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•  Learn how to set permissions and more with the classic File class
•  Learn how to build a flat file database with RandomAccessFile
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Introduction

Input/output (I/O) is not a sexy subject, but it’s an important part of 
non-trivial applications. This book introduces you to most of Java’s I/O 
capabilities as of Java 8 update 51.

Chapter 1 presents a broad overview of I/O in terms of Java’s classic I/O, 
New I/O (NIO), and NIO.2 categories. You learn what each category offers in 
terms of its capabilities, and you also learn about concepts such as paths 
and Direct Memory Access.

Chapters 2 through 5 cover classic I/O APIs. You learn about the File and 
RandomAccessFile classes along with streams (including object serialization 
and externalization) and writers/readers.

Chapters 6 through 11 focus on NIO. You explore buffers, channels, 
selectors, regular expressions, charsets, and formatters. (Formatters were 
not introduced with the other NIO types in Java 1.4 because they depend on 
the variable arguments capability that was introduced in Java 5.)

NIO is missing several features, which were subsequently provided by 
NIO.2. Chapters 12 through 14 cover NIO.2’s improved file system interface, 
asynchronous I/O, and the completion of socket channel functionality.

Each chapter ends with assorted exercises that are designed to help you 
master its content. Along with long answers and true/false questions, you 
are often confronted with programming exercises. Appendix A provides the 
answers and solutions.

Appendix B provides a tutorial on sockets and network interfaces. Although 
not directly related to classic I/O, NIO, and NIO.2, they leverage I/O 
capabilities and are mentioned elsewhere in this book.
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Thanks for purchasing this book. I hope you find it helpful in understanding 
classic I/O, NIO, and NIO.2.

—Jeff Friesen (September 2015)

Note  I briefly use Java 8’s lambda expression and method reference 
language features and also use Java 8’s Streams API in some examples, 
but don’t provide a tutorial on them. You’ll need to look elsewhere for that 
knowledge.

Note  You can download this book’s source code by pointing your web 
browser to www.apress.com/9781484215661 and clicking the Source 
Code tab followed by the Download Now link.

www.apress.com/9781484215661
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Chapter 1
I/O Basics and APIs
Input and output (I/O) facilities are fundamental parts of operating systems 
along with computer languages and their libraries. All but trivial computer 
programs perform some kind of input and/or output operations.

Java has always supported I/O. Its initial suite of I/O APIs and related 
architecture are known as classic I/O. Because modern operating systems 
feature newer I/O paradigms, which classic I/O doesn’t support, new I/O 
(NIO) was introduced as part of JDK 1.4 to support them. Lack of time 
prevented some planned NIO features from being included in this release, 
which led to these other NIO features being deferred to JDK 5 and JDK 7.

This chapter introduces you to classic I/O, NIO, and more NIO (NIO.2). 
You learn about the basic I/O features they address. Also, you receive an 
overview of their APIs. Subsequent chapters dig deeper into these APIs.

Classic I/O
JDK 1.0 introduced rudimentary I/O facilities for accessing the file system 
(to create a directory, remove a file, or perform another task), accessing file 
content randomly (as opposed to sequentially), and streaming byte-oriented 
data between sources and destinations in a sequential manner.

File System Access and the File Class
A file system is an operating system component that manages data storage 
and subsequent retrieval. Operating systems on which a Java virtual 
machine (JVM) runs support at least one file system. For example, Unix or 
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Linux combines all mounted (attached and prepared) disks into one virtual 
file system. In contrast, Windows associates a separate file system with 
each active disk drive.

A file system stores data in files, which are stored in directories. Its file and 
directory objects are accessed by specifying paths, which are compact 
maps that locate and identify file system objects. Paths are either absolute 
or relative:

	An absolute path is a path relative to the file system’s 
root directory. It’s expressed as the root directory 
symbol followed by a delimited hierarchy of directory 
names that ends in the target directory or file name.

	A relative path is a path relative to some other directory. 
It’s expressed similarly to an absolute path but without 
the initial root directory symbol. In contrast, it’s often 
prefixed with one or more delimited “..” character 
sequences, where each sequence refers to a parent 
directory.

Paths are specified differently depending on the operating system. For 
example, Unix, Linux, and Unix-like operating systems identify the root 
directory and delimit path components with a forward slash (/), whereas 
Windows uses a backslash (\) for these purposes. Consider two examples:

/users/username/bin
\users\username\bin

Each absolute path accesses the bin subdirectory of the username 
subdirectory of the users subdirectory of the root directory. The path on 
the first line accesses bin in a Unix/Linux context, whereas the path on the 
second line accesses this subdirectory in a Windows context.

