
Shelve in:
Programming Languages/Java

User level:
Intermediate–Advanced

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Friesen

www.apress.com

Java I/O, NIO and NIO.2
Java I/O, NIO and NIO.2 is a power-packed book that accelerates your mastery of Java’s
various I/O APIs. In this book, you’ll learn about classic I/O APIs (File, RandomAccessFile,
the stream classes and related types, and the reader/writer classes). Next, you’ll learn
about NIO’s buffer, channel, selector, regular expression, charset, and formatter APIs.
Finally, you’ll discover NIO.2’s offerings in terms of an improved file system interface,
asynchronous I/O, and the completion of socket channel functionality.

After reading and using this book, you’ll gain the accelerated knowledge and skill level to
really build applications with efficient data access, especially for today’s cloud computing
streaming data needs. Here are some of the highlights:

• Learn how to set permissions and more with the classic File class
• Learn how to build a flat file database with RandomAccessFile
• Get to know the byte array, file, filter, and other kinds of streams
• Master serialization and externalization
• Discover character streams and their associated writers/readers
• Tour the buffer APIs
• Work with channels to transfer buffers to and from I/O services
• Find out about selectors and readiness selection
• Master regular expressions
• Discover charsets and their association with Java’s String class
• Take advantage of the formatter API to create formatted output
• Learn how to customize the formatter API
• Explore the improved file system interface
• Discover asynchronous I/O and its association with futures and completion handlers
• Encounter socket channel improvements, including multicasting

SOURCE CODE ONLINE 9 781484 215661

54999
ISBN 978-1-4842-1566-1

Java I/O, NIO
and NIO.2

Jeff Friesen

Java I/O, NIO and NIO.2

Copyright © 2015 by Jeff Friesen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1566-1

ISBN-13 (electronic): 978-1-4842-1565-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewers: Vinay Kumar and Wallace Jackson
Editorial Board: Steve Anglin, Louise Corrigan, James T. DeWolf, Jonathan Gennick,

Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott, Matthew
Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing,
Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484215661. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484215661
www.apress.com/source-code/

To my parents.

