
9 781484 216996

52499
ISBN 978-1-4842-1699-6

SOURCE CODE ONLINE

US $24.99

Shelve in:
Programming Languages/Java

User level:
Intermediate–Advanced

www.apress.com

Friesen
Java Threads and the Concurrency Utilities

Java Threads
and the
Concurrency
Utilities

F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S® THE E XPER T ’S VOICE® IN JAVA

Java Threads and the Concurrency Utilities

Java’s thread APIs and concurrency utilities are among its most powerful and challenging
APIs and language features. Java beginners typically find it very difficult to use these features
to write correct multithreaded applications. Java Threads and the Concurrency Utilities helps
all Java developers master and use these capabilities effectively.

This book is divided into two parts of four chapters each. Part 1 focuses on the low-level
Thread APIs and Part 2 focuses on the high-level concurrency utilities. In Part 1, you learn
about Thread API basics, synchronization, waiting and notification, and the additional capa-
bilities of thread groups, thread local variables, and the Timer Framework. In Part 2, you learn
about concurrency utilities basics, executors, synchronizers, the Locking Framework, and the
additional capabilities of concurrent collections, atomic variables, the Fork/Join Framework,
and completion services.

Each chapter ends with select exercises designed to challenge your grasp of the chapter’s
content. An appendix provides the answers to these exercises. A second appendix explores
how threads are used by the Swing Graphical User Interface Toolkit.

• Create, configure, and start threads that execute runnables

• Synchronize shared code to avoid race conditions, data races, and more

• Avoid problems with cached variables

• Use waiting and notification to coordinate execution between multiple threads

• Discover thread groups and learn why you should avoid them

• Learn about thread-local variables

• Explore the Timer Framework

• Find out why the concurrency utilities were introduced

• Explore executors, synchronizers, and the Locking Framework

• Discover concurrent collections, atomic variables, the Fork/Join Framework, and
completion services

• Examine Swing’s use of threads and its thread-related APIs —
Jef f Friesen

Related Titles

Java Threads and
the Concurrency

Utilities

Jeff Friesen

Java Threads and the Concurrency Utilities

Copyright © 2015 by Jeff Friesen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1699-6

ISBN-13 (electronic): 978-1-4842-1700-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Sumit Pal
Editorial Board: Steve Anglin, Louise Corrigan, James T. DeWolf, Jonathan Gennick,

Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc. is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484216996. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484216996
www.apress.com/source-code/

To my sister and her family.

v

Contents at a Glance

About the Author��� xi

About the Technical Reviewer��� xiii

Acknowledgments�� xv

Introduction�� xvii

■■Part I: Thread APIs��� 1

■■Chapter 1: Threads and Runnables�� 3

■■Chapter 2: Synchronization��� 21

■■Chapter 3: Waiting and Notification��� 39

■■Chapter 4: Additional Thread Capabilities������������������������������������� 51

■■Part II: Concurrency Utilities��� 67

■■Chapter 5: Concurrency Utilities and Executors���������������������������� 69

■■Chapter 6: Synchronizers�� 83

■■Chapter 7: The Locking Framework�� 107

■■Chapter 8: Additional Concurrency Utilities�������������������������������� 125

■■Part III: Appendices��� 147

■■Appendix A: Answers to Exercises�� 149

■■Appendix B: Threading in Swing��� 169

Index��� 195

vii

Contents

About the Author��� xi

About the Technical Reviewer��� xiii

Acknowledgments�� xv

Introduction�� xvii

■■Part I: Thread APIs��� 1

■■Chapter 1: Threads and Runnables�� 3

Introducing Thread and Runnable�� 3

Creating Thread and Runnable Objects��� 3

Getting and Setting Thread State��� 5

Starting a Thread��� 8

Performing More Advanced Thread Tasks�� 10

Interrupting Threads�� 10

Joining Threads��� 12

Sleeping��� 16

Summary�� 18

■■Chapter 2: Synchronization��� 21

The Problems with Threads�� 21

Race Conditions��� 21

Data Races�� 22

Cached Variables��� 23

■ Contents

viii

Synchronizing Access to Critical Sections��� 24

Using Synchronized Methods�� 25

Using Synchronized Blocks��� 26

Beware of Liveness Problems�� 27

Volatile and Final Variables�� 30

Summary�� 37

■■Chapter 3: Waiting and Notification��� 39

Wait-and-Notify API Tour�� 39

Producers and Consumers��� 42

Summary�� 49

■■Chapter 4: Additional Thread Capabilities������������������������������������� 51

