Jeff Friesen

Java I/0, NIO
and NIO.2

Jeff Friesen

Apress’

Java I/0, NIO and NI10O.2
Copyright © 2015 by Jeff Friesen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part

of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1566-1
ISBN-13 (electronic): 978-1-4842-1565-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Technical Reviewers: Vinay Kumar and Wallace Jackson

Editorial Board: Steve Anglin, Louise Corrigan, James T. DeWolf, Jonathan Gennick,
Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott, Matthew
Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing,
Steve Weiss

Coordinating Editor: Mark Powers

Copy Editor: Kezia Endsley

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit waw. springeronline.com. Apress Media, LLCisa
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484215661. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484215661
www.apress.com/source-code/

To my parents.

Contents at a
Glance

About the AUthorcccsmvsmmmis s ———— XV
About the Technical ReVIEWErSccusmmmssmsmsssmmsssmsssmsssssssnsassnsnss xvii
Acknowledgments.......cccuseemmmmsssnnnmmssssssnmmsssssnmssssssnsenssssnssesssssnnnenns Xix
Introduction.........cccvcemnismns s ————— XXi
Part I: Getting Started with 1/0........ccccceriiiniiiincccnnnnnnnnn 1
Chapter 1: 1/0 Basics and APIS.......cccccusssemnnmssssssnssssssssssssssssssssssssnns 3
Part 11: Classic 1/0 APIS.........cccuvsesmmsmssmsmssmsmssssmssssassnsnss 17
Chapter 2: Filecccuunmmemmmmmmmmmmmmmssssssssnnnsssssssssssssnsssssssssssssssssssnnes 19
Chapter 3: RandomACCESSFile......cccirssummnmnssssnnnssssssnnnssssssnnnssssnnns 43
Chapter 4: Streams.......ccccuseenmmnsssennnmnsssssmmsssssssssssssnssssssnnnn. 59
Chapter 5: Writers and Readersccucemmmnsssnnmmnnssssnnnssssssssnnnns 113
Part lIl: New 1/0 APIS......ccccmmmmmmrmssssssssmsnmsnsssssssssnsnnnnnss 125
Chapter 6: BUFfErsScccccemmrmmsssssssssssnnnmmsssssssssssssssssssssssssssnnnsnsnns 127
Chapter 7: Channelsccuneemmmnnssnnsmmmsssssnmsssssssssssssssssssssssssssnss 149

vi

Contents at a Glance
Chapter 8: Selectorsc.uccururmmmssmmmsssnsmsssnsssssnsssssnnsssssnssssnnsssas 203
Chapter 9: Regular EXPressionscccusseessmsssssssssssssssssssssssnsnsssss 215
Chapter 10: Charsets.......ccommmmnmmmmmmmssssmmmssssmmmssssssmsssssms 231
Chapter 11: Formatterccccinnnmmmmnsssnnnnmsssssnmnsssssssssssssssnnnns 243
Part IV: More New I/0 APIS........ccoseemmmmmmnnsssssssnsnnnnnnns 257
Chapter 12: Improved File System Interface..........cccussnnnennnnnnnns 259
Chapter 13: Asynchronous 1/0........ccccussemmmmmsssssnnmssssssssssssssssssssns 387
Chapter 14: Completion of Socket Channel Functionality 417
Part V: AppendiCesuuuseeeemeememmmmmmmnnmmnnnnnnmmssssssssssssss 429
Appendix A: ANSWers t0 EXErciSesccccrurrmmmmmmsssnsssssssssssssssnnnnns 431
Appendix B: Sockets and Network Interfacesccccceerrrresssssnns 481

Contents

About the AULNOKcciiemeiirree e e r e mmmnas XV
About the Technical REVIEWErScceummrremmmmmmnsssssssssssssssmssssssnnsnnns XVii
Acknowledgments.......ccccemmmmismnnmmssssnsnmmssssnsnmsssssnsnnsssssssnsssssnnnnensnns Xix

INtroducCtion........cceiiireeemiirsne s e s s s e nnm e s s nnma e a s nnmm s arnnmma e nnmmmn i nns XXi

Part I: Getting Started with 1/0.........cccccsscminnieecnrnnssnennnd 1

Chapter 1: 1/0 Basics and APIS.......cccccurrinnmmsssssmmssssnnmmsssssssssssssssnnns 3

CIASSIC 1/0 ... 3
File System Access and the File Classccovrrnnennnnnenenennsesesessesesessssesesenns 3
Accessing File Content via RandomACCEeSSFilecccovvevcrrriecnrniereress e 5
Streaming Data via Stream ClaSsSesccuuverrrnnenrinnnessesn s sessssesens 5
JDK 1.1 and the Writer/Reader ClIasses...........uvmrmerenmnsssssesmnssssssessssssesssssssesenens 8