v

Contents at a
Glance

About the Author���xv

About the Technical Reviewers���xvii

Acknowledgments��xix

Introduction��xxi

■■Part I: Getting Started with I/O���1

■■Chapter 1: I/O Basics and APIs�� 3

■■Part II: Classic I/O APIs��17

■■Chapter 2: File��� 19

■■Chapter 3: RandomAccessFile��� 43

■■Chapter 4: Streams�� 59

■■Chapter 5: Writers and Readers�� 113

■■Part III: New I/O APIs��125

■■Chapter 6: Buffers��� 127

■■Chapter 7: Channels�� 149

Contents at a Glancevi

■■Chapter 8: Selectors�� 203

■■Chapter 9: Regular Expressions�� 215

■■Chapter 10: Charsets��� 231

■■Chapter 11: Formatter��� 243

■■Part IV: More New I/O APIs�� 257

■■Chapter 12: Improved File System Interface������������������������������� 259

■■Chapter 13: Asynchronous I/O��� 387

■■Chapter 14: Completion of Socket Channel Functionality����������� 417

■■Part V: Appendices�� 429

■■Appendix A: Answers to Exercises�� 431

■■Appendix B: Sockets and Network Interfaces����������������������������� 481

Index��� 513

vii

Contents

About the Author���xv

About the Technical Reviewers���xvii

Acknowledgments��xix

Introduction��xxi

■■ Part I: Getting Started with I/O���1

■■Chapter 1: I/O Basics and APIs�� 3

Classic I/O�� 3

File System Access and the File Class�� 3

Accessing File Content via RandomAccessFile��� 5

Streaming Data via Stream Classes�� 5

JDK 1.1 and the Writer/Reader Classes��� 8

NIO�� 8

Buffers��� 9

Channels�� 10

Selectors�� 11

Regular Expressions�� 12

Charsets�� 13

Formatter��� 13

Contentsviii

NIO.2��� 13

Improved File System Interface��� 14

Asynchronous I/O��� 14

Completion of Socket Channel Functionality��� 14

Summary�� 15

■■Part II: Classic I/O APIs��17

■■Chapter 2: File��� 19

Constructing File Instances�� 19

Learning About Stored Abstract Paths�� 22

Learning About a Path’s File or Directory��� 25

Listing File System Root Directories�� 27

Obtaining Disk Space Information�� 28

Listing Directories�� 30

Creating/Modifying Files and Directories��� 33

Setting and Getting Permissions�� 37

Exploring Miscellaneous Capabilities��� 39

Summary�� 42

■■Chapter 3: RandomAccessFile��� 43

Exploring RandomAccessFile��� 43

Using RandomAccessFile��� 49

Summary�� 57

■■Chapter 4: Streams�� 59

Stream Classes Overview�� 59

Touring the Stream Classes��� 61

OutputStream and InputStream��� 61

ByteArrayOutputStream and ByteArrayInputStream�� 64

FileOutputStream and FileInputStream��� 67

Contents

ix

PipedOutputStream and PipedInputStream��� 71

FilterOutputStream and FilterInputStream�� 75

BufferedOutputStream and BufferedInputStream��� 84

DataOutputStream and DataInputStream�� 86

Object Serialization and Deserialization�� 88

PrintStream��� 104

Revisiting Standard I/O��� 107

Summary�� 111

■■Chapter 5: Writers and Readers�� 113

Writer and Reader Classes Overview��� 114

Writer and Reader�� 116

OutputStreamWriter and InputStreamReader�������������������������������������� 117

FileWriter and FileReader��� 119

BufferedWriter and BufferedReader��� 121

Summary�� 124

■■Part III: New I/O APIs��125

■■Chapter 6: Buffers��� 127

Introducing Buffers��� 127

Buffer and its Children��� 128

Buffers in Depth��� 133

Buffer Creation�� 133

Buffer Writing and Reading��� 136

Flipping Buffers��� 139

Marking Buffers��� 141

Buffer Subclass Operations��� 142

Byte Ordering��� 143

Direct Byte Buffers�� 145

Summary�� 147

Contentsx

■■Chapter 7: Channels�� 149

Introducing Channels��� 149

Channel and Its Children�� 149

Channels in Depth�� 155

Scatter/Gather I/O�� 155

File Channels��� 158

Socket Channels�� 179

Pipes�� 195

Summary�� 201

■■Chapter 8: Selectors�� 203

Selector Fundamentals�� 204

Selector Demonstration�� 209

Summary�� 214

■■Chapter 9: Regular Expressions�� 215

Pattern, PatternSyntaxException, and Matcher������������������������������������ 215

Character Classes�� 221

Capturing Groups��� 223

Boundary Matchers and Zero-Length Matches������������������������������������ 224

Quantifiers�� 225

Practical Regular Expressions�� 228

Summary�� 230

■■Chapter 10: Charsets��� 231

A Brief Review of the Fundamentals�� 231

Working with Charsets��� 232

Charsets and the String Class�� 239

Summary�� 241

Contents

xi

■■Chapter 11: Formatter��� 243

Exploring Formatter�� 243

Exploring Formattable and FormattableFlags�������������������������������������� 249

