Java Threads
and the

Loncurrency
Utilities

Jeff Friesen

Apress-

Java Threads and
the Concurrency
Utilities

Jeff Friesen

Apress®

Java Threads and the Concurrency Utilities
Copyright © 2015 by Jeff Friesen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1699-6
ISBN-13 (electronic): 978-1-4842-1700-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Technical Reviewer: Sumit Pal

Editorial Board: Steve Anglin, Louise Corrigan, James T. DeWolf, Jonathan Gennick,
Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers

Copy Editor: Kezia Endsley

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc. is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484216996. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484216996
www.apress.com/source-code/

To my sister and her family.

Contents at a Glance

About the AUthor ... —————— xi
About the Technical REVIEWETccuussesmsssssssssnsssssasssssanssssnsssssnnssssns Xiii
Acknowledgments........cccccerinsssssmssnnmnmmmmssssssssssssnseesssssssssssnnsssessssnns XV
Introduction.......cccsvnmmismminmmme s —————— Xvii
Part I: Thread APIS..........ccccmnnmmmmsmsmmsmssnmessnnsssssnssnnsns 1
Chapter 1: Threads and Runnables..........ccccunssmmmmmmssssnnnmmssssssnnssssnns 3
Chapter 2: Synchronizationcccccccmmrrrnsssssssssssnnnemsssssssssssssnnnns 21
Chapter 3: Waiting and Notification..........ccccusemrrnsssnennnnssssnnnnnnsnns 39
Chapter 4: Additional Thread Capabilities........ccccuseenrrnssssnnnsnssnns 51
Part II: Concurrency Utilitiesccuneemmmmmnmnnssssssnnnnnnnnas 67
Chapter 5: Concurrency Utilities and Executors........c.oosememeennnnas 69
Chapter 6: SYNChronizersccoueemmnsssesnmmsssssssmsssssssssessssssssssnns 83
Chapter 7: The Locking Framework.........cussmsssesmsssssssssasssssnssssss 107
Chapter 8: Additional Concurrency Utilitiesccusseeerresssnnnnnnns 125
Part llIl: Appendicesuusumnnnnnnnnnenmmmmmmmnmnnnnnnnnnnnnnnnnns 147
Appendix A: Answers t0 EXErCiSes ...uuuussmmssmsmrrssssssssssssnnnssssssssnns 149
Appendix B: Threading in SWingccccunsemmmmmsssnnsmmsssssssmssssssnns 169
INAEX.ciiierrinssesrsm s s s s s ————— 195

Contents

About the Author ... ————— xi
About the Technical ReVIEWErcuccesssesssnsssasssssssssnssssssssssssassnsass Xiii
Acknowledgments........ccccerinmsssmmsmnmnmmssssssssssssssnsessssssssssssssnsssessssnnns XV
Introduction.......cccsvnemisminmimme s —————— Xvii

Part I: Thread APIS........coeccvirmeinsmmnmsmmssssmsssssssssnssssnsssnnssnes 1

Chapter 1: Threads and Runnables..........ccccunssmmmnmmssssnnnmsssssnsnnssssnns 3
Introducing Thread and Runnable. ... 3
Creating Thread and Runnable ODJECESccccveverieverrererere e rennens 3
Getting and Setting Thread State..........ccocvvverererrcerr e 5
Y L (100 T 121 (- o 8
Performing More Advanced Thread Tasks..........cccveveereersersensessensensennn 10
Interrupting TRrEAdScoceercrerer e 10
JOINING TRIAUSeovrerecrecr e sn e 12
LT 1 o TP 16
SUMMAIY ...ttt re e n s s nn s 18
Chapter 2: Synchronizationcccccccmmrrnmssssssssssnnnmssssssssssssssnnnns 21
The Problems with Threads.........c.ccvrvrrriernnnesnsesessssesss s ssesensens 21
RACE CONUILIONS.......cceererreeererreeeres e nnsnns 21
LD U B 22T 22
Cached Variables ... 23

vii

CONTENTS

Synchronizing Access to Critical Sectionscccvvvvrvrvervnvnsenienienne 24
Using Synchronized Methodsccceeeererriererrererreree e s e sae e saesesaenes 25
Using Synchronized BIOCKSccoveereerererirererrereseree e ree e sesessesessesassessssesasnesaenes 26