NIO . a e e a e a e r e aeeaeenennean 8
BUFTEIS ..o —————— 9
ChANNEIS......cceiiie e 10
R T=] [T] £ P 11
Regular EXPreSSiONSooucererereesereseese s s ssssesss e sessssssssesssssssseses 12
ChAISELS ...eeeee e 13
FOrMAaLLer ... ————— 13

vii

viii Contents

NIO.2....ceeeer et r s n e e nn e nnn 13
Improved File System INTErface........ccocevvverrvererererererere e naeens 14
ASYNCAFONOUS I/0......ceeeeereererertererre e resesas e sae e saesessesessesas e saesesassassesassessssesssnenaes 14
Completion of Socket Channel Functionality............ccooevreerervererereseresesesessereesenns 14

SUMMANY ...t snesn s srssr e r s sn s n e sn e nn e sn s snennennnnnnnans 15

Part 1I: Classic 1/0 APIS.......cccoremmesremmnssssensssssnnsnssnnnsassnes 1 1

Chapter 2: Fileccccunsseemmmnssssnnmmmsssssssmsssssssssssssssssssssssssssssssnnsssssnnns 19
Constructing File INStANCES........cccceeeeerererrerere e 19
Learning About Stored Abstract Paths............ccceevvereniiennsssennsesnnsennes 22
Learning About a Path’s File or Directory........c.cccecvvrrrriernscnsenssessennaens 25
Listing File System Root DireCtoriescccceeeeereeereseesnesneses s sessennns 27
Obtaining Disk Space Information............ccoceevveenserenssesnsesessssessssennes 28
Listing DIr€CLONIEScccecerveererr st 30
Creating/Modifying Files and Directories..........cccceveeerereseseesessensensennns 33
Setting and Getting Permissions..........cccuvvvrnrvensensnses s sessensenns 37
Exploring Miscellaneous Capabilities..........c.ccoceerierrsriesnicsesenesenennes 39
1111] 11PN 42
Chapter 3: RandomACCESSFile......cccurrrsssmnnrrssssnnnsmssssnnnssssssnnnsssssnns 43
Exploring RandomACCESSFilecccvcreercrrercer s 43
Using RandOmMACCESSFIlecccoereerererrre e 49
SUMMANY ...t p e s 57
Chapter 4: Streams.....ccccccerrrrnnmmmmmsssssssnnnmssmssnsssssssneesssannsnns 59
Stream Classes OVEIVIBW.........ccoceuereresesmsessesessssssesessesesessssesssssssssssens 59
Touring the Stream CIaSSes.........ccucvverrrrernersensn s sae e e 61

OutputStream and INPUISTIEAM.........ccevevere e 61

ByteArrayOutputStream and ByteArraylnputStream..........ccoccovveiecvecnccsnicrnnenn, 64

FileOutputStream and FilelnputStream ... 67

Contents ix

PipedQutputStream and PipedinputStream............cccovreecnnncresnnesescreseeeeens 4l
FilterQutputStream and FilternputStream ... 75
BufferedQutputStream and BufferedinputStreamccocorevinreicscnseicscnennns 84
DataOutputStream and DatalnputStream..............ccoorneicnnneicnrnesesere s 86
Object Serialization and Deserialization..............ccccoerrercrrneseserseseseses s 88
PriNtSIrEAM......cciic 104
Revisiting Standard 1/0...........ccoccvverrrrrrnrr e 107
SUMMAIY ...t n s 111

Chapter 5: Writers and Readersccoevvnmmmssssssssnsnsssssssssssssnnnees 113

Writer and Reader Classes OVEIVIEWc.coccoeverererecresenesessenesenns 114
Writer and REAdErcoceerierrnrrennire e 116
OutputStreamWriter and InputStreamBReadercccevvvevverrerienrenns 117
FileWriter and FileReaderc...ccoonninnnnicnnncsssesssesesesessennens 119
BufferedWriter and BufferedReaderc.ccovverenricnnnnncsensesnnnnnens 121
1111 1P S 124

Part IIl: New 1/0 APIS.........ccivmnsmmmmsssnsssnissnsssnnsnnnnenn 129

Chapter 6: BUFfErscccccemmrrmsssssssssssnnsmssssssssssssssssssssssssssssnnnnsnnns 127
Introducing BUFfers........c.coviinnnn s 127
Buffer and its Children ... 128
Buffers in Depth ... 133
Buffer Creation ... 133
Buffer Writing and Reading............cccovreeenerrcscnerneeseresseseseses s 136
FIIPPING BUFFEIS .. s 139
Marking BUFfErS.......ccoeeerercererseecre e 14
Buffer SUbCIass OPerations...........ocoveeceererncscserneeseresee e 142
BYte OFAEIING......cov e 143
DireCt Byte BUFTEISccocovieecrercccrir e 145

