Raj Senani · D. R. Bhaskar V. K. Singh · R. K. Sharma

# Sinusoidal Oscillators and Waveform Generators using Modern Electronic Circuit Building Blocks



Sinusoidal Oscillators and Waveform Generators using Modern Electronic Circuit Building Blocks

Raj Senani • D. R. Bhaskar • V. K. Singh R. K. Sharma

Sinusoidal Oscillators and Waveform Generators using Modern Electronic Circuit Building Blocks



Raj Senani Division of Electronics and Communication Engineering Netaji Subhas Institute of Technology New Delhi, India

V. K. Singh
Department of Electronics
Engineering
Institute of Engineering and Technology
Lucknow, India

D. R. Bhaskar
Department of Electronics
and Communication Engineering
Jamia Millia Islamia University
New Delhi, India

R. K. Sharma
Department of Electronics
and Communication Engineering
Ambedkar Institute of Advanced
Communication Technologies and Research
New Delhi, India

ISBN 978-3-319-23711-4 DOI 10.1007/978-3-319-23712-1 ISBN 978-3-319-23712-1 (eBook)

Library of Congress Control Number: 2015957198

Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com)

### **Preface**

Sinusoidal oscillators and waveform generators have numerous applications in electronics, instrumentation, measurement, communications, control systems, and signal processing, due to which they have continued to remain a dominant and popular topic of research in the Circuits and Systems literature. Consequently, well over 1500 research papers have so far been published on the analysis, synthesis, and design of oscillators and wave form generators in various international journals. By contrast, only a handful of books have so far been written on oscillators, which suffer from one or more of the following limitations: (1) a number of books are more than a decade old; (2) several of the books deal with very specific types of sinusoidal oscillators only and, hence, have a very limited coverage; (3) a number of books deal with only general issues related to oscillators; (4) even those books which have been written after 2004 do not deal with oscillators and waveform generators using new electronic circuit building blocks which find very prominent space in modern analog circuits journals; (5) as far as could be known, there is no book written so far on non-sinusoidal relaxation oscillators or waveform generators. By contrast, the present monograph is intended to cover a wide variety of sinusoidal oscillators and waveform generators, using a variety of modern electronic circuit building blocks, which do not appear to have been dealt in any of the available books so far. This monograph is intended to provide the following:

Single-source reference on sinusoidal oscillators and waveform generators using
classical as well as modern electronic circuit building blocks (such as operational transconductance amplifiers, current conveyors and their numerous variants, current feedback operational amplifiers, differential difference amplifiers,
four-terminal floating nullors, unity gain voltage/current followers, operational
transresistance amplifiers, current differencing buffered amplifiers, current
differencing transconductance amplifiers, current follower transconductance
amplifiers, voltage differencing inverting buffered amplifier, voltage differencing differential input buffered amplifiers, and numerous others).

vi Preface

• State-of-the-art review of a large variety of sinusoidal oscillators and non-sinusoidal waveform generators/relaxation oscillators.

- A catalogue of over 600 chosen topologies of oscillators and waveform generators, from amongst those evolved during the last four decades, with their design details and their salient performance features/limitations highlighted.
- A comprehensive collection of well over 1500 references on oscillators and waveform generators for readers interested in further studies.
- A number of interesting research problems in almost every chapter of the monograph for the research-oriented readers.
- A useful reference for educators, students, researchers, practicing engineers, and hobbyists who have an interest in the design of sinusoidal oscillators and non-sinusoidal waveform generators/relaxation oscillators.

Lastly, we must acknowledge that in a monograph based upon over 1500 published research papers, there might have been some inadvertent omissions of some references; however, the same is not intentional. Aggrieved authors, whose works might have been omitted, are most welcome to bring to our attention (using the e-mail ID: senani@ieee.org) any missing reference(s) which we would surely like to include in the next edition of this monograph. Any other suggestions are also most welcome!

New Delhi, India July 07, 2015 Raj Senani D. R. Bhaskar V. K. Singh R. K. Sharma

### Acknowledgements

After having written a monograph on *Current Feedback Operational Amplifiers and Their Applications* and another on *Current Conveyors*: *Variants, Applications and Hardware Implementations*, both published by Springer, it was rather obvious for the first author to think about writing a monograph on *Sinusoidal Oscillators*—a topic on which he and his several collaborators have worked extensively and quite intimately. Having convinced ourselves about this, we then set out to write this monograph and proposed the same to Charles Glaser, the Executive Editor, Springer, who gave us the signal to go ahead.

Let us admit that writing this monograph did not turn out to be an easy task! All the four authors went through a lot of difficulties and turmoil in their personal lives, one by one, during the entire period in which the preparation of the manuscript took place. Nevertheless, with the kind support and understanding of Charles Glaser, we somehow persisted and completed the assignment, though somewhat later than anticipated.

First of all, the authors gratefully acknowledge the contribution of their respective family members for their continued encouragement, moral support, and understanding shown during the preparation of this monograph. The authors thankfully acknowledge the facilities provided by the Analog Signal Processing Research Lab. (where this entire project was carried out), Division of Electronics and Communication Engineering and Netaji Subhas University of Technology, New Delhi, where the first author (R.S.) works. The authors would like to thank Prof. Maneesha Gupta, Dr. Tarun Rawat, and Prof. A. K. Singh for their moral support. Thanks are also due to Jessica Lauffer, Jeffrey Taub, and Nicole Lowary for their understanding and to Shashi Rawat for her support in the preparation of the manuscript.

The authors have been involved in teaching a number of ideas contained in the present monograph to their students in the UG courses on *Linear Integrated Circuits* and *Bipolar and CMOS Analog Integrated Circuits* and PG courses on *Signal Acquisition and Conditioning* and *Advanced Network Synthesis*, during

viii Acknowledgements

which a persistent query from our students has been as to *in which book the material taught to them could be found?* We thank our numerous students for this and do hope that this monograph provides an answer to their query.

New Delhi, India

Raj Senani D. R. Bhaskar V. K. Singh R. K. Sharma

## **Contents**

### Part I Introductory Chapter

| 1 | Basic | Sinuso  | idal Oscillators and Waveform Generators          |    |
|---|-------|---------|---------------------------------------------------|----|
|   | Using | g IC Bu | ilding Blocks                                     | 3  |
|   | 1.1   | Introdu | uction                                            | 3  |
|   | 1.2   | Classic | cal Sinusoidal Oscillators                        | 4  |
|   |       | 1.2.1   | Wien Bridge Oscillator                            | 4  |
|   |       | 1.2.2   | RC Phase-Shift Oscillators                        | 6  |
|   |       | 1.2.3   | Colpitts and Hartley Oscillators                  | ç  |
|   |       | 1.2.4   | A Family of Canonic Single-Op-Amp Oscillators     | 10 |
|   |       | 1.2.5   | Twin-T Oscillators                                | 12 |
|   |       | 1.2.6   | A Band-Pass Filter-Tuned Oscillator               | 14 |
|   | 1.3   | Quadra  | ature and Multiphase Sinusoidal Oscillators       | 14 |
|   |       | 1.3.1   | Quadrature Oscillators                            | 15 |
|   |       | 1.3.2   | Multiphase Oscillators                            | 18 |
|   | 1.4   | Some    | Other Sinusoidal Oscillator Topologies            | 22 |
|   |       | 1.4.1   | An Oscillator Based Upon All-Pass Filters         | 24 |
|   |       | 1.4.2   | Two-Section Multiple Op-Amp Oscillators           | 25 |
|   | 1.5   | Some    | Common Methods of Analyzing Sinusoidal            |    |
|   |       | Oscilla | ators                                             | 27 |
|   |       | 1.5.1   | Analysis Based Upon the Closed-Loop               |    |
|   |       |         | Characteristic Equation                           | 28 |
|   |       | 1.5.2   | Analysis by Finding CE by Ungrounding             |    |
|   |       |         | Any Element(s)/Terminal(s)                        | 28 |
|   |       | 1.5.3   | State Variable Analysis of Sinusoidal Oscillators | 29 |
|   | 1.6   | Oscilla | ator Synthesis Using ±RLC Models                  | 30 |
|   | 1.7   | Nonsii  | nusoidal Waveform Generators Using IC Op-Amps,    |    |
|   |       | IC Tin  | ners, and Op-Amp Timer Combinations               | 34 |
|   |       | 1.7.1   | The Op-Amp-Based Schmitt Trigger and the          |    |
|   |       |         | A stable Multivibrator                            | 34 |