Summary�� 255

■■Part IV: More New I/O APIs���257

■■Chapter 12: Improved File System Interface������������������������������� 259

Architecting a Better File Class�� 259

File Systems and File System Providers�� 261

Locating Files with Paths��� 263

Getting a Path and Accessing Its Name Elements��� 264

Relative and Absolute Paths�� 267

Normalization, Relativization, and Resolution��� 269

Additional Capabilities��� 271

Performing File System Tasks with Files�� 273

Accessing File Stores�� 273

Managing Attributes�� 276

Managing Files and Directories��� 305

Managing Symbolic and Hard Links�� 343

Walking the File Tree��� 351

Working with Additional Capabilities��� 370

Using Path Matchers and Watch Services�� 373

Matching Paths�� 374

Watching Directories��� 377

Summary�� 386

■■Chapter 13: Asynchronous I/O��� 387

Asynchronous I/O Overview��� 388

Asynchronous File Channels�� 390

Contentsxii

Asynchronous Socket Channels��� 395

AsynchronousServerSocketChannel�� 396

AsynchronousSocketChannel�� 403

Asynchronous Channel Groups�� 410

What About AsynchronousFileChannel?�� 413

Summary�� 415

■■Chapter 14: Completion of Socket Channel Functionality����������� 417

Binding and Option Configuration�� 417

Channel-Based Multicasting�� 422

Summary�� 428

■■Part V: Appendices���429

■■Appendix A: Answers to Exercises�� 431

Chapter 1: I/O Basics and APIs��� 431

Chapter 2: File�� 432

Chapter 3: RandomAccessFile�� 435

Chapter 4: Streams��� 436

Chapter 5: Writers and Readers��� 444

Chapter 6: Buffers�� 446

Chapter 7: Channels��� 449

Chapter 8: Selectors��� 453

Chapter 9: Regular Expressions��� 453

Chapter 10: Charsets�� 455

Chapter 11: Formatter�� 457

Chapter 12: Improved File System Interface�� 458

Chapter 13: Asynchronous I/O�� 471

Chapter 14: Completion of Socket Channel Functionality�������������������� 475

Contents

xiii

■■Appendix B: Sockets and Network Interfaces����������������������������� 481

Sockets��� 482

Socket Addresses�� 484

Socket Options�� 486

Socket and ServerSocket�� 488

DatagramSocket and MulticastSocket�� 495

Network Interfaces��� 503

Using Network Interfaces with Sockets��� 511

Index��� 513

xv

About the Author
Jeff Friesen is a freelance tutor and software
developer with an emphasis on Java. In
addition to authoring Learn Java for Android
Development and co-authoring Android
Recipes, Jeff has written numerous articles
on Java and other technologies for JavaWorld
(JavaWorld.com), InformIT (InformIT.com),
Java.net and DevSource (DevSource.com).
Jeff can be contacted via his website at
TutorTutor.ca.

http://JavaWorld.com
http:\\InformIT.com
http://DevSource.com
http://TutorTutor.ca

xvii

About the Technical
Reviewers

Vinay Kumar is a Technology Evangelist.
He has extensive experience of 8+ years
in designing and implementing large scale
projects in Enterprise Technologies in various
consulting and system Integration Companies.
His passion helped him achieve certifications in
Oracle ADF, Webcenter Portal and Java/JEE.
Experience and in-depth knowledge has
helped him evolve into a focused domain
expert and a well-known technical blogger.
He loves to spend his time in mentoring and
writing technical blogs, publishing white papers
and maintaining a dedicated education channel

at YouTube for the ADF/ Webcenter. He has experience in Java, JEE and
various open stack technologies as well. Vinay has been contributing to the
Java/Oracle ADF/Webcenter community by publishing 300+ technical articles
at his personal blog www.techartifact.com. He was awarded an Oracle
ACE in June 2014. You can follow him at @vinaykuma201 or in.linkedin.com/
in/vinaykumar2.

http://www.techartifact.com
http://@vinaykuma201
http://in.linkedin.com/in/vinaykumar2
http://in.linkedin.com/in/vinaykumar2

About the Technical Reviewersxviii

Wallace Jackson has been writing for leading
multimedia publications about his work in new
media content development since the advent
of Multimedia Producer Magazine nearly two
decades ago. He has authored a half-dozen
Android book titles for Apress, including four
titles in the popular Pro Android series. Wallace
received his undergraduate degree in Business
Economics from the University of California at
Los Angeles (UCLA) and a graduate degree
in MIS Design and Implementation from the
University of Southern California (USC). He is
currently the CEO of Mind Taffy Design, a new
media content production and digital campaign
design and development agency.

xix

Acknowledgments

I have many people to thank for assisting me in the development of this
book. I especially thank Steve Anglin for asking me to write it and Mark
Powers for guiding me through the writing process.

xxi

Introduction

Input/output (I/O) is not a sexy subject, but it’s an important part of
non-trivial applications. This book introduces you to most of Java’s I/O
capabilities as of Java 8 update 51.

Chapter 1 presents a broad overview of I/O in terms of Java’s classic I/O,
New I/O (NIO), and NIO.2 categories. You learn what each category offers in
terms of its capabilities, and you also learn about concepts such as paths
and Direct Memory Access.

Chapters 2 through 5 cover classic I/O APIs. You learn about the File and
RandomAccessFile classes along with streams (including object serialization
and externalization) and writers/readers.

Chapters 6 through 11 focus on NIO. You explore buffers, channels,
selectors, regular expressions, charsets, and formatters. (Formatters were
not introduced with the other NIO types in Java 1.4 because they depend on
the variable arguments capability that was introduced in Java 5.)

NIO is missing several features, which were subsequently provided by
NIO.2. Chapters 12 through 14 cover NIO.2’s improved file system interface,
asynchronous I/O, and the completion of socket channel functionality.