Beware of Liveness Problems..........cccnnnninnsnnncsseseenenns 27

Volatile and Final Variablesc.ccoeeriernneiesessesessssesessessssessesessesnnns 30

31111 4P 37

Chapter 3: Waiting and Notification...........ccscccmmnisennnmnssnnnnnsssnnns 39

Wait-and-Notify APITOUFccocevvervrierrerrererer e 39

Producers and CONSUMETNScccvreerereneresssnesessssessssssessssesessssssessnses 42

1T 1110 49

Chapter 4: Additional Thread Capabilities........cccuserrssnsssssnsssssanas 51

Thread GrOUPS......ccccvcererierrerrer st s e 51

Thread-Local Variables..........c.covererenerercnesenesesesesesess s sesseeens 55

TIMEr FramEWOIKccovoeiererireisesese s s s sns s 58
TiIMerin Depth ... —————— 60
TimerTask in DEPth.......ccocvcivrirrrrr s 64

1111] 112 SRS 66

Part II: Concurrency Utilitiescccuuueememmmnnnsssssnsennnnnnnns 67

Chapter 5: Concurrency Utilities and Executors.........ccuseessesssnnns 69

Introducing the Concurrency Utilitiesccccoeverersrcncscscescercer e 69

EXPIOFiNG EXECULONS......ccveeeeeereerer et ses e e ses e e se e sn s se s 70

SUMMANY ... a e 82

Chapter 6: SYNChronizersccuusseesssnmmmsmmmmsssssssssnmssssssssssssssnnns 83

Countdown LatChes.......ccoeeeeerecrerecreresese e 83

CYCIIC BAITIEIScueeveereeeserreese e ses s s se s s 86

EXCRANQEIS......cee e sn e s s 1

viii

CONTENTS

LT 4 F2 o 1] = 96
PRASEIS ...t 103
1T 106
Chapter 7: The Locking Framework.........ccccuseemnmsssssnssssssssnsnnnsns 107
0 TSRS 108
ReentrantLoCK ... 109
CONAILION ... 112
REAAWHITELOCKccveeiverrcrirrserise s 117
ReentrantReadWriteLOCK..........ccveerererereresereseserese e 118
SUMMANY ...t sn e sn s sn e n e sn e sn s n e nn e snnnnnnnn s 124
Chapter 8: Additional Concurrency Utilitiescccceurissssssnnnnnnnnn 125
Concurrent ColleCtIONScoccoerereriercsrress s 125

Using BlockingQueue and ArrayBlockingQUEUEcccccoeerenercvnscnnsscsnesesnesennes 127

Learning More About ConcurrentHashMap..........ccoovvevrnnrnnnnnnscnnnssescsensses 129
Atomic Variables..........ccccorreniiennsne s 130

Understanding the Atomic MAgiCccceererrrerererrneseseresse s 132
Fork/Join Framework..........ccccoviennnnnesneeseseesese s 134
ComPIELion SEIVICESccvvererererererresr s sns e 142
SUMMANY ...t s sn s sr e n s sn e n e n s nn e n e n e n s 146
Part lIl: AppendiCesccuumeemmmmmmmmsssssssnnsnnsssssssssssnnnnns 147
Appendix A: Answers t0 EXErCiSes ...uuussmmeesmmrrssssssssssssnnnssssssssnns 149
Chapter 1: Threads and RUnnablescccoceeeeereresssesseesessessessennns 149
Chapter 2: Synchronizationcccceevererererc s 152
Chapter 3: Waiting and Notification...........cccccoeerrierniriesniennsesesenens 154
Chapter 4: Additional Thread Capabilities...........ccccererrrrrerrrsensensennnn. 156

ix

CONTENTS

Chapter 5: Concurrency Utilities and EXecutorsccocveervercerserennes 158
Chapter 6: SYNCAroNIzZerscccovevrvriernrcre e 161
Chapter 7: The Locking Framework............cccverrersersersersessessessessensenns 164
Chapter 8: Additional Concurrency Utilities.........c.cceerrrrersersersersersenne 166
Appendix B: Threading in SWingcccccuussemmmmmsssssnmmsssssssmmssssssnns 169
A Single-Threaded Programming Modelccocvvrrrrrrersersersensennenns 169
Threading APIScocvceriereerere s 173

