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Preface

A Mathematician Said Who
Can Quote Me a Theorem that’s True?
For the ones that I Know
Are Simply not So,
When the Characteristic is Two!

This pretty limerick first came to my ears in May 1998 during a talk by T.Y. Lam
on field invariants from the theory of quadratic forms.1 It is—poetic exaggeration
allowed—a suitable motto for this monograph.

What is it about? At the beginning of the seventies I drew up a specialization
theory of quadratic and symmetric bilinear forms over fields [32]. Let λ : K → L∪∞
be a place. Then one can assign a form λ∗(ϕ) to a form ϕ over K in a meaningful way
if ϕ has “good reduction” with respect to λ (see §1.1). The basic idea is to simply
apply the place λ to the coefficients of ϕ, which must therefore be in the valuation
ring of λ.

The specialization theory of that time was satisfactory as long as the field L,
and therefore also K, had characteristic � 2. It served me in the first place as the
foundation for a theory of generic splitting of quadratic forms [33], [34]. After a
very modest beginning, this theory is now in full bloom. It became important for the
understanding of quadratic forms over fields, as can be seen from the book [26] of
Izhboldin–Kahn–Karpenko–Vishik for instance. One should note that there exists a
theory of (partial) generic splitting of central simple algebras and reductive algebraic
groups, parallel to the theory of generic splitting of quadratic forms (see [29] and
the literature cited there).

In this book I would like to present a specialization theory of quadratic and sym-
metric bilinear forms with respect to a place λ : K → L∪∞, without the assumption
that char L � 2. This is where complications arise. We have to make a distinction

1 “Some reflections on quadratic invariants of fields”, 3 May 1998 in Notre Dame (Indiana) on the
occasion of O.T. O’Meara’s 70th birthday.
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viii Preface

between bilinear and quadratic forms and study them both over fields and valua-
tion rings. From the viewpoint of reductive algebraic groups, the so-called regular
quadratic forms (see below) are the natural objects. But, even if we are interested
only in such forms, we have to know a bit about specialization of nondegenerate
symmetric bilinear forms, since they occur as “multipliers” of quadratic forms: if ϕ
is such a bilinear form and ψ is a regular quadratic form, then we can form a tensor
product ϕ⊗ψ, see §1.5. This is a quadratic form, which is again regular when ψ has
even dimension (dimψ = number of variables occurring in ψ). However—and here
already we run into trouble—when dimψ is odd, ϕ ⊗ ψ is not necessarily regular.

Even if we only want to understand quadratic forms over a field K of characteris-
tic zero, it might be necessary to look at specializations with respect to places from
K to fields of characteristic 2, especially in arithmetic investigations. When K itself
has characteristic 2, an often more complicated situation may occur, for which we
are not prepared by the available literature. Certainly fields of characteristic 2 were
already allowed in my work on specializations in 1973 [32], but from today’s point
of view satisfactory results were only obtained for symmetric bilinear forms. For
quadratic forms there are gaping holes. We have to study quadratic forms over a val-
uation ring in which 2 is not a unit. Even the beautiful and extensive book of Ricardo
Baeza [6] doesn’t give us enough for the theory of specializations, although Baeza
even allows semilocal rings instead of valuation rings. He studies only quadratic
forms whose associated bilinear forms are nondegenerate. This forces those forms
to have even dimension.

Let me now discuss the contents of this book. After an introduction to the prob-
lem in §1.1, which can be understood without any previous knowledge of quadratic
and bilinear forms, the specialization theory of symmetric bilinear forms is pre-
sented in §1.2–§1.3. There are good, generally accessible sources available for the
foundations of the algebraic theory of symmetric bilinear forms. Therefore many
results are presented without a proof, but with a reference to the literature instead.
As an important application, the outlines of the theory of generic splitting in char-
acteristic � 2 are sketched in §1.4, nearly without proofs.