Windows and similar operating systems can manage multiple file systems. 
Each file system is identified with a drive specifier such as “C:”. When 
specifying a path without a drive specifier, the path is relative to the current 
file system. Otherwise, it is relative to the specified file system:

\users\username\bin
C:\users\username\bin

The first line accesses the path relative to the current file system, whereas 
the second line accesses the path relative to the C: file system.
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An instance of the java.io.File class abstracts a file or directory path. This 
instance provides access to the file system to perform tasks on this path 
such as removing the underlying file or directory. The following example 
demonstrates this class:

new File("temp").mkdir();

The example constructs a File object initialized to the file system object 
temp. It then calls mkdir() on this File object to make a new directory 
named temp.

Chapter 2 explores the File class.

Accessing File Content via RandomAccessFile
File content can be accessed sequentially or randomly. Random access 
can speed up searching and sorting capabilities. An instance of the java.
io.RandomAccessFile class provides random access to a file. This capability 
is demonstrated in the following example:

RandomAccessFile raf = new RandomAccessFile("employees.dat", "r");
int empIndex = 10;
raf.seek(empIndex * EMP_REC_LEN);
// Read contents of employee record.

In this example, file employees.dat, which is divided into fixed-length 
employee records where each record is EMP_REC_LEN bytes long, is being 
accessed. The employee record at index 10 (the first record is located at 
index 0) is being sought. This task is accomplished by seeking (setting the 
file pointer) to the byte location of this record’s first byte, which is located at 
the index multiplied by the record length. The record is then accessed.

Chapter 3 explores the RandomAccessFile class.

Streaming Data via Stream Classes
Classic I/O includes streams for performing I/O operations. A stream is an 
ordered sequence of bytes of arbitrary length. Bytes flow over an output 
stream from an application to a destination and flow over an input stream 
from a source to an application. Figure 1-1 illustrates these flows.

http://dx.doi.org/10.1007/978-1-4842-1565-4_2
http://dx.doi.org/10.1007/978-1-4842-1565-4_3
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Java provides classes in the java.io package that identify various stream 
destinations for writing; for example, byte arrays and files. Java also 
provides classes in this package that identify various stream sources for 
reading. Examples include files and thread pipes.

For example, you would use FileInputStream to open an existing file and  
connect an input stream to it. You would then invoke various read() 
methods to read bytes from the file over the input stream. Lastly, you would 
invoke close() to close the stream and file. Consider the following example:

FileInputStream fis = null;
try
{
   fis = new FileInputStream("image.jpg");
   // Read bytes from file.
   int _byte;
   while ((_byte = fis.read()) != -1) // -1 signifies EOF
      ; // Process _byte in some way.
}
catch (IOException ioe)
{
   // Handle exception.
}
finally
{
   if (fis != null)
      try
      {
         fis.close();
      }
}

application

source

read

write

output stream

input stream

application

destination*

* * *

* *

Figure 1-1.  Conceptualizing output and input streams as flows of bytes
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This example demonstrates the traditional way to open a file and create an 
input stream for reading bytes from the file. It then goes on to read the file’s 
contents. An exception handler takes care of any thrown exceptions, which 
are represented by instances of the java.io.IOException class.

Whether or not an exception is thrown, the input stream and underlying 
file must be closed. This action takes place in the try statement’s finally 
block. Because of the verbosity in closing the file, you can alternatively use 
JDK 7’s try-with-resources statement to automatically close it, as follows:

try (FileInputStream fis = new FileInputStream("image.jpg"))
{
   // Read bytes from file.
   int _byte;
   while ((_byte = fis.read()) != -1) // -1 signifies EOF
      ; // Process _byte in some way.
}
catch (IOException ioe)
{
   // Handle exception.
}

I demonstrate both the traditional and try-with-resources approaches to 
closing files throughout subsequent chapters.

Some stream classes are used to filter other streams. For example, to 
improve performance, BufferedInputStream reads a block of bytes from 
another stream and returns bytes from its buffer until the buffer is empty, in 
which case it reads another block. Consider the following example:

try (FileInputStream fis = new FileInputStream("image.jpg");
     BufferedInputStream bis = new BufferedInputStream(fis))
{
   // Read bytes from file.
   int _byte;
   while ((_byte = bis.read()) != -1) // -1 signifies EOF
      ; // Process _byte in some way.
}
catch (IOException ioe)
{
   // Handle exception.
}

A file input stream that reads from the image.jpg file is created. This stream 
is passed to a buffered input stream constructor. Subsequent reads are 
performed on the buffered input stream, which calls file input stream read() 
methods when appropriate.