111 1] 1P S 147

X

Contents

Chapter 7: Channelsccccuneemmmnssssnsmmssssssnnsssssssssssssssssssssssnsssnss 149
Introducing Channels ... 149
Channel and ItS Childrenoccocerenrersscressseserssesess s 149
Channels in Depth ... s 155

Scatter/Gather 1/0.........ccoeeeree s 155

File CRANNEIS ... s 158

SOCKEE CHANNEIS ..ot 179

PIPES et a e e a e e e e e e e e es 195
111 1] 1P SRS 201
Chapter 8: Selectorsc.uccrurmrmsssmnmsssnsmssssssssssssssssnsssssnssssnnsssnas 203
Selector Fundamentalscoccovvrennicnnnninsssss e 204
Selector DemONSEration.............coveeererercreresesesesese e snenes 209
SUMMANY ...t sn s snssn s sn e n s sr s nn e n e nrennennnnnn s 214
Chapter 9: Regular EXPreSSsionscccussseesssssssssssssssssssssssssnsnnnnas 215
Pattern, PatternSyntaxException, and Matcher...........cccevrvrrcernenne. 215
Character CIASSEScccurserrmsmresmssessssssessssessessssssssssssssssssssssssnsssssens 221
Capturing GrOUPS ...coeveereerererereereessessessesassssssessesssssssassssssssasssssasssssans 223
Boundary Matchers and Zero-Length Matches..........cccoovereeecneneee. 224
QUANTITIBIS c.vvvererce e nn e 225
Practical Regular EXpressions..........ccccevvvernnnneessesseessessssssessssssesssesns 228
SUMMANY ...t sr e r e r e sn e n e sr e sr e n e r e sn e nn e nn s 230
Chapter 10: Charsets.......cccuneemmmmnnennmmmmssssnnmmmssssnmmssssnsesssssns 231
A Brief Review of the Fundamentals.............cccovvrinnnicnnscnessssesnnens 231
Working With Charsetsc.cceerrnsernnmissnsesesssesssse s sssessssens 232
Charsets and the String Class........c.ccocvvererererereresessesee s seeseesensens 239

SUMMANY ...t r e r e sr e n e sr e r e r e r e sn e nnenne s 241

Contents xi

Chapter 11: Formattercccunnmemmmmmmmnnnmmsssssssssnmmsmssssssssssnns 243
Exploring Formatter..........ccovvrvrvncncrrr e 243
Exploring Formattable and FormattableFlagscoorvennicninnnnene 249
1111 1P SRS 255

Part IV: More New I/0 APIS........cccormmerremnssnmnssnnssssnnssnens 29 7

Chapter 12: Improved File System Interface........c..cccnrrssnnnnnrnans 259
Architecting a Better File Class.........cccoceveveeerenesssssece e 259
File Systems and File System Providers...........ccoeveeerrennsenesesessesesesessssesesessnsenes 261
Locating Files with Paths ... 263
Getting a Path and Accessing Its Name Elements........cccccocvevrvevrversrcveenereenennes 264
Relative and Absolute Paths ... 267
Normalization, Relativization, and Resolutioncccceevvvrvnninnninsnsssesseesennes 269
Additional Capabilities.........cceeerrrerrrerererererre s e rae s sre e aenanaens 271
Performing File System Tasks with Files........ccccooeerienrsriennicnecnnnens 273
AcCeSSING File STOIEScoeeeverrrerecrre s snnnens 273
Managing AttribULES ... —————— 276
Managing Files and DireCtOries..........cuerrerriernsesssesesese s ssesessesesnes 305
Managing Symbolic and Hard LinKScccoucevennnniennnnsncnsssesesesesesesessssssens 343
Walking the File TrEEcccevererrcrecre e s sn s snnnens 351
Working with Additional Capabilities.........cccevrnnernnnenerre e 370
Using Path Matchers and Watch Services..........cceevvrrierrercersnsiennennne 373
Matching Paths..........cccmrmieeeee s 374
WatChing DIir€CIOMIESoveuecererreecrerreeer e 377
111 1] 1P S 386
Chapter 13: Asynchronous 1/0........cuusmsussssssssssssssssssssssssssssnsnsass 387
Asynchronous 1/0 OVEIVIEWcccecevereereerersssssssssssssssssssssssssssssssansanns 388