SwingUtilities and EVENtQUEUE...........ccovvveveverenenenesesesesesesesesesesesesesesesssesesssssesenens 174

SWINGWOTKETcoveveeeeeereresesesesese s e sssess s s e ssnens 179

L 111 T 183
Timer-Based Slide ShOW ... 185

About the Author

Jeff Friesen is a freelance tutor and software developer
with an emphasis on Java. In addition to authoring
Learn Java for Android Development and co-authoring
Android Recipes, Jeff has written numerous articles on
Java and other technologies for JavaWorld
(JavaWorld.com), informlIT (InformIT.com), Java.net,
and DevSource (DevSource. com). Jeff can be contacted
via his web site at TutorTutor.ca.

xi

About the Technical
Reviewer

Sumit Pal has more than 22 years of experience

in the Software Industry in various roles spanning
companies from startups to enterprises. He is a big
data, visualization and data science consultant and a
software architect and big data enthusiast and builds
end-to-end data-driven analytic systems.

Sumit has worked for Microsoft (SQL server
development team), Oracle (OLAP development team)
and Verizon (Big Data analytics team) in a career
spanning 22 years.

Currently, he works for multiple clients advising
them on their data architectures and big data solutions
and does hands on coding with Spark, Scala, Java and
Python. He has extensive experience in building scalable systems across the stack from
middle tier, data tier to visualization for analytics applications, using Big Data, NoSQL
DB. Sumit has deep expertise in Database Internals, Data Warehouses, Dimensional
Modeling, Data Science with Java and Python and SQL.

Sumit has MS and BS in Computer Science.

xiii

Acknowledgments

I have many people to thank for assisting me in the development of this book. I especially
thank Steve Anglin for asking me to write it and Mark Powers for guiding me through the
writing process.

XV

Introduction

Threads and the concurrency utilities are not sexy subjects, but they are an important
part of non-trivial applications. This book introduces you to most of Java’s thread features
and concurrency utilities as of Java 8 update 60.

Chapter 1 introduces you to the Thread class and the Runnable interface. You learn
how to create Thread and Runnable objects, get and set thread state, start a thread,
interrupt a thread, join a thread to another thread, and cause a thread to sleep.

Chapter 2 focuses on synchronization. You learn about problems such as race
conditions that cannot be solved without synchronization. You also learn how to create
synchronized methods and blocks, and how to use a light version of synchronization that
ignores mutual exclusion.

Chapter 3 explores the important topics of waiting and notification. I first review a
small APIin the Object class that supports these concepts, and then demonstrate this
APl via a producer/consumer application where one thread produces items that another
thread consumes.

Chapter 4 presents three concepts that were not covered in the previous chapters.
First, you learn about thread groups, which are not as useful as you might think. Then,
you explore thread-local variables. Finally, you learn about the Timer Framework, which
simplifies threading for timer tasks.

The previous four chapters covered low-level threading. Chapter 5 switches to a
higher level by introducing the concurrency utilities, which can simplify the development
of multithreaded applications and improve performance. This chapter then explores
executors along with callables and futures.

Chapter 6 focuses on synchronizers (high-level synchronization constructs). You
learn about countdown latches (one or more threads wait at a “gate” until another
thread opens this gate, at which point these other threads can continue), cyclic barriers,
exchangers, semaphores, and phasers.

Chapter 7 explores the Locking Framework, which provides interfaces and classes
for locking and waiting for conditions in a manner that’s distinct from an object’s
intrinsic lock-based synchronization and Object’s wait/notification mechanism. It offers
improvements such as lock polling.

Finally, Chapter 8 presents additional concurrency utilities that were not covered
in Chapters 5 through 7. Specifically, it introduces you to concurrent collections, atomic
variables, the Fork/Join Framework, and completion services.