From §1.5 onwards we address the theory of quadratic forms. In characteris-
tic 2 fewer results can be found in the literature for such forms than for bilinear
forms, even at the basic level. Therefore we present most of the proofs. We also
concern ourselves with the so-called “weak specialization” (see §1.1) and get into
areas which may seem strange even to specialists in the theory of quadratic forms.
In particular we have to require a quadratic form over K to be “obedient” in order to
weakly specialize it with respect to a place λ : K → L ∪ ∞ (see §1.7). I have never
encountered such a thing anywhere in the literature.

At the end of Chapter 1 we reach a level in the specialization theory of quadratic
forms that facilitates a generic splitting theory, useful for many applications. In the
first two sections (§2.1, §2.2) of Chapter 2 we produce such a generic splitting theory
in two versions, both of which deserve interest in their own right.

We call a quadratic form ϕ over a field k nondegenerate when its quasilinear part
(cf. Arf [3]), which we denote by QL(ϕ), is anisotropic. We further call—deviating
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from Arf [3]—ϕ regular when QL(ϕ) is at most one-dimensional and strictly reg-
ular when QL(ϕ) = 0 (cf. §1.6, Definition 1.59). When k has characteristic � 2,
every nondegenerate form is strictly regular, but in characteristic 2 the quasilinear
part causes complications. For in this case ϕ can become degenerate under a field
extension L ⊃ k. Only in the regular case is this impossible.

In §2.1 we study the splitting behaviour of a regular quadratic form ϕ over k
under field extensions, while in §2.2 any nondegenerate form ϕ, but only separable
extensions of k are allowed. The theory of §2.1 incorporates the theory of §1.4, so
the missing proofs of §1.4 are subsequently filled in.

Until the end of §2.2 our specialization theory is based on an obvious “canoni-
cal” concept of good reduction of a form ϕ over a field K (quadratic or symmetric
bilinear) to a valuation ring o of K, similar to what is known under this name in
other areas of mathematics (e.g. abelian varieties). There is nothing wrong with this
theory; however, for many applications it is too limited.

This is particularly clear when studying specializations with respect to a place
λ : K → L ∪ ∞ with char K = 0, char L = 2. If ϕ is a nondegenerate quadratic
form over K with good reduction with respect to λ, then the specialization λ∗(ϕ)
is automatically strictly regular. However, we would like to have a more general
specialization concept, in which forms with quasilinear part � 0 can arise over L.
Conversely, if the place λ is surjective, i.e. λ(K) = L ∪ ∞, we would like to “lift”
every nondegenerate quadratic form ψ over L with respect to λ to a form ϕ over K,
i.e. to find a form ϕ over K which specializes to ψ with respect to λ. Then we could
use the theory of forms over K to make statements about ψ.

We present such a general specialization theory in §2.3. It is based on the concept
of “fair reduction”, which is less orthodox than good reduction, but which neverthe-
less possesses quite satisfying properties.

Next, in §2.4, we present a theory of generic splitting, which unites the theories
of §1.4, §2.1 and §2.2 under one roof and which incorporates fair reduction. This
theory is deepened in §2.5 and §2.6 through the study of generic splitting towers,
and thus we reach the end of Chapter 2.

Chapter 3 (§3.1–§3.13) is a long chapter in which we present a panorama of re-
sults about quadratic forms over fields for which specialization and generic splitting
of forms play an important role. This only scratches the surface of applications of
the specialization theory of Chapters 1 and 2. Certainly many more results can be
unearthed.