x Contents

|     |                            | 1.7.2                                                                                                                                                       | Square/Triangular Waveform Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35                                     |
|-----|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|     |                            | 1.7.3                                                                                                                                                       | The Monostable Multivibrator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36                                     |
|     |                            | 1.7.4                                                                                                                                                       | Synthesis of Waveform Generators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|     |                            |                                                                                                                                                             | in Phase Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37                                     |
|     |                            | 1.7.5                                                                                                                                                       | Quadrature Oscillators for Generating Square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
|     |                            |                                                                                                                                                             | and Triangular Waveforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39                                     |
|     | 1.8                        | Multiv                                                                                                                                                      | ibrators and Waveform Generators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|     |                            | Using                                                                                                                                                       | IC 555 Timer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40                                     |
|     |                            | 1.8.1                                                                                                                                                       | Astable Multivibrators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42                                     |
|     |                            | 1.8.2                                                                                                                                                       | Monostable Multivibrators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 48                                     |
|     |                            | 1.8.3                                                                                                                                                       | Sawtooth Waveform Generators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50                                     |
|     |                            | 1.8.4                                                                                                                                                       | Tone-Burst Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52                                     |
|     |                            | 1.8.5                                                                                                                                                       | Voltage-Controlled Oscillators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53                                     |
|     | 1.9                        | Specia                                                                                                                                                      | lized Square Wave Generators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
|     |                            | _                                                                                                                                                           | asurement Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57                                     |
|     | 1.10                       |                                                                                                                                                             | action Generators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63                                     |
|     |                            | 1.10.1                                                                                                                                                      | LM566 VCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63                                     |
|     |                            | 1.10.2                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64                                     |
|     | 1.11                       | Conclu                                                                                                                                                      | Iding Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65                                     |
|     | Refer                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66                                     |
|     |                            |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| Pai | t II                       | Various                                                                                                                                                     | kinds of Sinusoidal Oscillators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 2   | Singl                      | e-Eleme                                                                                                                                                     | ent-Controlled and Other Varieties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
|     |                            |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|     | _                          |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73                                     |
|     | _                          | o-Amp S                                                                                                                                                     | Sinusoidal Oscillators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
|     | of Op                      | o-Amp S<br>Introdu                                                                                                                                          | Sinusoidal Oscillators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
|     | of Op<br>2.1               | Introdu<br>Some l                                                                                                                                           | Sinusoidal Oscillators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73                                     |
|     | of Op<br>2.1               | Introdu<br>Some l<br>Single-                                                                                                                                | Sinusoidal Oscillators  action  Earlier Variable-Frequency  Op-Amp Oscillators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73<br>73<br>74                         |
|     | of Op<br>2.1<br>2.2        | Introdu<br>Some I<br>Single-<br>Two-O                                                                                                                       | Sinusoidal Oscillators  action  Earlier Variable-Frequency  Op-Amp Oscillators  Op-Amp-Based Single-Resistance-Controlled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73<br>74                               |
|     | of Op<br>2.1<br>2.2        | Introdu<br>Some I<br>Single-<br>Two-O                                                                                                                       | Sinusoidal Oscillators  action  Earlier Variable-Frequency  Op-Amp Oscillators  Op-Amp-Based Single-Resistance-Controlled  attors (SRCOs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73                                     |
|     | of Op<br>2.1<br>2.2        | Introdu<br>Some I<br>Single-<br>Two-O<br>Oscilla                                                                                                            | Sinusoidal Oscillators  Action  Earlier Variable-Frequency  Op-Amp Oscillators  Op-Amp-Based Single-Resistance-Controlled ators (SRCOs)  Oscillator Realization Using the Concept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73<br>74<br>75                         |
|     | of Op<br>2.1<br>2.2        | Introdu<br>Some I<br>Single-<br>Two-O<br>Oscilla                                                                                                            | Sinusoidal Oscillators  action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73<br>74                               |
|     | of Op<br>2.1<br>2.2        | Some I<br>Single-<br>Two-O<br>Oscilla<br>2.3.1                                                                                                              | Sinusoidal Oscillators  Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73<br>74<br>75<br>76                   |
|     | of Op<br>2.1<br>2.2        | Some I<br>Single-<br>Two-O<br>Oscilla<br>2.3.1                                                                                                              | Sinusoidal Oscillators  Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73<br>74<br>75                         |
|     | of Op<br>2.1<br>2.2        | Some I<br>Some I<br>Single-<br>Two-O<br>Oscilla<br>2.3.1<br>2.3.2                                                                                           | Sinusoidal Oscillators  Describer Variable-Frequency  Op-Amp Oscillators  Dep-Amp-Based Single-Resistance-Controlled  Describer Realization Using the Concept  Of FDNR  Single-Resistance-Controlled/Voltage-Controlled  Oscillators (VCOs)  Modified Single-Element-Controlled Wien Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73 74 75 76 77                         |
|     | of Op<br>2.1<br>2.2        | Some I<br>Some I<br>Single-<br>Two-O<br>Oscilla<br>2.3.1<br>2.3.2                                                                                           | Sinusoidal Oscillators Description Descrip | 73<br>74<br>75<br>76                   |
|     | of Op<br>2.1<br>2.2        | Some I<br>Single-<br>Two-C<br>Oscilla<br>2.3.1<br>2.3.2<br>2.3.3                                                                                            | Sinusoidal Oscillators Description Descrip | 73 74 75 76 77 79                      |
|     | of Op<br>2.1<br>2.2        | Some Introdu<br>Some I<br>Single-<br>Two-O<br>Oscilla<br>2.3.1<br>2.3.2<br>2.3.3                                                                            | Sinusoidal Oscillators  Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73 74 75 76 77 79                      |
|     | of Op<br>2.1<br>2.2<br>2.3 | Some Introdu<br>Some I<br>Single-<br>Two-O<br>Oscilla<br>2.3.1<br>2.3.2<br>2.3.3<br>2.3.4<br>Single-                                                        | Sinusoidal Oscillators  Describer Variable-Frequency  Op-Amp Oscillators  Describer Variable-Frequency  Op-Amp-Based Single-Resistance-Controlled  Describer Realization Using the Concept  Of FDNR  Single-Resistance-Controlled/Voltage-Controlled  Oscillators (VCOs)  Modified Single-Element-Controlled Wien Bridge  Oscillators  Two-Op-Amp SRCO Employing  Simulated Inductors  Op-Amp-Based Single-Capacitor-Controlled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73<br>74<br>75<br>76<br>77<br>79       |
|     | of Op<br>2.1<br>2.2<br>2.3 | Some Introdu<br>Some I<br>Single-<br>Two-O<br>Oscilla<br>2.3.1<br>2.3.2<br>2.3.3<br>2.3.4<br>Single-<br>Oscilla                                             | Sinusoidal Oscillators  Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73<br>74<br>75<br>76<br>77<br>79<br>79 |
|     | of Op<br>2.1<br>2.2<br>2.3 | Some Introdu<br>Some I<br>Single-<br>Two-O<br>Oscilla<br>2.3.1<br>2.3.2<br>2.3.3<br>2.3.4<br>Single-<br>Oscilla                                             | Sinusoidal Oscillators  Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73<br>74<br>75<br>76<br>77<br>79<br>79 |
|     | of Op<br>2.1<br>2.2<br>2.3 | Some Introdu<br>Some I<br>Single-<br>Two-O<br>Oscilla<br>2.3.1<br>2.3.2<br>2.3.3<br>2.3.4<br>Single-<br>Oscilla<br>Single-                                  | Sinusoidal Oscillators  Description  Earlier Variable-Frequency  Op-Amp Oscillators  Description  Description  Description  Description  Description  Description  Description  Oscillator Realization Using the Concept of FDNR  Single-Resistance-Controlled/Voltage-Controlled Oscillators (VCOs)  Modified Single-Element-Controlled Wien Bridge Oscillators  Two-Op-Amp SRCO Employing Simulated Inductors  Op-Amp-Based Single-Capacitor-Controlled  Op-Amp-Based SRCOs  Single-Op-Amp-Based SRCOs  Single-Op-Amp-Based Single-Resistance-Controlled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73 74 75 76 77 79 79 81 82             |
|     | of Op<br>2.1<br>2.2<br>2.3 | Some Introdu<br>Some I<br>Single-<br>Two-O<br>Oscilla<br>2.3.1<br>2.3.2<br>2.3.3<br>2.3.4<br>Single-<br>Oscilla<br>Single-                                  | Sinusoidal Oscillators  Description  Earlier Variable-Frequency  Op-Amp Oscillators  Description  Description  Description  Description  Description  Oscillator Realization Using the Concept of FDNR  Single-Resistance-Controlled/Voltage-Controlled Oscillators (VCOs)  Modified Single-Element-Controlled Wien Bridge Oscillators  Two-Op-Amp SRCO Employing Simulated Inductors  Op-Amp-Based Single-Capacitor-Controlled  Cop-Amp-Based SRCOs  Single-Op-Amp-Based Single-Resistance-Controlled Oscillator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73 74 75 76 77 79 79 81 82             |
|     | of Op<br>2.1<br>2.2<br>2.3 | North Some Introdu<br>Some Introdu<br>Some Introdu<br>Single-<br>Two-Coscilla<br>2.3.1<br>2.3.2<br>2.3.3<br>2.3.4<br>Single-<br>Oscilla<br>Single-<br>2.5.1 | Sinusoidal Oscillators  Description  Earlier Variable-Frequency  Op-Amp Oscillators  Description  Description  Description  Description  Description  Description  Description  Oscillator Realization Using the Concept of FDNR  Single-Resistance-Controlled/Voltage-Controlled Oscillators (VCOs)  Modified Single-Element-Controlled Wien Bridge Oscillators  Two-Op-Amp SRCO Employing Simulated Inductors  Op-Amp-Based Single-Capacitor-Controlled  Op-Amp-Based SRCOs  Single-Op-Amp-Based SRCOs  Single-Op-Amp-Based Single-Resistance-Controlled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73 74 75 76 77                         |