Each chapter ends with assorted exercises that are designed to help you master the
content. Along with long answers and true/false questions, you are often confronted with
programming exercises. Appendix A provides the answers and solutions.

xvii

http://dx.doi.org/10.1007/978-1-4842-1700-9_1
http://dx.doi.org/10.1007/978-1-4842-1700-9_2
http://dx.doi.org/10.1007/978-1-4842-1700-9_3
http://dx.doi.org/10.1007/978-1-4842-1700-9_4
http://dx.doi.org/10.1007/978-1-4842-1700-9_5
http://dx.doi.org/10.1007/978-1-4842-1700-9_6
http://dx.doi.org/10.1007/978-1-4842-1700-9_7
http://dx.doi.org/10.1007/978-1-4842-1700-9_8
http://dx.doi.org/10.1007/978-1-4842-1700-9_5
http://dx.doi.org/10.1007/978-1-4842-1700-9_7

INTRODUCTION

Appendix B provides a tutorial on threading in Swing. You learn about Swing’s
single-threaded programming model and various APIs for avoiding problems when
additional threads are used in graphical contexts. You also explore a slide show Swing
application as a fun way to end this book.

Note | briefly use Java 8’s lambda expression feature in some examples, but don’t
provide a tutorial on it. You'll need to look elsewhere for that knowledge.

Thanks for purchasing this book. I hope you find it helpful in understanding threads
and the concurrency utilities.
— Jeff Friesen (October 2015)

Note You can download this book’s source code by pointing your web browser to
www.apress.com/9781484216996 and clicking the Source Code tab followed by the
Download Now link.

xviii

www.springer.com/9781484216996

PART I

Thread APIs

CHAPTER 1

Threads and Runnables /

Java applications execute via threads, which are independent paths of execution through

an application’s code. When multiple threads are executing, each thread’s path can differ
from other thread paths. For example, a thread might execute one of a switch statement’s
cases, and another thread might execute another of this statement’s cases.

Each Java application has a default main thread that executes the main() method. The
application can also create threads to perform time-intensive tasks in the background so
that it remains responsive to its users. These threads execute code sequences encapsulated
in objects that are known as runnables.

The Java virtual machine (JVM) gives each thread its own JVM stack to prevent
threads from interfering with each other. Separate stacks let threads keep track of their next
instructions to execute, which can differ from thread to thread. The stack also provides a
thread with its own copy of method parameters, local variables, and return value.

Java supports threads primarily through its java.lang.Thread class and
java.lang.Runnable interface. This chapter introduces you to these types.

Introducing Thread and Runnable

The Thread class provides a consistent interface to the underlying operating system'’s
threading architecture. (The operating system is typically responsible for creating and
managing threads.) A single operating system thread is associated with a Thread object.

The Runnable interface supplies the code to be executed by the thread that’s
associated with a Thread object. This code is located in Runnable’s void run()
method—a thread receives no arguments and returns no value, although it might throw
an exception, which I discuss in Chapter 4.

Creating Thread and Runnable Objects

Except for the default main thread, threads are introduced to applications by creating
the appropriate Thread and Runnable objects. Thread declares several constructors for
initializing Thread objects. Several of these constructors require a Runnable object as an
argument.

http://dx.doi.org/10.1007/978-1-4842-1700-9_4

CHAPTER 1 " THREADS AND RUNNABLES

There are two ways to create a Runnable object. The first way is to create an
anonymous class that implements Runnable, as follows:

Runnable r = new Runnable()

{
@0verride
public void run()
{
// perform some work
System.out.println("Hello from thread");
}
b

Before Java 8, this was the only way to create a runnable. Java 8 introduced the
lambda expression to more conveniently create a runnable:

Runnable r = () -> System.out.println("Hello from thread");

The lambda is definitely less verbose than the anonymous class. I'll use both
language features throughout this and subsequent chapters.

Note A /ambda expression (lambda) is an anonymous function that’s passed to a
constructor or method for subsequent execution. Lambdas work with functional interfaces
(interfaces that declare single abstract methods), such as Runnable.