Chapter 4 explores the stream classes.

http://dx.doi.org/10.1007/978-1-4842-1565-4_4
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Stream Classes and Standard I/O
Many operating systems support standard I/O, which is preconnected input 
and output data streams between a computer program and its environment 
when it begins execution. The preconnected streams are known as standard 
input, standard output, and standard error.

Standard input defaults to reading its input from the keyboard. Also, 
standard output and standard error default to writing their output to the 
screen. However, these streams can be redirected to read input from a 
different source and write output to a different destination (such as a file).

JDK 1.0 introduced support for standard I/O by adding the in, out, and 
err objects of type InputStream and PrintStream to the java.lang.System 
class. You specify method calls on these objects to access standard input, 
standard output, and standard error, as follows:

int ch = System.in.read(); // Read single character from standard input.
System.out.println("Hello"); // Write string to standard output.
System.err.println("I/O error: " +
                   ioe.getMessage()); // Write string to standard error.

As well as exploring InputStream and PrintStream, Chapter 4 also revisits 
standard I/O to show you how to programmatically redirect these streams.

JDK 1.1 and the Writer/Reader Classes
JDK 1.0’s I/O capabilities are suitable for streaming bytes, but cannot 
properly stream characters because they don’t account for character 
encodings. JDK 1.1 overcame this problem by introducing writer/reader 
classes that take character encodings into account. For example, the  
java.io package includes FileWriter and FileReader classes for writing 
and reading character streams.

Chapter 5 explores various writer and reader classes.

NIO
Modern operating systems offer sophisticated I/O services (such as 
readiness selection) for improving I/O performance and simplifying I/O. Java 
Specification Request (JSR) 51 (www.jcp.org/en/jsr/detail?id=51) was 
created to address these capabilities.

http://dx.doi.org/10.1007/978-1-4842-1565-4_4
http://dx.doi.org/10.1007/978-1-4842-1565-4_5
http://www.jcp.org/en/jsr/detail?id=51
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JSR 51’s description indicates that it provides APIs for scalable I/O, fast  
buffered binary and character I/O, regular expressions, and charset 
conversion. Collectively, these APIs are known as NIO. JDK 1.4 implemented 
NIO in terms of the following APIs:

	Buffers

	Channels

	Selectors

	Regular expressions

	Charsets

The regular expression and charset APIs were provided to simplify common 
I/O-related tasks.

Buffers
Buffers are the foundation for NIO operations. Essentially, NIO is all about 
moving data into and out of buffers.

A process such as the JVM performs I/O by asking the operating system to 
drain a buffer’s contents to storage via a write operation. Similarly, it asks 
the operating system to fill a buffer with data read from a storage device.

Consider a read operation involving a disk drive. The operating system 
issues a command to the disk controller to read a block of bytes from a 
disk into an operating system buffer. Once this operation completes, the 
operating system copies the buffer contents to the buffer specified by the 
process when it issued a read() operation. Check out Figure 1-2.

Disk

Hardware

Buffer Process

Buffer
DMA read()

Disk
Controller

Figure 1-2.  Filling a buffer at the operating system level

In Figure 1-2, a process has issued a read() call to the operating system. 
In turn, the operating system has requested to the disk controller to read 
a block of bytes from the disk. The disk controller (also known as a DMA 
controller) reads these bytes directly into an operating system buffer via 
Direct Memory Access (DMA), a feature of computer systems that allows 
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certain hardware subsystems to access main system (RAM) memory 
independently of the central processing unit (CPU). The operating system 
then copies these bytes to the process’s buffer.

Copying bytes from the operating system buffer to the process buffer isn’t 
very efficient. It would be more performant to have the DMA controller copy 
directly to the process buffer, but there are two problems with this approach:

	The DMA controller typically cannot communicate 
directly with the user space in which the JVM process 
runs. Instead, it communicates with the operating 
system’s kernel space.

	Block-oriented devices such as a DMA controller work  
with fixed-size data blocks. In contrast, the JVM 
process might request a size of data that isn’t a multiple 
of the block size or that is misaligned.

Because of these problems, the operating system acts as an intermediary, 
tearing apart and recombining data as it switches between the JVM process 
and the DMA controller.

The data assembly/disassembly tasks can be made more efficient by 
letting the JVM process pass a list of buffer addresses to the operating 
system in a single system call. The operating system then fills or drains 
these buffers in sequence, scattering data to multiple buffers during a read 
operation or gathering data from several buffers during a write operation. 
This scatter/gather activity reduces the number of (potentially expensive) 
system calls that the JVM process must make and lets the operating system 
optimize data handling because it knows the total amount of buffer space. 
Furthermore, when multiple processors or cores are available, the operating 
system may allow buffers to be filled or drained simultaneously.