Contents xi

|                            | on of Single-Op-Amp SRCOs            |     |
|----------------------------|--------------------------------------|-----|
| Using Bo                   | outin's Transformations              | 87  |
|                            | dhyaya's SRCO and Williams'          |     |
| Simplifie                  | ed Version                           | 87  |
| 2.5.5 SRCOs:               | A Network Synthetic Approach         | 89  |
| 2.5.6 The Com              | plete Family of Single-Op-Amp SRCOs  | 92  |
| 2.6 SRCOs Using Gro        | ounded Capacitors                    | 93  |
| 2.6.1 Three-O <sub>1</sub> | p-Amp SRCO Employing                 |     |
| Grounde                    | d Capacitors                         | 93  |
| 2.6.2 Two-Op-              | -Amp-GC SRCO                         | 97  |
| 2.6.3 Single-O             | p-Amp SRCOs Employing All Grounded   |     |
| Capacito                   | rs                                   | 98  |
| 2.6.4 Single-O             | p-Amp-Two-GC SRCO                    | 99  |
| 2.6.5 A Family             | y of Single-Op-Amp-Two-GC SRCOs      | 100 |
| 2.7 Scaled-Frequency       | Oscillators                          | 100 |
| 2.8 Sinusoidal Oscilla     | ators Exhibiting Linear Tuning Laws  | 106 |
| 2.9 SRCOs Using Un         | ity Gain Amplifiers                  | 109 |
| 2.10 Oscillators with E    | Extended Operational Frequency       |     |
|                            | ive Compensation                     |     |
|                            | mplifiers                            | 117 |
|                            | y Active-R, and Active-C Oscillators |     |
| - 1 1                      | Compensation Poles                   | 122 |
| -                          | p-Amp Active-R Oscillators           | 123 |
|                            | -Amp Active-R Sinusoidal Oscillators | 126 |
|                            | Sinusoidal Oscillators               | 128 |
|                            | Active-R Oscillators                 | 129 |
|                            | COs with <i>Linear</i> Tuning Laws   | 132 |
| _                          | arks                                 | 135 |
| References                 |                                      | 136 |
| 3 Electronically Controll  | able OTA-C and G <sub>m</sub> -C     |     |
|                            |                                      | 143 |
| 3.1 Introduction           |                                      | 143 |
|                            | al Oscillators                       | 144 |
|                            | A-C Grounded-Capacitor Oscillators   | 146 |
|                            | ΓA-C Oscillators                     | 149 |
|                            | A-C Oscillators                      | 152 |
|                            | Quadrature Oscillators               | 152 |
|                            | ors                                  | 156 |
| 3.3.1 Two-OT               | A-RC Oscillators                     | 156 |
|                            | TA RC Oscillators                    | 157 |
| •                          | -Based Oscillators                   | 158 |
| •                          | ntrolled Current-Mode                |     |
| Oscillators Using          | MO-OTAs                              | 162 |