Asynchronous File Channelsccooveernvennnnesesssesesessesesesesesens 390

xii

Contents
Asynchronous Socket Channels..........cococevererersnnnessssee s 395
AsynchronousServerSocketChannel............coccvevvevvvereererenere s ssesessesenaens 396
AsynchronousSOCKEICNANNEIcccoeverereriereriereereree e s ras e sae e raesessesessenasaens 403
Asynchronous Channel GroUPS.........coeeeeerressessessessesssssssssssssssssssssnsnns 410
What About AsynchronousFileChannel? ... 413
SUMMAIY ...t nn s 415
Chapter 14: Completion of Socket Channel Functionality 417
Binding and Option Configurationccccuceennerensscnnssnesssesesennens 417
Channel-Based MUlticastingcccocevererrrnnnnsss e see e 422
SUMMANY ...t snesr s sn e n s sr s sn e n e nr e snnnnnnnn s 428

Part V: Appendicesosssssssssnsseennnnnnnnnnnnnnnnsnnnnnnnnnn 429

Appendix A: Answers 10 EXErciSescccusummmmmsssssnsssssssnssssssssnnnss 431
Chapter 1:1/0 Basics and APISccceceeeererrerrenre e sne e sneeas 431
Chapter 2: File ..o e sse e sae e sn e 432
Chapter 3: RaNdOMACCESSFIlE.......ccoereereerrrrrrrerre e see e e e 435
Chapter 4: Streams..........coccceeerererecere e sre e 436
Chapter 5: Writers and Readersccccocevererereereeseesessesseessssessessenens 444
Chapter 6: BUFFEIScccverererereree e e e e s e sss s s sassassnssassnes 446
Chapter 7: ChannelS ... 449
Chapter 8: SEIECIOIS......ccvverierrerrerrerree e rsee s s e e e sae e s snesnesaenns 453
Chapter 9: Regular EXPressionsccoccveenscresessessssesssessessssessesessens 453
Chapter 10: Charsets.........ccooeeererrerresesesse e sse e ssesssssesssssssnssnssssssnsnas 455
Chapter 11: FOrmatter........ccccvvvvevnie e sse e sseseesaenns 457
Chapter 12: Improved File System Interface...........cccocceverrierrserccnnnens 458
Chapter 13: Asynchronous I/0ccoeeevevenesese e see e 471

Chapter 14: Completion of Socket Channel Functionality 475

Contents xiii

Appendix B: Sockets and Network Interfacesccecceerrrrrsssssnns 481
SOCKEES.....covierrerrrerrs e nn s 482
SOCKEE AUAIBSSESevrrerererrrrsseesessssesesesssss e ssssssssessssssssesssssssssssssssssesessssssssnsssnns 484
SOCKETL OPLIONS....cceeeercrereree et re e rae s e s e e s e ae e ae e sae e naena e e nae e es 486
Socket and SErVErSOCKELcccuvierererneerersse s ss s sesnns 488
DatagramSocket and MulticastSoCKetccovverevrerre s 495
Network INterfaces.........cccvvvvrrersersessesses s 503
Using Network Interfaces with SOCKEtScccccveeverecrcecsceeceecenea, 511

About the Author

Jeff Friesen is a freelance tutor and software
developer with an emphasis on Java. In
addition to authoring Learn Java for Android
Development and co-authoring Android
Recipes, Jeff has written numerous articles
on Java and other technologies for JavaWorld
(JavaWorld.com), InformIT (InformIT.com),
Java.net and DevSource (DevSource.com).
Jeff can be contacted via his website at
TutorTutor.ca.

http://JavaWorld.com
http:\\InformIT.com
http://DevSource.com
http://TutorTutor.ca

About the Technical
Reviewers

Vinay Kumar is a Technology Evangelist.

He has extensive experience of 8+ years

in designing and implementing large scale
projects in Enterprise Technologies in various
consulting and system Integration Companies.
His passion helped him achieve certifications in
Oracle ADF, Webcenter Portal and Java/JEE.
Experience and in-depth knowledge has
helped him evolve into a focused domain
expert and a well-known technical blogger.

He loves to spend his time in mentoring and
writing technical blogs, publishing white papers
and maintaining a dedicated education channel
at YouTube for the ADF/ Webcenter. He has experience in Java, JEE and
various open stack technologies as well. Vinay has been contributing to the
Java/Oracle ADF/Webcenter community by publishing 300+ technical articles
at his personal blog www.techartifact.com. He was awarded an Oracle

ACE in June 2014. You can follow him at @vinaykuma201 or in.linkedin.com/
in/vinaykumar2.

xvii

http://www.techartifact.com
http://@vinaykuma201
http://in.linkedin.com/in/vinaykumar2
http://in.linkedin.com/in/vinaykumar2

xviii About the Technical Reviewers

Wallace Jackson has been writing for leading
multimedia publications about his work in new
media content development since the advent
of Multimedia Producer Magazine nearly two
decades ago. He has authored a half-dozen
Android book titles for Apress, including four
titles in the popular Pro Android series. Wallace
received his undergraduate degree in Business
Economics from the University of California at
Los Angeles (UCLA) and a graduate degree

in MIS Design and Implementation from the
University of Southern California (USC). He is
currently the CEO of Mind Taffy Design, a new
media content production and digital campaign
design and development agency.

