).

Let S (V )+ denote the set of homogeneous quaternionic Kähler structures. The
geometric types were classified from a representation-theoretic point of view as
follows.

Theorem 3 (Fino [11, Lemma 5.1])

S (V )+ = [EH] ⊗ (sp(1) ⊕ sp(n)) ∼= [EH] ⊕ [ES3H] ⊕ [EH] ⊕ [S3EH] ⊕ [KH].

Here, [V ] denotes the real representation whose complexification is V and the
tensor products signs are omitted, that is, one writes EH instead of E ⊗ H, and so
on.

The standard representation [EH] of Sp(n)Sp(1) on V induces a representation of
Sp(n)Sp(1) onS (V )+ given by (A(S))XYZ = SA−1XA−1YA−1Z , A ∈ Sp(n)Sp(1). More-
over, the scalar product in V induces in a natural way the scalar product in S (V )+
given by 〈S, S′〉 = ∑4n

i,j,k=1 Seiejek S′
eiejek

, for any orthonormal basis {e1, . . . , e4n} of
V . The classification of homogeneous quaternionic Kähler structures in terms of
real tensors was given in [7], as we now recall (except for the explanation of a few
notations).

Theorem 4 ([7, Theorem 1.1]) If n � 2, then V decomposes into the orthogonal
direct sum of the following subspaces invariant and irreducible under the action of
Sp(n)Sp(1):

QK 1 = {

Θ ∈ ˜V : ΘXYZ = ∑3
a=1θ(JaX)〈JaY , Z〉, θ ∈ V ∗},

QK 2 = {

Θ ∈ ˜V : ΘXYZ = ∑3
a=1θ

a(X)〈JaY , Z〉, = ∑3
a=1θ

a ◦ Ja = 0, θ1, θ2, θ3 ∈ V ∗},

QK 3 = {

S ∈ ̂V : SXYZ = 〈X, Y〉θ(Z) − 〈X, Z〉θ(Y)

+ ∑3
a=1

(〈X, JaY〉θ(JaZ) − 〈X, JaZ〉θ(JaY)
)

, θ ∈ V ∗},

QK 4 = {

S ∈ ̂V : SXYZ = 1
6

(

SXYZ SXYZ + ∑3
a=1SXJaYJaZ SXJaYJaZ

)

, c12(S) = 0
}

,

QK 5 = {

S ∈ ̂V : SXYZ SXYZ = 0
}

,

with dimensions 4n, 8n, 4n, 4
3n(n + 1)(2n + 1), 16

3 n(n2 − 1), respectively.
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3 Types of Homogeneous Structures on RH(n), CH(n)
or HH(n)

The usual homogeneous description of each hyperbolic space is as a rank-one
noncompact Riemannian symmetric space, that is, as RH(n) = SO(n, 1)/O(n),
CH(n) = SU(n, 1)/S(U(n) × U(1)) and HH(n) = Sp(n, 1)/(Sp(n) × Sp(1)),
respectively. Then the corresponding homogeneous tensor S vanish.

We have the next result.

Proposition 1 (i) ([25, Theorem 5.2]) A connected, simply connected and complete
Riemannian manifold of dimension n � 2 admits a nontrivial homogeneous structure
S ∈ S1 if and only if it is isometric to RH(n).

(ii) ([16, Theorem 1.1]) A connected, simply connected and complete irreducible
Kähler manifold of dimension 2n � 4 admits a nontrivial homogeneous Kähler struc-
ture S ∈ K24 if and only if it is holomorphically isometric to CH(n).

(iii) ([7, Theorem 1.1]) A connected, simply connected and complete quaternionic
Kähler manifold of dimension 4n � 8 admits a nontrivial homogeneous quaternionic
Kähler structure S ∈ QK 123 if and only if it is isometric to HH(n). In this case, the
homogeneous structure is necessarily of type QK 3.

Recall (Heintze [18, Theorem 4]), that a connected homogeneous Kähler 2n-
manifold of negative curvature is holomorphically isometric to CH(n). Hence from
Proposition1, (ii), it follows the next

Corollary 1 Any connected homogeneous Kähler manifold of real dimension 2n �
4 and negative curvature admits a Kähler homogeneous structure S ∈ K24.

However, hyperbolic spaces admit more types of homogeneous structures. We
first recall

Proposition 2 (i) ([8, Theorem 3.1]) The connected groups acting transitively on
RH(n) are the full isometry group SO(n, 1) and the groups G = FrN, where N is
the nilpotent factor in the Iwasawa decomposition of SO(n, 1) and Fr is a connected
closed subgroup of SO(n − 1)R with nontrivial projection to R.

(ii) ([8, Theorem 4.1]) The connected groups acting transitively on CH(n) are
the full isometry group SU(n, 1) and the groups G = FrN, where N is the nilpotent
factor in the Iwasawa decomposition KAN of SU(n, 1) and Fr is a connected closed
subgroup of S(U(n − 1)U(1))R with nontrivial projection to R.

(iii) ([7, Theorem 5.2]) The connected groups acting transitively on HH(n) are
the full isometry group Sp(n, 1) and the groups G = FrN, where N is the nilpotent
factor in the Iwasawa decomposition KAN of Sp(n, 1) and Fr is a connected closed
subgroup of Sp(n − 1)Sp(1)R with nontrivial projection to R.

The simplest choice is Fr = A, giving the description ofRH(n),CH(n) orHH(n)

as the solvable group AN , and one has
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Proposition 3 (i) ([8, Subsection3.1]) Any homogeneous Riemannian structure on
RH(n) ≡ AN with trivial holonomy lies in the class S1.