After creating the Runnable object, you can pass it to a Thread constructor that receives
aRunnable argument. For example, Thread(Runnable runnable) initializes a new Thread
object to the specified runnable. The following code fragment demonstrates this task:

Thread t = new Thread(x);

A few constructors don’t take Runnable arguments. For example, Thread() doesn’t
initialize Thread to a Runnable argument. You must extend Thread and override its run()
method (Thread implements Runnable) to supply the code to run, which the following
code fragment accomplishes:

class MyThread extends Thread

{
@0verride
public void run()
{
// perform some work
System.out.println("Hello from thread");
}
}
/...

MyThread mt = new MyThread();

CHAPTER 1 © THREADS AND RUNNABLES

Getting and Setting Thread State

A Thread object associates state with a thread. This state consists of a name, an indication
of whether the thread is alive or dead, the execution state of the thread (is it runnable?),
the thread’s priority, and an indication of whether the thread is daemon or nondaemon.

Getting and Setting a Thread’s Name

A Thread object is assigned a name, which is useful for debugging. Unless a name is
explicitly specified, a default name that starts with the Thread- prefix is chosen. You can
get this name by calling Thread’s String getName() method. To set the name, pass it to
a suitable constructor, such as Thread(Runnable r, String name), or call Thread’s void
setName(String name) method. Consider the following code fragment:

Thread t1 = new Thread(r, "thread ti");
System.out.println(ti.getName()); // Output: thread t1
Thread t2 = new Thread(r);

t2.setName("thread t2");
System.out.println(t2.getName()); // Output: thread t2

Note Thread’s long getId() method returns a unique long integer-based name for a
thread. This number remains unchanged during the thread’s lifetime.

Getting a Thread'’s Alive Status

You can determine if a thread is alive or dead by calling Thread’s boolean isAlive()
method. This method returns true when the thread is alive; otherwise, it returns false.
A thread’s lifespan ranges from just before it is actually started from within the start()
method (discussed later) to just after it leaves the run() method, at which point it dies.
The following code fragment outputs the alive/dead status of a newly-created thread:

Thread t = new Thread(x);
System.out.println(t.isAlive()); // Output: false

Getting a Thread’s Execution State

A thread has an execution state that is identified by one of the Thread. State enum’s
constants:

e NEW: A thread that has not yet started is in this state.
e RUNNABLE: A thread executing in the JVM is in this state.

e BLOCKED: A thread that is blocked waiting for a monitor lock is in
this state. (I'll discuss monitor locks in Chapter 2.)

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#Thread-java.lang.Runnable-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html#interface%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang
http://dx.doi.org/10.1007/978-1-4842-1700-9_2

CHAPTER 1 " THREADS AND RUNNABLES

e WAITING: A thread that is waiting indefinitely for another thread to
perform a particular action is in this state.

e TIMED_WAITING: A thread that is waiting for another thread to
perform an action for up to a specified waiting time is in this state.

e TERMINATED: A thread that has exited is in this state.
Thread lets an application determine a thread’s current state by providing the

Thread.State getState() method, which is demonstrated here:

Thread t = new Thread(x);
System.out.println(t.getState()); // Output: NEW

Getting and Setting a Thread’s Priority

When a computer has enough processors and/or processor cores, the computer’s
operating system assigns a separate thread to each processor or core so the threads
execute simultaneously. When a computer doesn’t have enough processors and/or cores,
various threads must wait their turns to use the shared processors/cores.

Note You can identify the number of processors and/or processor cores that are available
to the JVM by calling the java.lang.Runtime class’s int availableProcessors() method.
The return value could change during JVM execution and is never smaller than 1.

The operating system uses a scheduler (http://en.wikipedia.org/wiki/
Scheduling_(computing)) to determine when a waiting thread executes. The following
list identifies three different schedulers:

e Linux 2.6 through 2.6.23 uses the O(1) Scheduler
(http://en.wikipedia.org/wiki/0(1)_ scheduler).

e Linux2.6.23 also uses the Completely Fair Scheduler
(http://en.wikipedia.org/wiki/Completely Fair Scheduler),
which is the default scheduler.

e Windows NT-based operating systems (such as NT, XP,
Vista, and 7) use a multilevel feedback queue scheduler
(http://en.wikipedia.org/wiki/Multilevel feedback queue).
This scheduler has been adjusted in Windows Vista and Windows 7
to optimize performance.