We return to the foundations of specialization theory in the final short Chapter 4
(§4.1–§4.5). Quadratic and bilinear forms over a field can be specialized with re-
spect to a more general “quadratic place” Λ : K → L ∪ ∞ (defined in §4.1) instead
of a usual place λ : K → L ∪ ∞. This represents a considerable broadening of the
specialization theory of Chapters 1 and 2. Of course we require again “obedience”
from a quadratic form q over K in order for its specialization Λ∗(q) to reasonably
exist. It then turns out that the generic splitting behaviour of Λ∗(q) is governed by
the splitting behaviour of q and Λ, in so far as good or fair reduction is present in a
weak sense, as elucidated for ordinary places in Chapter 2.



x Preface

Why are quadratic places of interest, compared with ordinary places? To answer
this question we observe the following. If a form q over K has bad reduction with
respect to a place λ : K → L ∪ ∞ , it often happens that λ can be “enlarged” to a
quadratic place Λ : K → L ∪ ∞ such that q has good or fair reduction with respect
to Λ in a weak sense, and the splitting properties of q are handed down to Λ∗(q)
while there is no form λ∗(q) available for which this would be the case. The details
of such a notion of reduction are much more tricky compared with what happens
in Chapters 1 and 2. The central term which renders possible a unified theory of
generic splitting of quadratic forms is called “stably conservative reduction”, see
§4.4.

One must get used to the fact that for bilinear forms there is in general no Witt
cancellation rule, in contrast to quadratic forms. Nevertheless the specialization the-
ory is in many respects easier for bilinear forms than for quadratic forms.

On the other hand we do not have any theory of generic splitting for symmet-
ric bilinear forms over fields of characteristic 2. Such a theory might not even be
possible in a meaningful way. This may well be connected to the fact that the auto-
morphism groups of such forms can be very far from being reductive groups (which
may also account for the absence of a good cancellation rule).

This book is intended for audiences with different interests. For a mathematician
with perhaps only a little knowledge of quadratic or symmetric bilinear forms, who
just wants to get an impression of specialization theory, it suffices to read §1.1–§1.4.
The theory of generic splitting in characteristic � 2 will acquaint the reader with an
important application area.

From §1.5 onwards the book is intended for scholars working in the algebraic
theory of quadratic forms, and also for specialists in the area of algebraic groups.
They have always been given something to look at by the theory of quadratic forms.

On reaching §2.2 of the book, readers can lean back in their chair and take a
well-deserved break. They will have learned about the specialization theory, which
is based on the concept of good reduction, and will have gained a certain perspective
on specific phenomena in characteristic 2. Furthermore, they will have been intro-
duced to the foundations of generic splitting and so will have seen the specialization
theory in action. Admittedly, readers will not yet have seen independent applications
of the weak specialization theory (§1.3, §1.7), for this theory has only appeared up
to then as an auxiliary one.

The remaining sections §2.3–§2.6 of Chapter 2 develop the specialization the-
ory sufficiently far to allow an understanding of the classical algebraic theory of
quadratic forms (as presented in the books of Lam [43], [44] and Scharlau [55])
without the usual restriction that the characteristic should be different from 2. Pre-
cisely this happens in Chapter 3 where readers will also obtain sufficient illustrations
to enable them to relieve other classical theorems from the characteristic � 2 restric-
tion, although this is often a nontrivial task.

The final Chapter 4 is ultimately intended for mathematicians who want to em-
bark on a more daring expedition in the realm of quadratic forms over fields. It can-
not be mere coincidence that the specialization theory for quadratic places works
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just as well as the specialization theory for ordinary places. It is therefore a safe
prediction that quadratic places will turn out to be generally useful and important in
a future theory of quadratic forms over fields.

Regensburg, Manfred Knebusch
June 2007

Postscript (October 2009)

I had the very good luck to find a translator of the German text into English, who, be-
sides having two languages, could also understand the mathematical content of this
book in depth. I met Professor Thomas Unger within the framework of the European
network “Linear Algebraic Groups, Algebraic K-theory, and Related Topics”, and
most of the translation and our collaboration has been done under the auspices of
this network, which we acknowledge gratefully.

I further owe deep thanks to my former secretary Rosi Bonn, who typed the whole
German text in various versions and large parts of the English text.