(ii) ([8, Proposition 4.2]) Any homogeneous Kähler structure on CH(n) ≡ AN
with trivial holonomy lies in the class K234.

(iii) ([7, Proposition 5.3]) Any homogeneous quaternionic Kähler structure on
HH(n) ≡ AN with trivial holonomy lies in the class QK 134.

For structures of linear type one has

Proposition 4 ([25, p. 55], [8, Subsection3.1]) (i) The homogeneous Riemannian
structures of linear type on RH(n) can be realized by the homogeneous model AN,
where AN stands for the solvable part of the Iwasawa decomposition of the full
isometry group SO(n, 1).

(ii) ([8, Theorem 4.4]) The homogeneous Kähler structures of linear type on
CH(n) can be realized by the homogeneous model U(1)AN/U(1), where AN stands
for the solvable part of the Iwasawa decomposition of the full isometry group
SU(n, 1).

(iii) ([7, Theorem5.4])The homogeneous quaternionic Kähler structures of linear
type on HH(n) can be realized by the homogeneous model Sp(1)AN/Sp(1), where
AN stands for the solvable part of the Iwasawa decomposition of the full isometry
group Sp(n, 1).

In the case ofRH(n), even all the holonomy algebras of canonical connections and
the types of the corresponding homogeneous structures are known, see Proposition5
below. We first recall some definitions and notations.

Assume thatG = FrN acts transitively onRH(n) as in Proposition2. This implies
that RH(n) = G/H, with H = Fr ∩ SO(n − 1). Then H is reductive, and thus h =
h0 ⊕ hss, where h0 is abelian and hss is semisimple. Let fr = h ⊕ ar , g = h ⊕ ar ⊕ n,
withar projecting nontrivially toa = R>0.Also fr is reductive,with fr = (h0 ⊕ ar) ⊕
hss. Let s = a ⊕ n and sr = ar ⊕ n, where ar is any one-dimensional complement
to h0 ⊕ n in sf = (fr)0 ⊕ n. A homogeneous Riemannian structure on G/H depends
on a choice of adH -invariant complement m to h in g, which is the graph of an h
-equivariant map ϕr : sr → h. For any h-equivariant map χr : s → sr extending the
identity on n, one defines ϕ : s → h as ϕ = ϕr ◦ χr . Then we have

Proposition 5 ([9, Theorems 1.1,5.2]) The holonomy algebras of canonical con-
nections on RH(n) are so(n) and all the reductive algebras k = k0 ⊕ kss of compact
type with k0 ∼= R

r abelian and kss semisimple such that 3r + dim kss � n − 1.
Let S be a nonzero homogeneous tensor for RH(n) with holonomy algebra hol.

Then S always has a nontrivial component in S1 and S is of type S1 if and only if hol
is 0. The structure is of strict type S13 if and only if a ⊂ ker ϕ and hol is a nonzero
semisimple algebra acting trivially on ker ϕ. Otherwise S is of general type.

All the homogeneous Kähler structures on the solvable description CH(n) ≡ AN
of the complex hyperbolic space have been given in a rather explicit way in [17,
Theorem 3.1]. As expected, the expression simplifies a great deal for n = 1 and
n = 2, which are of course interesting cases on their own.
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On the other hand, the use of the parabolic subgroups of the respective full isometry
groups permits us to make explicit more homogeneous descriptions and give the
corresponding types of structures. In the case of HH(n), n = 2, 3, one has the next
result (for detailed expressions andmore details see [5, Theorem 5]) and [6, Theorem
3.4]).

Proposition 6 Let G = KAN be the Iwasawa decomposition of Sp(2, 1) (resp.
Sp(3, 1)). The homogeneous descriptions of HH(2) (resp. HH(3)) are as in the
Table1, where E is simply connected and abelian. In this case the corresponding
types of homogeneous quaternionic Kähler structures are also given. The figure on
the third column, if any, stands for the number of parameters of the corresponding
n-parametric family of homogeneous quaternionic Kähler structures.

Consider now the Poincaré half-space model

(Hn, g) =
(

{ (

u1, . . . , un
) ∈ R

n : u1 > 0
}

, − 1

c(u1)2

n
∑

i=1

dui ⊗ dui

)

of RH(n), equipped with the metric g of constant curvature c < 0, and the Siegel
domains

DCn =
{

(

u1 = x + iy, u2, . . . , un
) ∈ C

n : x −
n

∑

k=2

|uk|2 > 0
}

,

DHn =
{

(

u1 = x + iy + jz + kt, u2, . . . , un
) ∈ H

n : x −
n

∑

k=2

|uk|2 > 0
}

.

Consider also the next vector fields on the relevant manifolds: ξ , metrically dual
to the form θ in the expression of the elements of S1; ξ and η, metrically dual to
the forms θ1 + θ2 and θ1 − θ2 in the expressions of the elements ofK2 andK4; and

Table 1 Homogeneous descriptions ofHH(2) andHH(3) and the corresponding types of structures

dim E n Type

Sp(2, 1)/(Sp(2) × Sp(1)) 0 {0}
Eλ,μN (λ, μ ∈ R

3 \ {0}) 1 6 QK 12345

E0,μN (μ ∈ R
3 \ {0}) 1 3 QK 1345

AN = E0,0N 1 QK 134

Sp(3, 1)/(Sp(3) × Sp(1)) 0 {0}
Eλ,μ,ν,γ N (λ, μ, ν ∈ R

3 \ {0}, γ ∈ R
4 \ {0}) 1 13 QK 12345

E0,μ,ν,γ N (μ, ν ∈ R
3 \ {0}, γ ∈ R

4 \ {0}) 1 10 QK 1345

AN = E0,0,0,0N 1 QK 134