Thread Groups�� 51

Thread-Local Variables��� 55

Timer Framework��� 58

Timer in Depth��� 60

TimerTask in Depth�� 64

Summary�� 66

■■Part II: Concurrency Utilities��� 67

■■Chapter 5: Concurrency Utilities and Executors���������������������������� 69

Introducing the Concurrency Utilities��� 69

Exploring Executors�� 70

Summary�� 82

■■Chapter 6: Synchronizers�� 83

Countdown Latches�� 83

Cyclic Barriers�� 86

Exchangers��� 91

 ■ Contents

ix

Semaphores��� 96

Phasers�� 103

Summary�� 106

■■Chapter 7: The Locking Framework�� 107

Lock�� 108

ReentrantLock�� 109

Condition�� 112

ReadWriteLock��� 117

ReentrantReadWriteLock�� 118

Summary�� 124

■■Chapter 8: Additional Concurrency Utilities�������������������������������� 125

Concurrent Collections��� 125

Using BlockingQueue and ArrayBlockingQueue�� 127

Learning More About ConcurrentHashMap�� 129

Atomic Variables��� 130

Understanding the Atomic Magic�� 132

Fork/Join Framework��� 134

Completion Services�� 142

Summary�� 146

■■Part III: Appendices��� 147

■■Appendix A: Answers to Exercises�� 149

Chapter 1: Threads and Runnables�� 149

Chapter 2: Synchronization�� 152

Chapter 3: Waiting and Notification�� 154

Chapter 4: Additional Thread Capabilities��� 156

■ Contents

x

Chapter 5: Concurrency Utilities and Executors����������������������������������� 158

Chapter 6: Synchronizers��� 161

Chapter 7: The Locking Framework�� 164

Chapter 8: Additional Concurrency Utilities�� 166

■■Appendix B: Threading in Swing��� 169

A Single-Threaded Programming Model�� 169

Threading APIs��� 173

SwingUtilities and EventQueue�� 174

SwingWorker��� 179

Timer��� 183

Timer-Based Slide Show�� 185

Index��� 195

xi

About the Author

Jeff Friesen is a freelance tutor and software developer
with an emphasis on Java. In addition to authoring
Learn Java for Android Development and co-authoring
Android Recipes, Jeff has written numerous articles on
Java and other technologies for JavaWorld
(JavaWorld.com), informIT (InformIT.com), Java.net,
and DevSource (DevSource.com). Jeff can be contacted
via his web site at TutorTutor.ca.

xiii

About the Technical
Reviewer

Sumit Pal has more than 22 years of experience
in the Software Industry in various roles spanning
companies from startups to enterprises. He is a big
data, visualization and data science consultant and a
software architect and big data enthusiast and builds
end-to-end data-driven analytic systems.

Sumit has worked for Microsoft (SQL server
development team), Oracle (OLAP development team)
and Verizon (Big Data analytics team) in a career
spanning 22 years.

Currently, he works for multiple clients advising
them on their data architectures and big data solutions
and does hands on coding with Spark, Scala, Java and

Python. He has extensive experience in building scalable systems across the stack from
middle tier, data tier to visualization for analytics applications, using Big Data, NoSQL
DB. Sumit has deep expertise in Database Internals, Data Warehouses, Dimensional
Modeling, Data Science with Java and Python and SQL.

Sumit has MS and BS in Computer Science.

xv

Acknowledgments

I have many people to thank for assisting me in the development of this book. I especially
thank Steve Anglin for asking me to write it and Mark Powers for guiding me through the
writing process.

xvii

Introduction

Threads and the concurrency utilities are not sexy subjects, but they are an important
part of non-trivial applications. This book introduces you to most of Java’s thread features
and concurrency utilities as of Java 8 update 60.

Chapter 1 introduces you to the Thread class and the Runnable interface. You learn
how to create Thread and Runnable objects, get and set thread state, start a thread,
interrupt a thread, join a thread to another thread, and cause a thread to sleep.

Chapter 2 focuses on synchronization. You learn about problems such as race
conditions that cannot be solved without synchronization. You also learn how to create
synchronized methods and blocks, and how to use a light version of synchronization that
ignores mutual exclusion.

Chapter 3 explores the important topics of waiting and notification. I first review a
small API in the Object class that supports these concepts, and then demonstrate this
API via a producer/consumer application where one thread produces items that another
thread consumes.