The German text, Spezialisierung von quadratischen und symmetrischen bilinearen
Formen, can be found on my homepage.2

2 http://www-nw.uni-regensburg.de/∼.knm22087.mathematik.uni-regensburg.de
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Chapter 1
Fundamentals of Specialization Theory

1.1 Introduction: on the Problem of Specialization of Quadratic
and Bilinear Forms

Let ϕ be a nondegenerate symmetric bilinear form over a field K, in other words

ϕ(x, y) =
n∑

i, j=1

ai jxiy j,

where x = (x1, . . . , xn) ∈ Kn and y = (y1, . . . , yn) ∈ Kn are vectors, (ai j) is a symmet-
ric (n × n)-matrix with coefficients ai j = a ji ∈ K and det(ai j) � 0. We would like to
write ϕ = (ai j). The number of variables n is called the dimension of ϕ, n = dimϕ.

Let also λ : K → L ∪∞ be a place, o = oλ the valuation ring associated to K and
m the maximal ideal of o. We denote the group of units of o by o∗, o∗ = o \m.

We would like λ to “specialize” ϕ to a bilinear form λ∗(ϕ) over L. When is this
possible in a reasonable way? If all ai j ∈ o and if det(ai j) ∈ o∗, then one can as-
sociate the nondegenerate form (λ(ai j)) over L to ϕ. This naive idea leads us to the
following:

Definition 1.1. We say that ϕ has good reduction with respect to λ when ϕ is iso-
metric to a form (ci j) over K with ci j ∈ o, det(ci j) ∈ o∗. We then call the form (λ(ci j))
“the” specialization of ϕ with respect to λ. We denote this specialization by λ∗(ϕ).

Note. ϕ = (ai j) is isometric to (ci j) if and only if there exists a matrix S ∈ GL(n,K)
with (ci j) = tS (ai j)S . In this case we write ϕ � (ci j).

We also allow the case dimϕ = 0, standing for the unique bilinear form on the
zero vector space, the form ϕ = 0. We agree that the form ϕ = 0 has good reduction
and set λ∗(ϕ) = 0.

Problem 1.2. Is this definition meaningful? Up to isometry λ∗(ϕ) should be inde-
pendent of the choice of the matrix (ci j).

M. Knebusch, Specialization of Quadratic and Symmetric Bilinear Forms, 1
Algebra and Applications 11, DOI 10.1007/978-1-84882-242-9 1,
c© Springer-Verlag London Limited 2010



2 1 Fundamentals of Specialization Theory

We shall later see that this is indeed the case, provided 2 � m, so that L has
characteristic � 2. If L has characteristic 2, then λ∗(ϕ) is well-defined up to “stable
isometry” (see §1.3).

Problem 1.3. Is there a meaningful way in which one can associate a symmetric
bilinear form over L to ϕ, when ϕ has bad reduction?

With regard to this problem we would like to recall a classical result of
T.A. Springer, which leads us to suspect that finding a solution to the problem is
not completely beyond hope. Let v : K → Z∪∞ be a discrete valuation of a field K
with associated valuation ring o. Let π be a generator of the maximal ideal m of o,
so thatm = πo. Finally, let k = o/m be the residue class field of o and λ : K → k∪∞
the canonical place with valuation ring o. We suppose that 2 � m, so that char k � 2
is.

Let ϕ be a nondegenerate symmetric bilinear form over K. Then there exists a
decomposition ϕ � ϕ0 ⊥ πϕ1, where ϕ0 and ϕ1 have good reduction with respect to
λ. Indeed, we can choose a diagonalization ϕ � 〈a1, . . . , an〉. {As usual 〈a1, . . . , an〉
denotes the diagonal matrix

(
a1 0
. . .