Acknowledgments

I have many people to thank for assisting me in the development of this
book. | especially thank Steve Anglin for asking me to write it and Mark
Powers for guiding me through the writing process.

Xix

Introduction

Input/output (1/0) is not a sexy subject, but it’s an important part of
non-trivial applications. This book introduces you to most of Java’s I/O
capabilities as of Java 8 update 51.

Chapter 1 presents a broad overview of I/0O in terms of Java’s classic 1/0,
New I/0 (NIO), and NIO.2 categories. You learn what each category offers in
terms of its capabilities, and you also learn about concepts such as paths
and Direct Memory Access.

Chapters 2 through 5 cover classic I/0 APIs. You learn about the File and
RandomAccessFile classes along with streams (including object serialization
and externalization) and writers/readers.

Chapters 6 through 11 focus on NIO. You explore buffers, channels,
selectors, regular expressions, charsets, and formatters. (Formatters were
not introduced with the other NIO types in Java 1.4 because they depend on
the variable arguments capability that was introduced in Java 5.)

NIO is missing several features, which were subsequently provided by
NIO.2. Chapters 12 through 14 cover NIO.2’s improved file system interface,
asynchronous 1/O, and the completion of socket channel functionality.

Each chapter ends with assorted exercises that are designed to help you
master its content. Along with long answers and true/false questions, you
are often confronted with programming exercises. Appendix A provides the
answers and solutions.

Appendix B provides a tutorial on sockets and network interfaces. Although
not directly related to classic 1/0, NIO, and NIO.2, they leverage 1/0
capabilities and are mentioned elsewhere in this book.

xxii Introduction

Note | briefly use Java 8’s lambda expression and method reference
language features and also use Java 8’s Streams APl in some examples,
but don’t provide a tutorial on them. You’ll need to look elsewhere for that
knowledge.

Thanks for purchasing this book. | hope you find it helpful in understanding
classic I/0, NIO, and NIO.2.

— Jeff Friesen (September 2015)

Note You can download this book’s source code by pointing your web
browser to www.apress.com/9781484215661 and clicking the Source
Code tab followed by the Download Now link.

www.apress.com/9781484215661

Part I

Getting Started with 1/0

Chapter

I/0 Basics and APIs

Input and output (I/0) facilities are fundamental parts of operating systems
along with computer languages and their libraries. All but trivial computer
programs perform some kind of input and/or output operations.

Java has always supported I/O. Its initial suite of I/O APIs and related
architecture are known as classic 1/0. Because modern operating systems
feature newer I/0 paradigms, which classic I/O doesn’t support, new I/O
(NIO) was introduced as part of JDK 1.4 to support them. Lack of time
prevented some planned NIO features from being included in this release,
which led to these other NIO features being deferred to JDK 5 and JDK 7.

This chapter introduces you to classic I/0, NIO, and more NIO (NIO.2).
You learn about the basic I/0 features they address. Also, you receive an
overview of their APls. Subsequent chapters dig deeper into these APls.

Classic 1/0

JDK 1.0 introduced rudimentary I/O facilities for accessing the file system
(to create a directory, remove a file, or perform another task), accessing file
content randomly (as opposed to sequentially), and streaming byte-oriented
data between sources and destinations in a sequential manner.

File System Access and the File Class

A file system is an operating system component that manages data storage
and subsequent retrieval. Operating systems on which a Java virtual
machine (JVM) runs support at least one file system. For example, Unix or

4 CHAPTER 1: 1/0 Basics and APIs

Linux combines all mounted (attached and prepared) disks into one virtual
file system. In contrast, Windows associates a separate file system with
each active disk drive.

A file system stores data in files, which are stored in directories. Its file and
directory objects are accessed by specifying paths, which are compact
maps that locate and identify file system objects. Paths are either absolute
or relative:

An absolute path is a path relative to the file system’s
root directory. It’s expressed as the root directory
symbol followed by a delimited hierarchy of directory
names that ends in the target directory or file name.

A relative path is a path relative to some other directory.
It’s expressed similarly to an absolute path but without
the initial root directory symbol. In contrast, it’s often

prefixed with one or more delimited “..” character
sequences, where each sequence refers to a parent
directory.