Chapter 4 presents three concepts that were not covered in the previous chapters.
First, you learn about thread groups, which are not as useful as you might think. Then,
you explore thread-local variables. Finally, you learn about the Timer Framework, which
simplifies threading for timer tasks.

The previous four chapters covered low-level threading. Chapter 5 switches to a
higher level by introducing the concurrency utilities, which can simplify the development
of multithreaded applications and improve performance. This chapter then explores
executors along with callables and futures.

Chapter 6 focuses on synchronizers (high-level synchronization constructs). You
learn about countdown latches (one or more threads wait at a “gate” until another
thread opens this gate, at which point these other threads can continue), cyclic barriers,
exchangers, semaphores, and phasers.

Chapter 7 explores the Locking Framework, which provides interfaces and classes
for locking and waiting for conditions in a manner that’s distinct from an object’s
intrinsic lock-based synchronization and Object’s wait/notification mechanism. It offers
improvements such as lock polling.

Finally, Chapter 8 presents additional concurrency utilities that were not covered
in Chapters 5 through 7. Specifically, it introduces you to concurrent collections, atomic
variables, the Fork/Join Framework, and completion services.

Each chapter ends with assorted exercises that are designed to help you master the
content. Along with long answers and true/false questions, you are often confronted with
programming exercises. Appendix A provides the answers and solutions.

http://dx.doi.org/10.1007/978-1-4842-1700-9_1
http://dx.doi.org/10.1007/978-1-4842-1700-9_2
http://dx.doi.org/10.1007/978-1-4842-1700-9_3
http://dx.doi.org/10.1007/978-1-4842-1700-9_4
http://dx.doi.org/10.1007/978-1-4842-1700-9_5
http://dx.doi.org/10.1007/978-1-4842-1700-9_6
http://dx.doi.org/10.1007/978-1-4842-1700-9_7
http://dx.doi.org/10.1007/978-1-4842-1700-9_8
http://dx.doi.org/10.1007/978-1-4842-1700-9_5
http://dx.doi.org/10.1007/978-1-4842-1700-9_7

■ Introduction

xviii

Appendix B provides a tutorial on threading in Swing. You learn about Swing’s
single-threaded programming model and various APIs for avoiding problems when
additional threads are used in graphical contexts. You also explore a slide show Swing
application as a fun way to end this book.

■■ Note  I briefly use Java 8’s lambda expression feature in some examples, but don’t
provide a tutorial on it. You’ll need to look elsewhere for that knowledge.

Thanks for purchasing this book. I hope you find it helpful in understanding threads
and the concurrency utilities.

— Jeff Friesen (October 2015)

■■ Note  You can download this book’s source code by pointing your web browser to
www.apress.com/9781484216996 and clicking the Source Code tab followed by the
Download Now link.

www.springer.com/9781484216996

Part I

Thread APIs

3

Chapter 1

Threads and Runnables

Java applications execute via threads, which are independent paths of execution through
an application’s code. When multiple threads are executing, each thread’s path can differ
from other thread paths. For example, a thread might execute one of a switch statement’s
cases, and another thread might execute another of this statement’s cases.

Each Java application has a default main thread that executes the main() method. The
application can also create threads to perform time-intensive tasks in the background so
that it remains responsive to its users. These threads execute code sequences encapsulated
in objects that are known as runnables.

The Java virtual machine (JVM) gives each thread its own JVM stack to prevent
threads from interfering with each other. Separate stacks let threads keep track of their next
instructions to execute, which can differ from thread to thread. The stack also provides a
thread with its own copy of method parameters, local variables, and return value.

Java supports threads primarily through its java.lang.Thread class and
java.lang.Runnable interface. This chapter introduces you to these types.

Introducing Thread and Runnable
The Thread class provides a consistent interface to the underlying operating system’s
threading architecture. (The operating system is typically responsible for creating and
managing threads.) A single operating system thread is associated with a Thread object.

The Runnable interface supplies the code to be executed by the thread that’s
associated with a Thread object. This code is located in Runnable’s void run()
method—a thread receives no arguments and returns no value, although it might throw
an exception, which I discuss in Chapter 4.