xii Contents

|   | 3.6   | CMOS Implementation of OTA-C Oscillators                | 164          |
|---|-------|---------------------------------------------------------|--------------|
|   | 3.7   | Concluding Remarks                                      | 169          |
|   | Refe  | rences                                                  | 170          |
| 4 | Sinus | soidal Oscillators Using Current Conveyors              | 175          |
|   | 4.1   | Introduction                                            | 175          |
|   | 4.2   | Single-CC SRCOs                                         | 176          |
|   | 4.3   | SRCOs Employing Grounded Capacitors                     | 182          |
|   | 4.4   | SRCOs Employing All Grounded Passive Elements           | 188          |
|   | 4.5   | Quadrature and Multiphase Sinusoidal Oscillators        | 193          |
|   | 4.6   | SRCOs with Explicit Current Outputs                     | 202          |
|   | 4.7   | SRCOs with Grounded Capacitors and Reduced Effect       |              |
|   |       | of Parasitic Impedances of CCIIs                        | 205          |
|   | 4.8   | Sinusoidal Oscillators with Fully uncoupled Tuning Laws | 206          |
|   | 4.9   | Concluding Remarks                                      | 208          |
|   | Refe  | rences                                                  | 209          |
| 5 | Reali | ization of Sinusoidal Oscillators Using Current         |              |
|   | Feed  | back Op-Amps                                            | 213          |
|   | 5.1   | Introduction                                            | 213          |
|   | 5.2   | Realization of Single-Element-Controlled Oscillators    |              |
|   |       | Using Modern Circuit Building Blocks                    | 214          |
|   | 5.3   | Wien Bridge Oscillator Using a CFOA                     | 214          |
|   | 5.4   | Realization of Single-Resistance-Controlled Oscillators |              |
|   |       | Using a Single CFOA                                     | 216          |
|   | 5.5   | A Novel SRCO Employing Grounded Capacitors              | 219          |
|   | 5.6   | A Systematic State-Variable Synthesis                   |              |
|   |       | of Two-CFOA-Based SRCOs                                 | 222          |
|   | 5.7   | Some Other Two-CFOA Sinusoidal Oscillator               |              |
|   |       | Configurations                                          | 225          |
|   | 5.8   | Design of SRCOs Using CFOA Poles                        | 232          |
|   | 5.9   | Quadrature and Multiphase Oscillators Using CFOAs       | 237          |
|   | 5.10  | SRCOs Providing <i>Explicit</i> Current Output          | 238          |
|   |       | 5.10.1 CFOA SRCOs Exhibiting Fully Uncoupled            |              |
|   |       | Tuning Laws                                             | 244          |
|   | 5.11  | Voltage-Controlled Oscillators Using CFOAs              |              |
|   |       | and FET-Based VCRs                                      | 247          |
|   | 5.12  | Realization of Linear VCOs Using CFOAs                  | 249          |
|   | 5.13  | Synthesis of Single-CFOA-Based VCOs Incorporating       |              |
|   |       | the Voltage Summing Property of Analog Multipliers      | 255          |
|   | 5.14  | Concluding Remarks                                      | 261          |
|   |       | endix 1: Some Recent Contributions to CFOA-Based        | <b>~</b> - : |
|   | Oscil | lators                                                  | 261          |
|   |       | Quadrature Oscillators Using Two CFOAs                  | <b>a</b> - : |
|   |       | and Four Passive Components                             | 261          |

Contents xiii

|      | New V     | LF Oscillators Using a Single CFOA          | 262 |
|------|-----------|---------------------------------------------|-----|
|      | Single    | CFOA-Based Oscillator Capable               |     |
|      | of Abs    | orbing all Parasitic Impedances             | 263 |
| Refe | erences   |                                             | 264 |
| Sinu | soidal Os | scillator Realizations Using Modern         |     |
|      |           | ircuit Building Blocks                      | 269 |
| 6.1  | Introdu   | uction                                      | 269 |
| 6.2  | Some I    | Prominent Modern Building Blocks            | 270 |
|      | 6.2.1     | Different Variants of the Current Conveyors | 271 |
|      | 6.2.2     | Some Other Modern Active Building Blocks    | 283 |
| 6.3  | Sinusoi   | idal Oscillator Realization Using Different |     |
|      | Variant   | ts of Current Conveyors                     | 290 |
|      | 6.3.1     | A Dual-Mode Sinusoidal Oscillator Using     |     |
|      |           | a Single OFCC                               | 290 |
|      | 6.3.2     | DOCCII/MOCCII-Based VM/CM QO                | 291 |
|      | 6.3.3     | Oscillators Using DDCCs                     | 293 |
|      | 6.3.4     | Oscillators Realized with DVCCs             | 295 |
|      | 6.3.5     | Oscillators Using Third-Generation Current  |     |
|      |           | Conveyors (CCIII)                           | 299 |
|      | 6.3.6     | ICCII-Based Oscillators                     | 300 |
|      | 6.3.7     | Oscillators Using DXCCII                    | 304 |
|      | 6.3.8     | FDCCII-Based SRCOs                          | 305 |
| 6.4  | Sinusoi   | idal Oscillator Realization Using Other     |     |
|      | Moderi    | n Electronic Circuit Building Blocks        | 307 |
|      | 6.4.1     | Unity Gain VF and Unity Gain CF-Based       |     |
|      |           | Sinusoidal Oscillators                      | 307 |
|      | 6.4.2     | Oscillators Using FTFNs/OMAs                | 312 |
|      | 6.4.3     | Oscillators Using DDAs                      | 315 |
|      | 6.4.4     | Oscillators Using Modified CFOAs            | 321 |
|      | 6.4.5     | Oscillators Using CDBAs                     | 325 |
|      | 6.4.6     | Oscillators Using CDTAs                     | 327 |
|      | 6.4.7     | Oscillators Using CFTAs                     | 331 |
|      | 6.4.8     | Oscillators Using CCTAs                     | 334 |
|      | 6.4.9     | Oscillators Using CBTAs                     | 334 |
|      | 6.4.10    | Oscillators Using DBTAs                     | 336 |
|      | 6.4.11    | Oscillators Using Current-Mode Op-Amps      | 336 |
|      | 6.4.12    | Oscillators Using Programmable Current      |     |
|      |           | Amplifiers/Current Differencing Units       |     |
|      |           | and Current Mirrors                         | 338 |
|      | 6.4.13    | Oscillators Using VDIBAs                    | 340 |
|      | 6.4.14    | Oscillator Using VD-DIBA                    | 341 |
|      | 6.4.15    | Oscillators Using OTRAs                     | 343 |
| 6.5  |           | ding Remarks                                | 349 |
|      | rences    | -                                           | 350 |