JDK 1.4’s java.nio.Buffer class abstracts the concept of a JVM process 
buffer. It serves as the superclass for java.nio.ByteBuffer and other buffer 
classes. Because I/O is fundamentally byte-oriented, only ByteBuffer 
instances can be used with channels (which are discussed shortly). Most of  
the other Buffer subclasses are conveniences for working with multibyte 
data (such as characters or integers).

Chapter 6 explores the Buffer class and its children.

Channels
Forcing a CPU to perform I/O tasks and wait for I/O completions (such a  
CPU is said to be I/O bound) is wasteful of this resource. Performance 
can be improved by offloading these tasks to DMA controllers so that the 
processor can get on with other work.

https://en.wikipedia.org/wiki/Computer_storage#Computer%20storage
https://en.wikipedia.org/wiki/Central_processing_unit#Central%20processing%20unit
http://dx.doi.org/10.1007/978-1-4842-1565-4_6
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A channel serves as a conduit for communicating (via the operating 
system) with a DMA controller to efficiently drain byte buffers to or fill byte 
buffers from a disk. JDK 1.4’s java.nio.channels.Channel interface, its 
subinterfaces, and various classes implement the channel architecture.

One of these classes is called java.nio.channels.FileChannel, and it 
abstracts a channel for reading, writing, mapping, and manipulating a file. One 
interesting feature of FileChannel is its support for file locking, upon which 
sophisticated applications such as database management systems rely.

File locking lets a process prevent or limit access to a file while the process 
is accessing the file. Although file locking can be applied to an entire file, it is 
often narrowed to a smaller region. A lock ranges from a starting byte offset 
in the file and continues for a specific number of bytes.

Another interesting FileChannel feature is memory-mapped file I/O via the 
map() method. map() returns a java.nio.MappedByteBuffer whose content is  
a memory-mapped region of a file. File content is accessed via memory 
accesses; buffer copies and read-write system calls are eliminated.

You can obtain a channel by calling the java.nio.channels.Channels class’s 
methods or the methods in classic I/O classes such as RandomAccessFile.

Chapter 7 explores Channel, Channels, and more.

Selectors
I/O is classified as block-oriented or stream-oriented. Reading from or 
writing to a file is an example of block-oriented I/O. In contrast, reading from 
the keyboard or writing to a network connection is an example of stream-
oriented I/O.

Stream I/O is often slower than block I/O. Furthermore, input tends to be 
intermittent. For example, the user might pause while entering a stream of  
characters or momentary slowness in a network connection causes a 
playing video to proceed in a jerky fashion.

Many operating systems allow streams to be configured to operate in 
nonblocking mode in which a thread continually checks for available input 
without blocking when no input is available. The thread can handle incoming 
data or perform other tasks until data arrives.

This “polling for available input” activity can be wasteful, especially when 
the thread needs to monitor many input streams (such as in a web server 
context). Modern operating systems can perform this checking efficiently, 
which is known as readiness selection, and which is often built on top of 
nonblocking mode. The operating system monitors a collection of streams 
and returns an indication to the thread of which streams are ready to 

http://dx.doi.org/10.1007/978-1-4842-1565-4_7
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perform I/O. As a result, a single thread can multiplex many active streams 
via common code and makes it possible, in a web server context, to manage  
a huge number of network connections.

JDK 1.4 supports readiness selection by providing selectors, which are 
instances of the java.nio.channels.Selector class that can examine one or  
more channels and determine which channels are ready for reading or 
writing. This way a single thread can manage multiple channels (and, 
therefore, multiple network connections) efficiently. Being able to use fewer 
threads is advantageous where thread creation and thread context switching 
is expensive in terms of performance and/or memory use. See Figure 1-3.

Chapter 8 explores Selector and its related types.

Regular Expressions
Regular expressions were introduced as part of NIO. Although you might 
wonder about the rationale for doing this (what have regular expressions got to 
do with I/O?), regular expressions are commonly used to scan textual data that 
is read from a file or other source. The need to perform these scans as quickly 
as possible mandated their inclusion. JDK 1.4 supports regular expressions via 
the java.util.regex package and its Pattern and Matcher classes.

Chapter 9 explores the Pattern and Matcher classes.

channel

selector

thread

channel channel

Figure 1-3.  A thread manages three channels via a selector

http://dx.doi.org/10.1007/978-1-4842-1565-4_8
http://dx.doi.org/10.1007/978-1-4842-1565-4_9