Each chapter ends with assorted exercises that are designed to help you
master its content. Along with long answers and true/false questions, you
are often confronted with programming exercises. Appendix A provides the
answers and solutions.

Appendix B provides a tutorial on sockets and network interfaces. Although
not directly related to classic I/O, NIO, and NIO.2, they leverage I/O
capabilities and are mentioned elsewhere in this book.

Introductionxxii

Thanks for purchasing this book. I hope you find it helpful in understanding
classic I/O, NIO, and NIO.2.

—Jeff Friesen (September 2015)

Note  I briefly use Java 8’s lambda expression and method reference
language features and also use Java 8’s Streams API in some examples,
but don’t provide a tutorial on them. You’ll need to look elsewhere for that
knowledge.

Note  You can download this book’s source code by pointing your web
browser to www.apress.com/9781484215661 and clicking the Source
Code tab followed by the Download Now link.

www.apress.com/9781484215661

1

Part I
Getting Started with I/O

3

Chapter 1
I/O Basics and APIs
Input and output (I/O) facilities are fundamental parts of operating systems
along with computer languages and their libraries. All but trivial computer
programs perform some kind of input and/or output operations.

Java has always supported I/O. Its initial suite of I/O APIs and related
architecture are known as classic I/O. Because modern operating systems
feature newer I/O paradigms, which classic I/O doesn’t support, new I/O
(NIO) was introduced as part of JDK 1.4 to support them. Lack of time
prevented some planned NIO features from being included in this release,
which led to these other NIO features being deferred to JDK 5 and JDK 7.

This chapter introduces you to classic I/O, NIO, and more NIO (NIO.2).
You learn about the basic I/O features they address. Also, you receive an
overview of their APIs. Subsequent chapters dig deeper into these APIs.

Classic I/O
JDK 1.0 introduced rudimentary I/O facilities for accessing the file system
(to create a directory, remove a file, or perform another task), accessing file
content randomly (as opposed to sequentially), and streaming byte-oriented
data between sources and destinations in a sequential manner.

File System Access and the File Class
A file system is an operating system component that manages data storage
and subsequent retrieval. Operating systems on which a Java virtual
machine (JVM) runs support at least one file system. For example, Unix or

CHAPTER 1: I/O Basics and APIs4

Linux combines all mounted (attached and prepared) disks into one virtual
file system. In contrast, Windows associates a separate file system with
each active disk drive.

A file system stores data in files, which are stored in directories. Its file and
directory objects are accessed by specifying paths, which are compact
maps that locate and identify file system objects. Paths are either absolute
or relative:

	An absolute path is a path relative to the file system’s
root directory. It’s expressed as the root directory
symbol followed by a delimited hierarchy of directory
names that ends in the target directory or file name.

	A relative path is a path relative to some other directory.
It’s expressed similarly to an absolute path but without
the initial root directory symbol. In contrast, it’s often
prefixed with one or more delimited “..” character
sequences, where each sequence refers to a parent
directory.

Paths are specified differently depending on the operating system. For
example, Unix, Linux, and Unix-like operating systems identify the root
directory and delimit path components with a forward slash (/), whereas
Windows uses a backslash (\) for these purposes. Consider two examples:

/users/username/bin
\users\username\bin

Each absolute path accesses the bin subdirectory of the username
subdirectory of the users subdirectory of the root directory. The path on
the first line accesses bin in a Unix/Linux context, whereas the path on the
second line accesses this subdirectory in a Windows context.

Windows and similar operating systems can manage multiple file systems.
Each file system is identified with a drive specifier such as “C:”. When
specifying a path without a drive specifier, the path is relative to the current
file system. Otherwise, it is relative to the specified file system:

\users\username\bin
C:\users\username\bin

The first line accesses the path relative to the current file system, whereas
the second line accesses the path relative to the C: file system.

CHAPTER 1: I/O Basics and APIs

5

An instance of the java.io.File class abstracts a file or directory path. This
instance provides access to the file system to perform tasks on this path
such as removing the underlying file or directory. The following example
demonstrates this class:

new File("temp").mkdir();

The example constructs a File object initialized to the file system object
temp. It then calls mkdir() on this File object to make a new directory
named temp.

Chapter 2 explores the File class.