xiv Contents

| 7 |                                                 | tched-Capacitor, Switched-Current, and MOSFET-C     | 267 |  |  |  |  |  |
|---|-------------------------------------------------|-----------------------------------------------------|-----|--|--|--|--|--|
|   |                                                 | soidal Oscillators                                  | 367 |  |  |  |  |  |
|   | 7.1                                             | Introduction                                        | 367 |  |  |  |  |  |
|   | 7.2                                             | Switched-Capacitor Oscillators                      | 368 |  |  |  |  |  |
|   | 7.3                                             | Switched-Current Sinusoidal Oscillators             | 377 |  |  |  |  |  |
|   | 7.4                                             | Sinusoidal Oscillator Using an Alternative Form     |     |  |  |  |  |  |
|   |                                                 | of Capacitor-Switching                              | 379 |  |  |  |  |  |
|   | 7.5                                             | MOSFET-C Sinusoidal Oscillators                     | 381 |  |  |  |  |  |
|   |                                                 | 7.5.1 MOSFET-C Oscillators Using DDAs               | 381 |  |  |  |  |  |
|   |                                                 | 7.5.2 MOSFET-C Oscillators Using CFOAs              | 383 |  |  |  |  |  |
|   |                                                 | 7.5.3 MOSFET-C Oscillators Using OTRAs              | 386 |  |  |  |  |  |
|   |                                                 | 7.5.4 MOSFET-C Oscillators Using Inverting          |     |  |  |  |  |  |
|   |                                                 | Third-Generation Current Conveyors                  | 388 |  |  |  |  |  |
|   |                                                 | 7.5.5 MOSFET-C Oscillators Using Dual-X CCII        | 389 |  |  |  |  |  |
|   | 7.6                                             | Switched-Capacitor Voltage-Controlled               |     |  |  |  |  |  |
|   |                                                 | Relaxation Oscillators                              | 390 |  |  |  |  |  |
|   | 7.7                                             | Concluding Remarks                                  | 392 |  |  |  |  |  |
|   | Refe                                            | prences                                             | 392 |  |  |  |  |  |
| 8 | Current-Controlled Sinusoidal Oscillators Using |                                                     |     |  |  |  |  |  |
|   |                                                 | rent-Controllable Building Blocks                   | 395 |  |  |  |  |  |
|   | 8.1                                             | Introduction                                        | 395 |  |  |  |  |  |
|   | 8.2                                             | CCOs Using Second-Generation Controlled             |     |  |  |  |  |  |
|   |                                                 | Current Conveyors (CCCII)                           | 396 |  |  |  |  |  |
|   | 8.3                                             | CCOs Using CC-CFOAs and Their Variants              | 401 |  |  |  |  |  |
|   | 8.4                                             | CCOs Using CC-CDBAs                                 | 402 |  |  |  |  |  |
|   | 8.5                                             | CCOs Using CC-CDTAs                                 | 407 |  |  |  |  |  |
|   | 8.6                                             | CCOs Using CC-CCTAs                                 | 412 |  |  |  |  |  |
|   | 8.7                                             | Concluding Remarks                                  | 417 |  |  |  |  |  |
|   |                                                 | erences                                             | 418 |  |  |  |  |  |
| 9 | Ring                                            | olar and CMOS Translinear, Log-Domain,              |     |  |  |  |  |  |
|   |                                                 | Square-Root Domain Sinusoidal Oscillators           | 425 |  |  |  |  |  |
|   | 9.1                                             | Introduction                                        | 425 |  |  |  |  |  |
|   | 9.2                                             | Log-Domain Oscillators                              | 426 |  |  |  |  |  |
|   | 9.3                                             | Square-Root Domain Oscillators                      | 429 |  |  |  |  |  |
|   | 9.4                                             | Current-Mode Oscillator Employing $f_T$ Integrators | 431 |  |  |  |  |  |
|   | 9.5                                             | Log-Domain Quadrature/Multiphase Oscillators        | 433 |  |  |  |  |  |
|   | 9.6                                             | Log-Domain Multiphase Oscillators Using Exponential | 433 |  |  |  |  |  |
|   | 9.0                                             | Transconductor Cells                                | 435 |  |  |  |  |  |
|   | 9.7                                             |                                                     | 433 |  |  |  |  |  |
|   |                                                 | Square-Root Domain Multiphase Oscillators           |     |  |  |  |  |  |
|   | 9.8                                             | Sinh-Domain Multiphase Sinusoidal Oscillators       | 441 |  |  |  |  |  |
|   | 9.9                                             | Concluding Remarks                                  | 444 |  |  |  |  |  |
|   | Refe                                            | rences                                              | 445 |  |  |  |  |  |

Contents xv

| 10 |       | eration of Equivalent Oscillators Using Various vork Transformations | 447  |
|----|-------|----------------------------------------------------------------------|------|
|    | 10.1  | Introduction                                                         | 44   |
|    | 10.1  | Nullor-Based Transformations of Op-Amp-RC Sinusoidal                 | 7-7  |
|    | 10.2  | Oscillators                                                          | 448  |
|    | 10.3  | Application of Network Transposition in Deriving                     | 7-70 |
|    |       | Equivalent Forms of OTA-C Oscillators                                | 455  |
|    | 10.4  | Derivation of Equivalent Forms of OTA-RC                             |      |
|    |       | Oscillators Using the Nullor Approach                                | 450  |
|    | 10.5  | Derivation of Oscillators Through Network                            |      |
|    |       | Transformations Based on Terminal Interchanges                       | 46   |
|    | 10.6  | Transformation of Biquadratic Band-Pass Filters                      |      |
|    |       | into Sinusoidal Oscillators                                          | 468  |
|    | 10.7  | Transformation of Oscillators Involving Device                       |      |
|    |       | Interchanges                                                         | 47   |
|    | 10.8  | Concluding Remarks                                                   | 472  |
|    | Refer | rences                                                               | 473  |
| 11 | Vori  | ous Performance Measures, Figures of Merit,                          |      |
| 11 |       | Amplitude Stabilization/Control of Oscillators                       | 47   |
|    | 11.1  | Introduction                                                         | 47   |
|    | 11.2  | Start-Up of Oscillations                                             | 47   |
|    | 11.3  | The Various Figures of Merit and Characterizing Parameters           |      |
|    |       | of Oscillators and Waveform Generators                               | 478  |
|    |       | 11.3.1 Harmonic Distortion                                           | 478  |
|    |       | 11.3.2 Frequency Stability                                           | 479  |
|    |       | 11.3.3 Phase Noise, Jitter Noise and 1/f Noise                       |      |
|    |       | in Oscillators                                                       | 479  |
|    | 11.4  | Amplitude Stabilization and Control                                  | 480  |
|    |       | 11.4.1 Amplitude Stabilization/Control Using Analog                  |      |
|    |       | Multipliers                                                          | 48   |
|    |       | 11.4.2 Amplitude Control Through Control                             |      |
|    |       | of Initial Conditions                                                | 483  |
|    |       | 11.4.3 Amplitude Control Through Biasing-Voltage                     |      |
|    |       | Control                                                              | 485  |
|    |       | 11.4.4 Fast Control of Amplitude of Oscillations                     | 486  |
|    |       | 11.4.5 Amplitude Control in Current-Mode Oscillators                 | 488  |
|    | 11.5  | Concluding Remarks                                                   | 489  |
|    | Refer | rences                                                               | 489  |

xvi Contents

| Part III | Non-Sinusoidal | Waveform    | Generators |
|----------|----------------|-------------|------------|
|          | and Relayation | Oscillators |            |