Paths are specified differently depending on the operating system. For
example, Unix, Linux, and Unix-like operating systems identify the root
directory and delimit path components with a forward slash (/), whereas
Windows uses a backslash (\) for these purposes. Consider two examples:

/users/username/bin
\users\username\bin

Each absolute path accesses the bin subdirectory of the username
subdirectory of the users subdirectory of the root directory. The path on
the first line accesses bin in a Unix/Linux context, whereas the path on the
second line accesses this subdirectory in a Windows context.

Windows and similar operating systems can manage multiple file systems.
Each file system is identified with a drive specifier such as “C:”. When
specifying a path without a drive specifier, the path is relative to the current
file system. Otherwise, it is relative to the specified file system:

\users\username\bin
C:\users\username\bin

The first line accesses the path relative to the current file system, whereas
the second line accesses the path relative to the C: file system.

CHAPTER 1: 1/0 Basics and APIs 5

An instance of the java.io.File class abstracts a file or directory path. This
instance provides access to the file system to perform tasks on this path
such as removing the underlying file or directory. The following example
demonstrates this class:

new File("temp").mkdir();

The example constructs a File object initialized to the file system object
temp. It then calls mkdir () on this File object to make a new directory
named temp.

Chapter 2 explores the File class.

Accessing File Content via RandomAccessFile

File content can be accessed sequentially or randomly. Random access
can speed up searching and sorting capabilities. An instance of the java.
io.RandomAccessFile class provides random access to a file. This capability
is demonstrated in the following example:

RandomAccessFile raf = new RandomAccessFile("employees.dat", "r");
int empIndex = 10;

raf.seek(empIndex * EMP_REC _LEN);

// Read contents of employee record.

In this example, file employees.dat, which is divided into fixed-length
employee records where each record is EMP_REC_LEN bytes long, is being
accessed. The employee record at index 10 (the first record is located at
index 0) is being sought. This task is accomplished by seeking (setting the
file pointer) to the byte location of this record’s first byte, which is located at
the index multiplied by the record length. The record is then accessed.

Chapter 3 explores the RandomAccessFile class.

Streaming Data via Stream Classes

Classic I/0 includes streams for performing 1/O operations. A stream is an
ordered sequence of bytes of arbitrary length. Bytes flow over an output
stream from an application to a destination and flow over an input stream
from a source to an application. Figure 1-1 illustrates these flows.

http://dx.doi.org/10.1007/978-1-4842-1565-4_2
http://dx.doi.org/10.1007/978-1-4842-1565-4_3

6 CHAPTER 1: 1/0 Basics and APIs

application B destination

output stream

read

—

source * % % application

input stream

Figure 1-1. Conceptualizing output and input streams as flows of bytes

Java provides classes in the java.io package that identify various stream
destinations for writing; for example, byte arrays and files. Java also
provides classes in this package that identify various stream sources for
reading. Examples include files and thread pipes.

For example, you would use FileInputStream to open an existing file and
connect an input stream to it. You would then invoke various read()
methods to read bytes from the file over the input stream. Lastly, you would
invoke close() to close the stream and file. Consider the following example:

FileInputStream fis = null;
try
{
fis = new FileInputStream("image.jpg");
// Read bytes from file.
int _byte;
while ((_byte = fis.read()) != -1) // -1 signifies EOF
; // Process _byte in some way.

}
catch (IOException ioe)
{
// Handle exception.
}
finally
{
if (fis != null)
try
{
fis.close();
}

CHAPTER 1: 1/0 Basics and APIs 7

This example demonstrates the traditional way to open a file and create an
input stream for reading bytes from the file. It then goes on to read the file’s
contents. An exception handler takes care of any thrown exceptions, which
are represented by instances of the java.io.I0Exception class.

Whether or not an exception is thrown, the input stream and underlying

file must be closed. This action takes place in the try statement’s finally
block. Because of the verbosity in closing the file, you can alternatively use
JDK 7’s try-with-resources statement to automatically close it, as follows:

try (FileInputStream fis = new FileInputStream("image.jpg"))

// Read bytes from file.
int _byte;
while ((_byte = fis.read()) != -1) // -1 signifies EOF
; // Process _byte in some way.
}

catch (IOException ioe)

{
// Handle exception.

}

| demonstrate both the traditional and try-with-resources approaches to
closing files throughout subsequent chapters.

Some stream classes are used to filter other streams. For example, to
improve performance, BufferedInputStream reads a block of bytes from
another stream and returns bytes from its buffer until the buffer is empty, in
which case it reads another block. Consider the following example:

try (FileInputStream fis = new FileInputStream("image.jpg");
BufferedInputStream bis = new BufferedInputStream(fis))
{

// Read bytes from file.

int _byte;

while ((_byte = bis.read()) != -1) // -1 signifies EOF
; // Process _byte in some way.