Accessing File Content via RandomAccessFile
File content can be accessed sequentially or randomly. Random access
can speed up searching and sorting capabilities. An instance of the java.
io.RandomAccessFile class provides random access to a file. This capability
is demonstrated in the following example:

RandomAccessFile raf = new RandomAccessFile("employees.dat", "r");
int empIndex = 10;
raf.seek(empIndex * EMP_REC_LEN);
// Read contents of employee record.

In this example, file employees.dat, which is divided into fixed-length
employee records where each record is EMP_REC_LEN bytes long, is being
accessed. The employee record at index 10 (the first record is located at
index 0) is being sought. This task is accomplished by seeking (setting the
file pointer) to the byte location of this record’s first byte, which is located at
the index multiplied by the record length. The record is then accessed.

Chapter 3 explores the RandomAccessFile class.

Streaming Data via Stream Classes
Classic I/O includes streams for performing I/O operations. A stream is an
ordered sequence of bytes of arbitrary length. Bytes flow over an output
stream from an application to a destination and flow over an input stream
from a source to an application. Figure 1-1 illustrates these flows.

http://dx.doi.org/10.1007/978-1-4842-1565-4_2
http://dx.doi.org/10.1007/978-1-4842-1565-4_3

CHAPTER 1: I/O Basics and APIs6

Java provides classes in the java.io package that identify various stream
destinations for writing; for example, byte arrays and files. Java also
provides classes in this package that identify various stream sources for
reading. Examples include files and thread pipes.

For example, you would use FileInputStream to open an existing file and
connect an input stream to it. You would then invoke various read()
methods to read bytes from the file over the input stream. Lastly, you would
invoke close() to close the stream and file. Consider the following example:

FileInputStream fis = null;
try
{
 fis = new FileInputStream("image.jpg");
 // Read bytes from file.
 int _byte;
 while ((_byte = fis.read()) != -1) // -1 signifies EOF
 ; // Process _byte in some way.
}
catch (IOException ioe)
{
 // Handle exception.
}
finally
{
 if (fis != null)
 try
 {
 fis.close();
 }
}

application

source

read

write

output stream

input stream

application

destination*

* * *

* *

Figure 1-1.  Conceptualizing output and input streams as flows of bytes

CHAPTER 1: I/O Basics and APIs

7

This example demonstrates the traditional way to open a file and create an
input stream for reading bytes from the file. It then goes on to read the file’s
contents. An exception handler takes care of any thrown exceptions, which
are represented by instances of the java.io.IOException class.

Whether or not an exception is thrown, the input stream and underlying
file must be closed. This action takes place in the try statement’s finally
block. Because of the verbosity in closing the file, you can alternatively use
JDK 7’s try-with-resources statement to automatically close it, as follows:

try (FileInputStream fis = new FileInputStream("image.jpg"))
{
 // Read bytes from file.
 int _byte;
 while ((_byte = fis.read()) != -1) // -1 signifies EOF
 ; // Process _byte in some way.
}
catch (IOException ioe)
{
 // Handle exception.
}

I demonstrate both the traditional and try-with-resources approaches to
closing files throughout subsequent chapters.

Some stream classes are used to filter other streams. For example, to
improve performance, BufferedInputStream reads a block of bytes from
another stream and returns bytes from its buffer until the buffer is empty, in
which case it reads another block. Consider the following example:

try (FileInputStream fis = new FileInputStream("image.jpg");
 BufferedInputStream bis = new BufferedInputStream(fis))
{
 // Read bytes from file.
 int _byte;
 while ((_byte = bis.read()) != -1) // -1 signifies EOF
 ; // Process _byte in some way.
}
catch (IOException ioe)
{
 // Handle exception.
}

A file input stream that reads from the image.jpg file is created. This stream
is passed to a buffered input stream constructor. Subsequent reads are
performed on the buffered input stream, which calls file input stream read()
methods when appropriate.

Chapter 4 explores the stream classes.

http://dx.doi.org/10.1007/978-1-4842-1565-4_4

CHAPTER 1: I/O Basics and APIs8

Stream Classes and Standard I/O
Many operating systems support standard I/O, which is preconnected input
and output data streams between a computer program and its environment
when it begins execution. The preconnected streams are known as standard
input, standard output, and standard error.

Standard input defaults to reading its input from the keyboard. Also,
standard output and standard error default to writing their output to the
screen. However, these streams can be redirected to read input from a
different source and write output to a different destination (such as a file).