Creating Thread and Runnable Objects
Except for the default main thread, threads are introduced to applications by creating
the appropriate Thread and Runnable objects. Thread declares several constructors for
initializing Thread objects. Several of these constructors require a Runnable object as an
argument.

http://dx.doi.org/10.1007/978-1-4842-1700-9_4

Chapter 1 ■ Threads and Runnables

4

There are two ways to create a Runnable object. The first way is to create an
anonymous class that implements Runnable, as follows:

Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 // perform some work
 System.out.println("Hello from thread");
 }
 };

Before Java 8, this was the only way to create a runnable. Java 8 introduced the
lambda expression to more conveniently create a runnable:

Runnable r = () -> System.out.println("Hello from thread");

The lambda is definitely less verbose than the anonymous class. I’ll use both
language features throughout this and subsequent chapters.

■■ Note A lambda expression (lambda) is an anonymous function that’s passed to a
constructor or method for subsequent execution. Lambdas work with functional interfaces
(interfaces that declare single abstract methods), such as Runnable.

After creating the Runnable object, you can pass it to a Thread constructor that receives
a Runnable argument. For example, Thread(Runnable runnable) initializes a new Thread
object to the specified runnable. The following code fragment demonstrates this task:

Thread t = new Thread(r);

A few constructors don’t take Runnable arguments. For example, Thread() doesn’t
initialize Thread to a Runnable argument. You must extend Thread and override its run()
method (Thread implements Runnable) to supply the code to run, which the following
code fragment accomplishes:

class MyThread extends Thread
{
 @Override
 public void run()
 {
 // perform some work
 System.out.println("Hello from thread");
 }
}
// ...
MyThread mt = new MyThread();

Chapter 1 ■ Threads and Runnables

5

Getting and Setting Thread State
A Thread object associates state with a thread. This state consists of a name, an indication
of whether the thread is alive or dead, the execution state of the thread (is it runnable?),
the thread’s priority, and an indication of whether the thread is daemon or nondaemon.

Getting and Setting a Thread’s Name
A Thread object is assigned a name, which is useful for debugging. Unless a name is
explicitly specified, a default name that starts with the Thread- prefix is chosen. You can
get this name by calling Thread’s String getName() method. To set the name, pass it to
a suitable constructor, such as Thread(Runnable r, String name), or call Thread’s void
setName(String name) method. Consider the following code fragment:

Thread t1 = new Thread(r, "thread t1");
System.out.println(t1.getName()); // Output: thread t1
Thread t2 = new Thread(r);
t2.setName("thread t2");
System.out.println(t2.getName()); // Output: thread t2

■■ Note  Thread’s long getId() method returns a unique long integer-based name for a
thread. This number remains unchanged during the thread’s lifetime.

Getting a Thread’s Alive Status
You can determine if a thread is alive or dead by calling Thread’s boolean isAlive()
method. This method returns true when the thread is alive; otherwise, it returns false.
A thread’s lifespan ranges from just before it is actually started from within the start()
method (discussed later) to just after it leaves the run() method, at which point it dies.
The following code fragment outputs the alive/dead status of a newly-created thread:

Thread t = new Thread(r);
System.out.println(t.isAlive()); // Output: false

Getting a Thread’s Execution State
A thread has an execution state that is identified by one of the Thread.State enum’s
constants:

•	 NEW: A thread that has not yet started is in this state.

•	 RUNNABLE: A thread executing in the JVM is in this state.

•	 BLOCKED: A thread that is blocked waiting for a monitor lock is in
this state. (I’ll discuss monitor locks in Chapter 2.)

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#Thread-java.lang.Runnable-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html#interface%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang
http://dx.doi.org/10.1007/978-1-4842-1700-9_2

Chapter 1 ■ Threads and Runnables

6

•	 WAITING: A thread that is waiting indefinitely for another thread to
perform a particular action is in this state.

•	 TIMED_WAITING: A thread that is waiting for another thread to
perform an action for up to a specified waiting time is in this state.

•	 TERMINATED: A thread that has exited is in this state.

Thread lets an application determine a thread’s current state by providing the
Thread.State getState() method, which is demonstrated here:

Thread t = new Thread(r);
System.out.println(t.getState()); // Output: NEW

Getting and Setting a Thread’s Priority
When a computer has enough processors and/or processor cores, the computer’s
operating system assigns a separate thread to each processor or core so the threads
execute simultaneously. When a computer doesn’t have enough processors and/or cores,
various threads must wait their turns to use the shared processors/cores.

■■ Note  You can identify the number of processors and/or processor cores that are available
to the JVM by calling the java.lang.Runtime class’s int availableProcessors() method.
The return value could change during JVM execution and is never smaller than 1.