| 12 |       |          | at waveform Generators and Multiviorators           |   |
|----|-------|----------|-----------------------------------------------------|---|
|    | Using | g OTAs . |                                                     | 4 |
|    | 12.1  | Introdu  | ction                                               | 4 |
|    | 12.2  | Current  | -Controlled Oscillators Using Op-Amps and OTAs      | 4 |
|    |       | 12.2.1   | Operation of the OTA in Saturation                  | 4 |
|    |       | 12.2.2   | Linear Current-Controlled Square/Triangular         |   |
|    |       |          | Wave Generator                                      | 4 |
|    |       | 12.2.3   | Improved Temperature-Insensitive VCO                | 4 |
|    |       | 12.2.4   | A Triangular/Square Wave VCO                        |   |
|    |       |          | Using Two OTAs                                      | 4 |
|    |       | 12.2.5   | Current-Controlled Oscillator Using                 |   |
|    |       |          | Only a Single OTA                                   | 4 |
|    |       | 12.2.6   | An Entirely OTA-Based Schmitt Trigger               |   |
|    |       |          | and Square/Triangular Wave Generator                | 4 |
|    |       | 12.2.7   | Square Wave Generator Using a DO-OTA                | 4 |
|    | 12.3  | Current  | -Controlled Saw-Tooth Generators                    | 4 |
|    | 12.4  | Pulse W  | Vave Form Generator                                 | 4 |
|    | 12.5  |          | able Multivibrators Using OTAs                      | 4 |
|    |       | 12.5.1   | Current-Controlled Monostable Multivibrator         | 4 |
|    |       | 12.5.2   | Monostable Multivibrators with Current Tuning       |   |
|    |       |          | Properties                                          |   |
|    |       | 12.5.3   | Current-Controlled Monostable Multivibrator         |   |
|    |       |          | with Retriggerable Function                         | 4 |
|    |       | 12.5.4   | Current-Tunable Monostable Multivibrator            |   |
|    |       |          | Using Only a Single OTA                             | 4 |
|    | 12.6  | Pulse W  | Vidth Modulation Circuits Using OTAs                | 4 |
|    | 12.7  |          | ding Remarks                                        |   |
|    | Refer | ences    |                                                     | 4 |
| 12 | Warn  | .f C     | on another Heima Comment Comment                    |   |
| 13 |       |          | enerators Using Current Conveyors                   | 4 |
|    | 13.1  |          | ction                                               | 4 |
|    | 13.1  |          | Trigger and Waveform Generators Using CCs           | 4 |
|    | 13.2  | 13.2.1   |                                                     | • |
|    |       | 13.2.1   | Schmitt Trigger by Di Cataldo, Palumbo, and Pennisi |   |
|    |       | 13.2.2   | Square Wave Generator Proposed by Abuelma'atti      | • |
|    |       | 13.2.2   | • •                                                 |   |
|    |       | 1222     | and Al-Absi                                         | • |
|    |       | 13.2.3   | Srinivasulu's Schmitt Trigger/Pulse                 |   |
|    |       | 13.2.4   | Squaring Circuit                                    |   |
|    |       | 13.2.4   | Square Wave Generator Proposed by Marcellis,        |   |
|    |       | 12 2 5   | Carlo, Ferri, and Stornelli                         |   |
|    |       | 13.2.5   | Square/Rectangular Wave Generator Proposed          |   |
|    |       |          | by Almashary and Alhokail                           | 4 |

Contents xvii

|     | 13.3  | Schmit   | t Trigger and Non-Sinusoidal Waveform                                   |     |
|-----|-------|----------|-------------------------------------------------------------------------|-----|
|     |       | Genera   | tors Using CFOAs                                                        | 533 |
|     |       | 13.3.1   | CFOA Version of the CCII+ Based Schmitt                                 |     |
|     |       |          | Trigger of Di Cataldo, Palumbo, and Pennisi                             | 533 |
|     |       | 13.3.2   | Srinivasulu's Schmitt Trigger                                           | 535 |
|     |       | 13.3.3   |                                                                         | 537 |
|     |       | 13.3.4   | · · · · · · · · · · · · · · · · · · ·                                   | 538 |
|     | 13.4  | Conclu   | ding Remarks                                                            | 539 |
|     | Refer |          |                                                                         | 540 |
| 14  | Nons  | inusoida | al Waveform Generators/Relaxation Oscillators                           |     |
|     | Using | Other    | Building Blocks                                                         | 541 |
|     | 14.1  |          | ection                                                                  | 541 |
|     | 14.2  |          | tion Oscillators Using OTRAs                                            | 542 |
|     |       | 14.2.1   |                                                                         | 542 |
|     |       | 14.2.2   |                                                                         | 544 |
|     |       | 14.2.3   |                                                                         |     |
|     |       |          | Using OTRAs                                                             | 547 |
|     | 14.3  | Multivi  | ibrators and Square/Triangular Wave Generators                          |     |
|     |       |          | DVCCs                                                                   | 549 |
|     |       | 14.3.1   | Square/Triangular Wave and Saw-Tooth                                    |     |
|     |       |          | Wave Generator Using DVCC                                               | 549 |
|     |       | 14.3.2   | Switch-Controllable Bistable Multivibrator                              | 551 |
|     |       | 14.3.3   |                                                                         | 554 |
|     |       | 14.3.4   |                                                                         | 556 |
|     |       | 14.3.5   | DO-DVCC-Based Square/Triangular                                         |     |
|     |       |          | Wave Generator                                                          | 558 |
|     | 14.4  | Multivi  | ibrators Using CDBA                                                     | 560 |
|     | 14.5  |          | onically Controllable Schmitt-Trigger                                   |     |
|     |       |          | aveform Generators Using MO-CCCCTA                                      | 563 |
|     | 14.6  |          | onically Controllable Current-Mode Schmitt                              |     |
|     |       |          | r and Relaxation Oscillators Using MO-CCCDTA                            | 565 |
|     | 14.7  |          | laneous Other Waveform Generators Using                                 |     |
|     |       |          | Building Blocks                                                         | 570 |
|     | 14.8  |          | ding Remarks                                                            | 570 |
|     |       |          |                                                                         | 571 |
| _   |       | ~        |                                                                         |     |
| Par |       |          | t directions, Concluding remarks and additional ces for further reading |     |
| 15  |       |          |                                                                         | 575 |
| 15  | 15.1  |          | ections of Research and Concluding Remarks                              | 575 |
|     |       |          |                                                                         | 575 |
|     | 15.2  |          | t Directions of Research on Oscillators                                 | 57/ |
|     |       |          | aveform Generators                                                      | 576 |
|     |       | 15.2.1   | Oscillator Synthesis Using Pathological Elements                        | 576 |
|     |       | 15.2.2   | Fractional-Order Sinusoidal Oscillators                                 | 577 |

xviii Contents

|           | 15.2.3    | Memristor-Based Oscillators                    | 578 |
|-----------|-----------|------------------------------------------------|-----|
|           | 15.2.4    | Sine Wave, Square Wave, and Triangular         |     |
|           |           | Wave Generation from Chua's Chaotic Oscillator | 579 |
|           | 15.2.5    | Counter Examples to Barkhausen Criterion       |     |
|           |           | and Oscillator Start-Up Issues                 | 583 |
| 15.3      | Conclu    | ding Remarks                                   | 583 |
| 15.4      | Epilogu   | ıe                                             | 586 |
| Refer     | rences    |                                                | 587 |
| About the | e Author  | s                                              | 589 |
| Additiona | al Refere | nces for Further Reading                       | 593 |
| Index     |           |                                                | 611 |

### **Abbreviations**

A/D Analog to digital
ABB Active building block
AD Analog devices

ADC Analog to digital converter AGC Automatic gain control

AGPE All grounded passive elements

AM Analog multiplier

AP All pass APF All-pass filter

BDI Bilinear discrete integrator

BDI-DOCC Balanced dual input-dual output current conveyor

BE Band elimination

BiCMOS Bipolar complementary metal oxide semiconductor

BIT Built-in testing

BJT Bipolar junction transistor

BO-CCII Balanced output-current conveyor, second generation

BO-COA Balanced-output current operational amplifier

BOICCII Balanced output inverting current conveyor, second generation

BOOA Balanced output op-amps

BO-OTA Balanced-output-operational transconductance amplifier BO-VOA Balanced-output voltage mode operational amplifier