JDK 1.0 introduced support for standard I/O by adding the in, out, and
err objects of type InputStream and PrintStream to the java.lang.System
class. You specify method calls on these objects to access standard input,
standard output, and standard error, as follows:

int ch = System.in.read(); // Read single character from standard input.
System.out.println("Hello"); // Write string to standard output.
System.err.println("I/O error: " +
 ioe.getMessage()); // Write string to standard error.

As well as exploring InputStream and PrintStream, Chapter 4 also revisits
standard I/O to show you how to programmatically redirect these streams.

JDK 1.1 and the Writer/Reader Classes
JDK 1.0’s I/O capabilities are suitable for streaming bytes, but cannot
properly stream characters because they don’t account for character
encodings. JDK 1.1 overcame this problem by introducing writer/reader
classes that take character encodings into account. For example, the
java.io package includes FileWriter and FileReader classes for writing
and reading character streams.

Chapter 5 explores various writer and reader classes.

NIO
Modern operating systems offer sophisticated I/O services (such as
readiness selection) for improving I/O performance and simplifying I/O. Java
Specification Request (JSR) 51 (www.jcp.org/en/jsr/detail?id=51) was
created to address these capabilities.

http://dx.doi.org/10.1007/978-1-4842-1565-4_4
http://dx.doi.org/10.1007/978-1-4842-1565-4_5
http://www.jcp.org/en/jsr/detail?id=51

CHAPTER 1: I/O Basics and APIs

9

JSR 51’s description indicates that it provides APIs for scalable I/O, fast
buffered binary and character I/O, regular expressions, and charset
conversion. Collectively, these APIs are known as NIO. JDK 1.4 implemented
NIO in terms of the following APIs:

	Buffers

	Channels

	Selectors

	Regular expressions

	Charsets

The regular expression and charset APIs were provided to simplify common
I/O-related tasks.

Buffers
Buffers are the foundation for NIO operations. Essentially, NIO is all about
moving data into and out of buffers.

A process such as the JVM performs I/O by asking the operating system to
drain a buffer’s contents to storage via a write operation. Similarly, it asks
the operating system to fill a buffer with data read from a storage device.

Consider a read operation involving a disk drive. The operating system
issues a command to the disk controller to read a block of bytes from a
disk into an operating system buffer. Once this operation completes, the
operating system copies the buffer contents to the buffer specified by the
process when it issued a read() operation. Check out Figure 1-2.

Disk

Hardware

Buffer Process

Buffer
DMA read()

Disk
Controller

Figure 1-2.  Filling a buffer at the operating system level

In Figure 1-2, a process has issued a read() call to the operating system.
In turn, the operating system has requested to the disk controller to read
a block of bytes from the disk. The disk controller (also known as a DMA
controller) reads these bytes directly into an operating system buffer via
Direct Memory Access (DMA), a feature of computer systems that allows

CHAPTER 1: I/O Basics and APIs10

certain hardware subsystems to access main system (RAM) memory
independently of the central processing unit (CPU). The operating system
then copies these bytes to the process’s buffer.

Copying bytes from the operating system buffer to the process buffer isn’t
very efficient. It would be more performant to have the DMA controller copy
directly to the process buffer, but there are two problems with this approach:

	The DMA controller typically cannot communicate
directly with the user space in which the JVM process
runs. Instead, it communicates with the operating
system’s kernel space.

	Block-oriented devices such as a DMA controller work
with fixed-size data blocks. In contrast, the JVM
process might request a size of data that isn’t a multiple
of the block size or that is misaligned.

Because of these problems, the operating system acts as an intermediary,
tearing apart and recombining data as it switches between the JVM process
and the DMA controller.

The data assembly/disassembly tasks can be made more efficient by
letting the JVM process pass a list of buffer addresses to the operating
system in a single system call. The operating system then fills or drains
these buffers in sequence, scattering data to multiple buffers during a read
operation or gathering data from several buffers during a write operation.
This scatter/gather activity reduces the number of (potentially expensive)
system calls that the JVM process must make and lets the operating system
optimize data handling because it knows the total amount of buffer space.
Furthermore, when multiple processors or cores are available, the operating
system may allow buffers to be filled or drained simultaneously.