The operating system uses a scheduler (http://en.wikipedia.org/wiki/
Scheduling_(computing)) to determine when a waiting thread executes. The following
list identifies three different schedulers:

•	 Linux 2.6 through 2.6.23 uses the O(1) Scheduler
(http://en.wikipedia.org/wiki/O(1)_scheduler).

•	 Linux 2.6.23 also uses the Completely Fair Scheduler
(http://en.wikipedia.org/wiki/Completely_Fair_Scheduler),
which is the default scheduler.

•	 Windows NT-based operating systems (such as NT, XP,
Vista, and 7) use a multilevel feedback queue scheduler
(http://en.wikipedia.org/wiki/Multilevel_feedback_queue).
This scheduler has been adjusted in Windows Vista and Windows 7
to optimize performance.

A multilevel feedback queue and many other thread schedulers take priority
(thread relative importance) into account. They often combine preemptive scheduling
(higher priority threads preempt—interrupt and run instead of—lower priority threads)
with round robin scheduling (equal priority threads are given equal slices of time, which
are known as time slices, and take turns executing).

http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/O(1)_scheduler
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://en.wikipedia.org/wiki/Multilevel_feedback_queue

Chapter 1 ■ Threads and Runnables

7

■■ Note T wo terms that are commonly encountered when exploring threads are
parallelism and concurrency. According to Oracle’s “Multithreading Guide”
(http://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html), parallelism
is “a condition that arises when at least two threads are executing simultaneously.” In
contrast, concurrency is “a condition that exists when at least two threads are making
progress. [It is a] more generalized form of parallelism that can include time-slicing as a
form of virtual parallelism.”

Thread supports priority via its int getPriority() method, which returns the
current priority, and its void setPriority(int priority) method, which sets the
priority to priority. The value passed to priority ranges from Thread.MIN_PRIORITY
to Thread.MAX_PRIORITY—Thread.NORMAL_PRIORITY identifies the default priority.
Consider the following code fragment:

Thread t = new Thread(r);
System.out.println(t.getPriority());
t.setPriority(Thread.MIN_PRIORITY);

■■ Caution U sing setPriority() can impact an application’s portability across
operating systems because different schedulers can handle a priority change in different
ways. For example, one operating system’s scheduler might delay lower priority threads
from executing until higher priority threads finish. This delaying can lead to indefinite
postponement or starvation because lower priority threads “starve” while waiting indefinitely
for their turn to execute, and this can seriously hurt the application’s performance. Another
operating system’s scheduler might not indefinitely delay lower priority threads, improving
application performance.

Getting and Setting a Thread’s Daemon Status
Java lets you classify threads as daemon threads or nondaemon threads. A daemon thread
is a thread that acts as a helper to a nondaemon thread and dies automatically when the
application’s last nondaemon thread dies so that the application can terminate.

You can determine if a thread is daemon or nondaemon by calling Thread’s boolean
isDaemon() method, which returns true for a daemon thread:

Thread t = new Thread(r);
System.out.println(t.isDaemon()); // Output: false

http://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html

Chapter 1 ■ Threads and Runnables

8

By default, the threads associated with Thread objects are nondaemon threads. To
create a daemon thread, you must call Thread’s void setDaemon(boolean isDaemon)
method, passing true to isDaemon. This task is demonstrated here:

Thread t = new Thread(r);
t.setDaemon(true);

■■ Note A n application will not terminate when the nondaemon default main thread
terminates until all background nondaemon threads terminate. If the background threads
are daemon threads, the application will terminate as soon as the default main thread
terminates.

Starting a Thread
After creating a Thread or Thread subclass object, you start the thread associated with
this object by calling Thread’s void start() method. This method throws
java.lang.IllegalThreadStateException when the thread was previously started and is
running or when the thread has died:

Thread t = new Thread(r);
t.start();

Calling start() results in the runtime creating the underlying thread and scheduling
it for subsequent execution in which the runnable’s run() method is invoked. (start()
doesn’t wait for these tasks to be completed before it returns.) When execution leaves
run(), the thread is destroyed and the Thread object on which start() was called is no
longer viable, which is why calling start() results in IllegalThreadStateException.

I’ve created an application that demonstrates various fundamentals from thread and
runnable creation to thread starting. Check out Listing 1-1.

Listing 1-1.  Demonstrating Thread Fundamentals

public class ThreadDemo
{
 public static void main(String[] args)
 {
 boolean isDaemon = args.length != 0;
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 Thread thd = Thread.currentThread();
 while (true)