A multilevel feedback queue and many other thread schedulers take priority
(thread relative importance) into account. They often combine preemptive scheduling
(higher priority threads preempt—interrupt and run instead of—lower priority threads)
with round robin scheduling (equal priority threads are given equal slices of time, which
are known as time slices, and take turns executing).

http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/O(1)_scheduler
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://en.wikipedia.org/wiki/Multilevel_feedback_queue

CHAPTER 1 © THREADS AND RUNNABLES

Note Two terms that are commonly encountered when exploring threads are
parallelism and concurrency. According to Oracle’s “Multithreading Guide”
(http://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index. html), parallelism
is “a condition that arises when at least two threads are executing simultaneously.” In
contrast, concurrency is “a condition that exists when at least two threads are making
progress. [It is a] more generalized form of parallelism that can include time-slicing as a
form of virtual parallelism.”

Thread supports priority via its int getPriority() method, which returns the
current priority, and its void setPriority(int priority) method, which sets the
priority to priority. The value passed to priority ranges from Thread.MIN_PRIORITY
to Thread .MAX_PRIORITY—Thread.NORMAL_PRIORITY identifies the default priority.
Consider the following code fragment:

Thread t = new Thread(r);
System.out.println(t.getPriority());
t.setPriority(Thread.MIN PRIORITY);

Caution Using setPriority() canimpact an application’s portability across
operating systems because different schedulers can handle a priority change in different
ways. For example, one operating system’s scheduler might delay lower priority threads
from executing until higher priority threads finish. This delaying can lead to indefinite
postponement or starvation because lower priority threads “starve” while waiting indefinitely
for their turn to execute, and this can seriously hurt the application’s performance. Another
operating system’s scheduler might not indefinitely delay lower priority threads, improving
application performance.

Getting and Setting a Thread’s Daemon Status

Java lets you classify threads as daemon threads or nondaemon threads. A daemon thread
is a thread that acts as a helper to a nondaemon thread and dies automatically when the
application’s last nondaemon thread dies so that the application can terminate.

You can determine if a thread is daemon or nondaemon by calling Thread’s boolean
isDaemon() method, which returns true for a daemon thread:

Thread t = new Thread(r);
System.out.println(t.isDaemon()); // Output: false

http://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html

CHAPTER 1 " THREADS AND RUNNABLES

By default, the threads associated with Thread objects are nondaemon threads. To
create a daemon thread, you must call Thread’s void setDaemon(boolean isDaemon)
method, passing true to isDaemon. This task is demonstrated here:

Thread t = new Thread(r);
t.setDaemon(true);

Note An application will not terminate when the nondaemon default main thread
terminates until all background nondaemon threads terminate. If the background threads
are daemon threads, the application will terminate as soon as the default main thread
terminates.

Starting a Thread

After creating a Thread or Thread subclass object, you start the thread associated with
this object by calling Thread’s void start() method. This method throws
java.lang.IllegalThreadStateException when the thread was previously started and is
running or when the thread has died:

Thread t = new Thread(r);
t.start();

Calling start() results in the runtime creating the underlying thread and scheduling
it for subsequent execution in which the runnable’s run() method is invoked. (start()
doesn’t wait for these tasks to be completed before it returns.) When execution leaves
run(), the thread is destroyed and the Thread object on which start() was called is no
longer viable, which is why calling start () results in I11egalThreadStateException.

I've created an application that demonstrates various fundamentals from thread and
runnable creation to thread starting. Check out Listing 1-1.

Listing 1-1. Demonstrating Thread Fundamentals

public class ThreadDemo
{
public static void main(String[] args)
{
boolean isDaemon = args.length != 0;
Runnable r = new Runnable()
{
@0verride
public void run()

Thread thd = Thread.currentThread();
while (true)