}
catch (IOException ioe)

{
}

// Handle exception.

A file input stream that reads from the image. jpg file is created. This stream
is passed to a buffered input stream constructor. Subsequent reads are
performed on the buffered input stream, which calls file input stream read()
methods when appropriate.

Chapter 4 explores the stream classes.

http://dx.doi.org/10.1007/978-1-4842-1565-4_4

8 CHAPTER 1: 1/0 Basics and APIs

Stream Classes and Standard 1/0

Many operating systems support standard I/O, which is preconnected input
and output data streams between a computer program and its environment
when it begins execution. The preconnected streams are known as standard
input, standard output, and standard error.

Standard input defaults to reading its input from the keyboard. Also,
standard output and standard error default to writing their output to the
screen. However, these streams can be redirected to read input from a
different source and write output to a different destination (such as a file).

JDK 1.0 introduced support for standard I/O by adding the in, out, and
err objects of type InputStream and PrintStream to the java.lang.System
class. You specify method calls on these objects to access standard input,
standard output, and standard error, as follows:

int ch = System.in.read(); // Read single character from standard input.
System.out.println("Hello"); // Write string to standard output.

System.err.println("I/0 error: " +
ioe.getMessage()); // Write string to standard error.

As well as exploring InputStream and PrintStream, Chapter 4 also revisits
standard I/0 to show you how to programmatically redirect these streams.

JDK 1.1 and the Writer/Reader Classes

JDK 1.0’s I/O capabilities are suitable for streaming bytes, but cannot
properly stream characters because they don’t account for character
encodings. JDK 1.1 overcame this problem by introducing writer/reader
classes that take character encodings into account. For example, the
java.io package includes FileWriter and FileReader classes for writing
and reading character streams.

Chapter 5 explores various writer and reader classes.

NIO

Modern operating systems offer sophisticated I/O services (such as
readiness selection) for improving 1/0 performance and simplifying 1/0. Java
Specification Request (JSR) 51 (www.jcp.org/en/jsr/detail?id=51) was
created to address these capabilities.

http://dx.doi.org/10.1007/978-1-4842-1565-4_4
http://dx.doi.org/10.1007/978-1-4842-1565-4_5
http://www.jcp.org/en/jsr/detail?id=51

CHAPTER 1: 1/0 Basics and APIs 9

JSR 51’s description indicates that it provides APIs for scalable I/O, fast
buffered binary and character I/O, regular expressions, and charset
conversion. Collectively, these APIs are known as NIO. JDK 1.4 implemented
NIO in terms of the following APIs:

Buffers

Channels

Selectors

Regular expressions
Charsets

The regular expression and charset APIs were provided to simplify common
I/O-related tasks.

Buffers

Buffers are the foundation for NIO operations. Essentially, NIO is all about
moving data into and out of buffers.

A process such as the JVM performs 1/O by asking the operating system to
drain a buffer’s contents to storage via a write operation. Similarly, it asks
the operating system to fill a buffer with data read from a storage device.

Consider a read operation involving a disk drive. The operating system
issues a command to the disk controller to read a block of bytes from a
disk into an operating system buffer. Once this operation completes, the
operating system copies the buffer contents to the buffer specified by the
process when it issued a read() operation. Check out Figure 1-2.

Hardware

Disk

Controller Process

owa rea

Figure 1-2. Filling a buffer at the operating system level

In Figure 1-2, a process has issued a read() call to the operating system.
In turn, the operating system has requested to the disk controller to read
a block of bytes from the disk. The disk controller (also known as a DMA
controller) reads these bytes directly into an operating system buffer via

Direct Memory Access (DMA), a feature of computer systems that allows

10 CHAPTER 1: 1/0 Basics and APIs

certain hardware subsystems to access main system (RAM) memory
independently of the central processing unit (CPU). The operating system
then copies these bytes to the process’s buffer.

Copying bytes from the operating system buffer to the process buffer isn’t
very efficient. It would be more performant to have the DMA controller copy
directly to the process buffer, but there are two problems with this approach:

The DMA controller typically cannot communicate
directly with the user space in which the JVM process
runs. Instead, it communicates with the operating
system’s kernel space.

Block-oriented devices such as a DMA controller work
with fixed-size data blocks. In contrast, the JVM
process might request a size of data that isn’t a multiple
of the block size or that is misaligned.

Because of these problems, the operating system acts as an intermediary,
tearing apart and recombining data as it switches between the JVM process
and the DMA controller.