BP Band pass
BPF Band-pass filter
BR Band reject
BS Band stop
BSF Band stop filter
BW Bandwidth

C/f Capacitance-to-frequency C/T Capacitance-to-time period xx Abbreviations

CAB Configurable analog block
CB Complementary bipolar
CC Current conveyor

CCC Composite current conveyor

CC-CBTA Current controlled current backward transconductance amplifier

CC-CC Current-controlled current conveyor

CC-CFOA Current controlled current feedback operational amplifier
CC-CDBA Current controlled current conveyor transconductance amplifier
CC-CD-CCC Current-controlled current differencing buffered amplifier
Current-controlled current differencing current copy conveyor
CC-CDTA Current-controlled current differencing transconductance

amplifier

CC-CFA Current-controlled current feedback amplifier

CC-CFOA Current-controlled current feedback operational amplifier

CCCII Controlled current conveyor, second generation

CCCS Current controlled current source

CCDDCC Current controlled differential difference current conveyor CCDDCC Current controllable differential difference current conveyor CCDDCCTA Current controlled differential difference current conveyor

transconductance amplifier

CCI Current conveyor, first generation
CCII Current conveyor, second generation
CCIII Current conveyor, third generation
CCO Current controlled oscillator

CCTA Current controlled transconductance amplifier

CCVS Current controlled voltage source

CCW Counterclockwise

CDA Complimentary differential amplifier
CDBA Current differencing buffered amplifier

CDIBA Current differencing inverting buffered amplifier CDTA Current differencing transconductance amplifier

CDU Current differencing unit
CE Characteristic equation
CF Current follower

CFA Current feedback amplifier

CFBCCII Controlled fully balanced current conveyor, second generation

CFC Current feedback conveyor

CFOA Current feedback operational amplifier
CFTA Current follower transconductance amplifier

CG-CCCTA Current gain controlled current controlled transconductance

amplifier

CM Current mode; also, current mirror

CMOS Complementary metal oxide semiconductor

CMRR Common mode rejection ratio

Abbreviations xxi

CO Condition of oscillation

COA Current mode operational amplifier or current-mode output

CPFSK Continuous phase frequency shift keying

CR Current repeater

CTTA Current through transconductance amplifier

CVC Current voltage conveyor

CW Clockwise

D/A Digital to analog

DAC Digital to analog converter

DBTA Differential-input buffered transconductance amplifier

DC Direct current

DCC Differential current conveyor

DCC-CFA Double current-controlled current feedback amplifier
DCCCTA Differential current controlled conveyor transconductance

amplifier

DCFDCCII Digitally controlled fully differential current conveyor, second

generation

DCVC Differential current voltage conveyor
DDA Differential difference amplifiers
DDCC Differential difference current conveyor

DDCCC Differential difference complimentary current conveyor

DDCCFA Differential difference complimentary current feedback amplifier

DDCCTA Differential difference current conveyor transconductance

amplifiers

DDOFA Differential difference operational floating amplifier DDOMA Differential difference operational mirrored amplifier

DIBO-COA Differential input balanced output-current operational amplifier DIBO-OTA Differential input balanced output operational transconductance

amplifier

DIBO-VOA Differential input balanced output-voltage mode operational

amplifier

DI-COA Differential input current mode operational amplifier

DIDO Differential input differential output

DI-OTA Differential input-operational transconductance amplifier

DISO Differential-input-single-output

DI-VOA Differential input voltage (mode) operational amplifier

DOCC Dual output current conveyor

DO-DVCC Dual-output-differential voltage current conveyor

DOICCII Dual output inverting current conveyor, second generation

DPDT Double-pole double-throw

DRAM Dynamic random access memory
DVCC Differential voltage current conveyor

DVCC+ Differential voltage current conveyor (positive-type)

xxii Abbreviations

DVCCC Differential voltage complimentary current conveyor

DVCCCTA Differential voltage current-controlled conveyor transconductance

amplifier

DVCCII Differential voltage current conveyor, second generation

DVCCS Differential voltage controlled current source

DVCCTA Differential voltage current conveyor transconductance amplifier

DVCFA Differential voltage current feedback amplifier

DVCFOA Differential voltage current feedback operational amplifier

DVCVS Differential voltage controlled voltage source
DVTA Differential voltage transconductance amplifier
DXCCII Dual-X current conveyor, second generation

ECC Extended current conveyor

ECC Electronically controlled current conveyor

ECCII Electronically tunable current conveyor, second generation

ECO Explicit current output

ELIN Externally linear but internally nonlinear

FAC Floating admittance converter

FBCCII Fully balanced current conveyor, second generation FBDDA Fully balanced differential difference amplifier

FC Floating capacitance FCC Floating current conveyor

FCCNR Floating current controlled negative resistance FCCPR Floating current controlled positive resistance

FDCC Fully differential current conveyor

FDCCII Fully differential current conveyor, second generation FDCFOA Fully differential current feedback operational amplifier

FDNC Frequency-dependent negative conductance FDNR Frequency-dependent negative resistance FDPR Frequency-dependent positive resistance

FET Field effect transistor

FGPIC/ Floating generalized positive immittance converter/inverter

FGPII

FI Floating immittance or floating inductance or floating impedance

FM Frequency modulation FO Frequency of oscillation

FPAA Field programmable analog array

FPBW Full power bandwidth

FPGA Field programmable gate array

FSK Frequency shift keying
FTFN Four-terminal-floating-nullor
FVCR Floating voltage controlled resistor

GBP Gain bandwidth product GC Grounded capacitor

GCC Generalized current conveyor

Abbreviations xxiii

GCFTA Generalized current follower transconductance amplifier

GFTC Generalized frequency/time period converter

GI Grounded impedance

GIC Generalized impedance converter

GNIC Generalized negative impedance converter
GNII Generalized negative impedance inverter
GPIC Generalized positive impedance converter
GPII Generalized positive impedance inverter

GVC Generalized voltage conveyor

HP High pass
HPF High-pass filter
IC Integrated circuit

ICC Inverting current conveyor

ICCII Inverting current conveyor, second generation
ICCIII Inverting current conveyor, third generation
INIC Current inversion negative impedance converter

KHN Kerwin–Huelsman–Newcomb
L/f Inductance-to-frequency
L/T Inductance-to-time period
LC Inductance-capacitance
LDI Lossless discrete integrator

LHS Left hand side
LNA Low noise amplifier

LP Low pass LPF Low-pass filter

MCC-CDTA Modified current controlled current differencing transconductance

amplifier

MCCCII Multi-output controlled current conveyor, second generation

MCCIII Modified current conveyor, third generation MCFOA Modified current feedback operational amplifier

MDAC Multiplying digital-to-analog converter MDCC Modified differential current conveyor

MDO-DDCC Modified dual output-differential difference current conveyor MICCII Modified inverting current conveyor, second generation

MIDCC Multiple input differential current conveyor

MIMO Multiple-input-multiple-output
MISO Multiple-input-single-output

MMCC Multiplication-mode current conveyor MOCC Multiple output current conveyor

MO-CCCA Multiple output current-controlled current amplifier MO- Multi-output-current-controlled current differencing

CCCDTA transconductance amplifier

MO-CC- Multiple output current controlled current through

CTTA transconductance amplifier

xxiv Abbreviations

MOCCII Multiple output current conveyor, second generation

MOCF Multiple output current follower

MOSFET Metal oxide semiconductor field effect transistor MOTA Multi-output operational transconductance amplifier