JDK 1.4’s java.nio.Buffer class abstracts the concept of a JVM process
buffer. It serves as the superclass for java.nio.ByteBuffer and other buffer
classes. Because I/O is fundamentally byte-oriented, only ByteBuffer
instances can be used with channels (which are discussed shortly). Most of
the other Buffer subclasses are conveniences for working with multibyte
data (such as characters or integers).

Chapter 6 explores the Buffer class and its children.

Channels
Forcing a CPU to perform I/O tasks and wait for I/O completions (such a
CPU is said to be I/O bound) is wasteful of this resource. Performance
can be improved by offloading these tasks to DMA controllers so that the
processor can get on with other work.

https://en.wikipedia.org/wiki/Computer_storage#Computer%20storage
https://en.wikipedia.org/wiki/Central_processing_unit#Central%20processing%20unit
http://dx.doi.org/10.1007/978-1-4842-1565-4_6

CHAPTER 1: I/O Basics and APIs

11

A channel serves as a conduit for communicating (via the operating
system) with a DMA controller to efficiently drain byte buffers to or fill byte
buffers from a disk. JDK 1.4’s java.nio.channels.Channel interface, its
subinterfaces, and various classes implement the channel architecture.

One of these classes is called java.nio.channels.FileChannel, and it
abstracts a channel for reading, writing, mapping, and manipulating a file. One
interesting feature of FileChannel is its support for file locking, upon which
sophisticated applications such as database management systems rely.

File locking lets a process prevent or limit access to a file while the process
is accessing the file. Although file locking can be applied to an entire file, it is
often narrowed to a smaller region. A lock ranges from a starting byte offset
in the file and continues for a specific number of bytes.

Another interesting FileChannel feature is memory-mapped file I/O via the
map() method. map() returns a java.nio.MappedByteBuffer whose content is
a memory-mapped region of a file. File content is accessed via memory
accesses; buffer copies and read-write system calls are eliminated.

You can obtain a channel by calling the java.nio.channels.Channels class’s
methods or the methods in classic I/O classes such as RandomAccessFile.

Chapter 7 explores Channel, Channels, and more.

Selectors
I/O is classified as block-oriented or stream-oriented. Reading from or
writing to a file is an example of block-oriented I/O. In contrast, reading from
the keyboard or writing to a network connection is an example of stream-
oriented I/O.

Stream I/O is often slower than block I/O. Furthermore, input tends to be
intermittent. For example, the user might pause while entering a stream of
characters or momentary slowness in a network connection causes a
playing video to proceed in a jerky fashion.

Many operating systems allow streams to be configured to operate in
nonblocking mode in which a thread continually checks for available input
without blocking when no input is available. The thread can handle incoming
data or perform other tasks until data arrives.

This “polling for available input” activity can be wasteful, especially when
the thread needs to monitor many input streams (such as in a web server
context). Modern operating systems can perform this checking efficiently,
which is known as readiness selection, and which is often built on top of
nonblocking mode. The operating system monitors a collection of streams
and returns an indication to the thread of which streams are ready to

http://dx.doi.org/10.1007/978-1-4842-1565-4_7

CHAPTER 1: I/O Basics and APIs12

perform I/O. As a result, a single thread can multiplex many active streams
via common code and makes it possible, in a web server context, to manage
a huge number of network connections.

JDK 1.4 supports readiness selection by providing selectors, which are
instances of the java.nio.channels.Selector class that can examine one or
more channels and determine which channels are ready for reading or
writing. This way a single thread can manage multiple channels (and,
therefore, multiple network connections) efficiently. Being able to use fewer
threads is advantageous where thread creation and thread context switching
is expensive in terms of performance and/or memory use. See Figure 1-3.

Chapter 8 explores Selector and its related types.

Regular Expressions
Regular expressions were introduced as part of NIO. Although you might
wonder about the rationale for doing this (what have regular expressions got to
do with I/O?), regular expressions are commonly used to scan textual data that
is read from a file or other source. The need to perform these scans as quickly
as possible mandated their inclusion. JDK 1.4 supports regular expressions via
the java.util.regex package and its Pattern and Matcher classes.

Chapter 9 explores the Pattern and Matcher classes.

channel

selector

thread

channel channel

Figure 1-3.  A thread manages three channels via a selector

http://dx.doi.org/10.1007/978-1-4842-1565-4_8
http://dx.doi.org/10.1007/978-1-4842-1565-4_9