The data assembly/disassembly tasks can be made more efficient by

letting the JVM process pass a list of buffer addresses to the operating
system in a single system call. The operating system then fills or drains
these buffers in sequence, scattering data to multiple buffers during a read
operation or gathering data from several buffers during a write operation.
This scatter/gather activity reduces the number of (potentially expensive)
system calls that the JVM process must make and lets the operating system
optimize data handling because it knows the total amount of buffer space.
Furthermore, when multiple processors or cores are available, the operating
system may allow buffers to be filled or drained simultaneously.

JDK 1.4’s java.nio.Buffer class abstracts the concept of a JVM process
buffer. It serves as the superclass for java.nio.ByteBuffer and other buffer
classes. Because I/O is fundamentally byte-oriented, only ByteBuffer
instances can be used with channels (which are discussed shortly). Most of
the other Buffer subclasses are conveniences for working with multibyte
data (such as characters or integers).

Chapter 6 explores the Buffer class and its children.

Channels

Forcing a CPU to perform I/O tasks and wait for /0O completions (such a
CPU is said to be I/0 bound) is wasteful of this resource. Performance
can be improved by offloading these tasks to DMA controllers so that the
processor can get on with other work.

https://en.wikipedia.org/wiki/Computer_storage#Computer%20storage
https://en.wikipedia.org/wiki/Central_processing_unit#Central%20processing%20unit
http://dx.doi.org/10.1007/978-1-4842-1565-4_6

CHAPTER 1: 1/0 Basics and APIs 1

A channel serves as a conduit for communicating (via the operating
system) with a DMA controller to efficiently drain byte buffers to or fill byte
buffers from a disk. JDK 1.4’s java.nio.channels.Channel interface, its
subinterfaces, and various classes implement the channel architecture.

One of these classes is called java.nio.channels.FileChannel, and it
abstracts a channel for reading, writing, mapping, and manipulating a file. One
interesting feature of FileChannel is its support for file locking, upon which
sophisticated applications such as database management systems rely.

File locking lets a process prevent or limit access to a file while the process
is accessing the file. Although file locking can be applied to an entire file, it is
often narrowed to a smaller region. A lock ranges from a starting byte offset
in the file and continues for a specific number of bytes.

Another interesting FileChannel feature is memory-mapped file I/0 via the
map () method. map() returns a java.nio.MappedByteBuffer whose content is
a memory-mapped region of a file. File content is accessed via memory
accesses; buffer copies and read-write system calls are eliminated.

You can obtain a channel by calling the java.nio.channels.Channels class’s
methods or the methods in classic I/0O classes such as RandomAccessFile.

Chapter 7 explores Channel, Channels, and more.

Selectors

I/0 is classified as block-oriented or stream-oriented. Reading from or
writing to a file is an example of block-oriented I/O. In contrast, reading from
the keyboard or writing to a network connection is an example of stream-
oriented I/0O.

Stream 1/O is often slower than block I/0O. Furthermore, input tends to be
intermittent. For example, the user might pause while entering a stream of
characters or momentary slowness in a network connection causes a
playing video to proceed in a jerky fashion.

Many operating systems allow streams to be configured to operate in
nonblocking mode in which a thread continually checks for available input
without blocking when no input is available. The thread can handle incoming
data or perform other tasks until data arrives.

This “polling for available input” activity can be wasteful, especially when
the thread needs to monitor many input streams (such as in a web server
context). Modern operating systems can perform this checking efficiently,
which is known as readiness selection, and which is often built on top of
nonblocking mode. The operating system monitors a collection of streams
and returns an indication to the thread of which streams are ready to

http://dx.doi.org/10.1007/978-1-4842-1565-4_7

12 CHAPTER 1: 1/0 Basics and APIs

perform 1/O. As a result, a single thread can multiplex many active streams
via common code and makes it possible, in a web server context, to manage
a huge number of network connections.

JDK 1.4 supports readiness selection by providing selectors, which are
instances of the java.nio.channels.Selector class that can examine one or
more channels and determine which channels are ready for reading or
writing. This way a single thread can manage multiple channels (and,
therefore, multiple network connections) efficiently. Being able to use fewer
threads is advantageous where thread creation and thread context switching
is expensive in terms of performance and/or memory use. See Figure 1-3.

thread

selector

Figure 1-3. A thread manages three channels via a selector

Chapter 8 explores Selector and its related types.

Regular Expressions

Regular expressions were introduced as part of NIO. Although you might
wonder about the rationale for doing this (what have regular expressions got to
do with 1/07?), regular expressions are commonly used to scan textual data that
is read from a file or other source. The need to perform these scans as quickly
as possible mandated their inclusion. JDK 1.4 supports regular expressions via
the java.util.regex package and its Pattern and Matcher classes.

Chapter 9 explores the Pattern and Matcher classes.

http://dx.doi.org/10.1007/978-1-4842-1565-4_8
http://dx.doi.org/10.1007/978-1-4842-1565-4_9