MRC MOS resistive circuit

MSO Multi-phase sinusoidal oscillator

MTC Mixed translinear cell NAM Nodal admittance matrix

NE Node equation NF Notch filter

NIC Negative impedance converter NMOS N-type metal oxide semiconductor

OC Operational conveyor

OCC Operational current conveyor OFA Operational floating amplifier OFC Operational floating conveyor

OFCC Operational floating current conveyor

OLTF Open loop transfer function
OMA Operational mirrored amplifier

OTA Operational transconductance amplifier

OTA-C Operational-transconductance-amplifier-capacitor

OTRA Operational transresistance amplifier
PCA Programmable current amplifier
PIC Positive impedance converter
PII Positive impedance inverter

PLL Phase locked loop PM Phase modulation

PMOS P-type metal oxide semiconductor

QO Quadrature oscillator
R/f Resistance-to-frequency
R/T Resistance-to-time period
RC Resistance-capacitance

RHS Right hand side

SCCO Single-capacitor-controlled oscillator SCIC Summing current immittance converter

SCO Switched capacitor oscillator SEC Single element controlled

SECO Single-element-controlled oscillator

SFG Signal flow graph
SIFO Single input five output
SIMO Single input multiple output
SIO Switched current oscillator
SISO Single input single output

SR Slew rate

Abbreviations xxv

SRC Single resistance controlled

SRCO Single-resistance-controlled oscillator SVIC Summing voltage immittance convertor

TA Transconductance amplifier
TAC Transconductance and capacitance

TAM Trans-admittance-mode

TCCII Transconductance current conveyor, second generation

THD Total harmonic distortion

TI Texas Instruments
TIM Trans-impedance-mode

TL Trans-linear

TO-ICCII Triple output-inverting current conveyor, second generation

TX-TZ CCII Two-X two-Z current conveyor, second generation

UCC Universal current conveyor
UGA Unity gain amplifier
UGB Unity gain buffer
UGC Unity gain cell

UGDA Unity gain differential amplifier

UGS Unity gain summer

UVC Universal voltage conveyor

VC Voltage conveyor

VCC Voltage-controlled capacitance
VCCS Voltage-controlled-current-source
VCFI Voltage controlled floating impedance

VCG Voltage and current gain

VCG-CCII Voltage and current gain current conveyor, second generation

VCL Voltage controlled inductance
VCO Voltage-controlled oscillator
VCR Voltage-controlled-resistance
VCVS Voltage-controlled voltage source
VCZ Voltage-controlled impedance

VDCC Voltage differencing current conveyor

VD-DIBA Voltage differencing differential input buffered amplifier

VDIBA Voltage differencing inverting buffered amplifier VDTA Voltage differencing transconductance amplifier

VF Voltage follower

VFO Variable frequency oscillator

VLF Very low frequency

VLFO Very low frequency oscillator
VLSI Very large scale integrated circuits
VM Voltage mirror; also voltage-mode
VMQO Voltage mode quadrature oscillator

VNIC Voltage inversion negative impedance converter

VOA Voltage (mode) operational amplifier voltage-mode output

xxvi Abbreviations

| WBO            | Wien Bridge oscillator                                                 |
|----------------|------------------------------------------------------------------------|
| WCDMA          | Wide-band code division multiple access                                |
| ZC-CCCITA      | Z-copy current controlled current inverting transconductance amplifier |
| ZC-CCCITA      | Z-copy current-controlled current inverting transconductance amplifier |
| ZC-CDU         | Z-copy-current differencing unit                                       |
| ZC-CG-<br>CDBA | Z-copy current gain current differencing buffered amplifier            |
| ZC-CG-         | Z-copy current gain current differencing transconductance              |
| CDTA           | amplifier                                                              |
| ZC-CG-         | Z-copy current gain voltage differencing current conveyor              |
| VDCC           |                                                                        |

# Part I Introductory Chapter

### Chapter 1 Basic Sinusoidal Oscillators and Waveform Generators Using IC Building Blocks

**Abstract** This chapter discusses the basic principle of generating sinusoidal oscillators, reviews the classical sinusoidal oscillators and nonsinusoidal waveform generators, enumerates a number of other sinusoidal oscillator topologies, and outlines some basic methods of oscillator analysis and synthesis.

#### 1.1 Introduction

Sinusoidal oscillators and nonsinusoidal waveform generators play an essential role in various instrumentation, measurement, communication, control, and other electronic systems, and therefore, discussion of a number of classical sinusoidal oscillators is an important topic dealt with in almost all standard text and reference books on electronics and electronic circuits (for instance, see [1–6]).

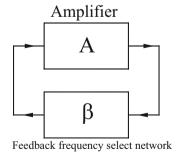
However, during the past four decades, a large number of circuits and techniques have been advanced by various researchers for realizing sinusoidal oscillators, using a variety of active devices and active circuit building blocks such as bipolar transistors, FETs, IC op-amps, operational transconductance amplifiers (OTA), current conveyors (CC), current feedback op-amps (CFOA), and numerous others. The analog circuit's literature is flooded with a huge number of papers on oscillators and their various aspects. Concurrently, a lot of effort has gone on the analysis, synthesis, and design of oscillators together with or the study of a variety of related aspects such as amplitude stabilization and control, start-up phenomenon, as well as a number of important performance-related issues like amplitude stability, frequency stability, jitter, phase noise, etc. (for instance, see [7–109]). Whereas several authors have concentrated on evolving systematic methods for realizing sinusoidal oscillators, a number of researchers have also worked on evolving design strategies or methods for improving practical performance of RC-active oscillators.

This chapter is concerned with the discussion about well-known as well as some not-so-well-known RC sinusoidal oscillators and nonsinusoidal waveform generators using op-amps in case of the former and using op-amps and IC 555 timer in case of the latter. The remaining chapters of this monograph will gradually unfold a

variety of circuit configurations and types of oscillators and waveform generators employing modern electronic circuit building blocks.

#### 1.2 Classical Sinusoidal Oscillators

Sinusoidal oscillators, being closed active RC circuits without functional input (other than the DC power supplies used for biasing the active device(s)), can be analyzed in a number of ways. From the classical theory of feedback oscillators, the sinusoidal oscillator, which is usually made from an amplifier and a frequency-selective RC circuit or LC circuit arranged in a positive feedback, can be analyzed by using Barkhausen criterion. A typical block diagram model of an oscillator shown in Fig. 1.1 contains an amplifier of gain A and a frequency-selective feedback network having gain  $\beta$ .


According to Barkhausen criterion, in order that such a system can generate sinusoidal oscillations, the necessary conditions are  $|A\beta|=1$  and  $\angle A\beta=0^{\circ}$  or an integral multiple of  $360^{\circ}$ .

It is well known that a number of classical oscillators such as a Wien bridge oscillator, RC phase-shift oscillator, twin-T oscillator, and bridge-T oscillators can be readily seen to be belonging to the general block diagram of Fig. 1.1.

### 1.2.1 Wien Bridge Oscillator

In case of the Wien bridge oscillator (Fig. 1.2a), the op-amp is configured as non-inverting amplifier, whereas the feedback network consisting of two resistors and two capacitors is a second-order band-pass filter such that at the center frequency of the band-pass filter given by

**Fig. 1.1** The basic topology of the classical sinusoidal oscillators