0 an

)
.} Then we can arrange that v(ai) = 0 or 1

for each i, by multiplying the ai by squares and renumbering indices to get ai ∈ o∗
for 1 ≤ i ≤ t and ai = πεi, where εi ∈ o∗ for t < i ≤ n. {Possibly t = 0, so that
ϕ0 = 0, or t = n, so that ϕ1 = 0.}
Theorem 1.4 (Springer 1955 [56]). Let K be complete with respect to the discrete
valuation v. If ϕ is anisotropic (i.e. there is no vector x � 0 in Kn with ϕ(x, x) = 0),
then the forms λ∗(ϕ0) and λ∗(ϕ1) are anisotropic and up to isometry independent of
the choice of decomposition ϕ � ϕ0 ⊥ πϕ1.

Conversely, if ψ0 and ψ1 are anisotropic forms over k, then there exists up to
isometry a unique anisotropic form ϕ over K with λ∗(ϕ0) � ψ0 and λ∗(ϕ1) � ψ1.

Given any place λ : K → L ∪ ∞ and any form ϕ over K, Springer’s theorem
suggests to look for a “weak specialization” λW (ϕ) by orthogonally decomposing ϕ
in a form ϕ0 with good reduction and a form ϕ1 with “extremely bad” reduction,
subsequently forgetting ϕ1 and setting λW (ϕ) = λ∗(ϕ0).

Given an arbitrary valuation ring o, this sounds like a daring idea. Nonetheless
we shall see in §1.3 that a weak specialization can be defined in a meaningful way.
Admittedly λW (ϕ) is not uniquely determined by ϕ and λ up to isometry, but up to
so-called Witt equivalence. In the situation of Springer’s theorem, λW (ϕ) is then the
Witt class of ϕ0 and λW (πϕ) the Witt class of ϕ1.

A quadratic form q of dimension n over K is a function q : Kn → K, defined by
a homogeneous polynomial of degree 2,

q(x) =
∑

1≤i≤ j≤n

ai jxix j

(x = (x1, . . . , xn) ∈ Kn). We can associate (a possibly degenerate) symmetric bilinear
form
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Bq(x, y) = q(x + y) − q(x) − q(y) =
n∑

i=1

2aiixiyi +
∑

i< j

ai j(xiy j + x jyi)

to q. It is clear that Bq(x, x) = 2q(x) for all x ∈ Kn.
If char K � 2, then any symmetric bilinear form ϕ over K corresponds to just

one quadratic form q over K with Bq = ϕ, namely q(x) = 1
2 ϕ(x, x). In this way

we can interpret a quadratic form as a symmetric bilinear form and vice versa. In
characteristic 2, however, quadratic forms and symmetric bilinear forms are very
different objects.

Problem 1.5. Let λ : K → L ∪∞ be a place.
(a) To which quadratic forms q over K can we associate “specialized” quadratic

forms λ∗(q) over L in a meaningful way?
(b) Let char L = 2 and char K � 2, hence char K = 0. Should one specialize a

quadratic form q over K with respect to λ as a quadratic form, or rather as a
symmetric bilinear form?

In what follows we will present a specialization theory for arbitrary nondegen-
erate symmetric bilinear forms (§1.3), but only for a rather small class of quadratic
forms, the so-called “obedient” quadratic forms (§1.7). Problem 1.5(b) will be an-
swered unequivocally. If q is obedient, Bq will determine a really boring bilinear
form λ∗(Bq) (namely a hyperbolic form) which gives almost no information about
q. However, λ∗(q) can give important information about q. If possible, a specializa-
tion in the quadratic sense is thus to be preferred over a specialization in the bilinear
sense.

1.2 An Elementary Treatise on Symmetric Bilinear Forms

In this section a “form” will always be understood to be a nondegenerate symmetric
bilinear form over a field. So let K be a field.

Theorem 1.6 (“Witt decomposition”).
(a) Any form ϕ over K has a decomposition

ϕ � ϕ0 ⊥
(

a1

1
1
0

)
⊥ · · · ⊥

(
ar

1
1
0

)

with ϕ0 anisotropic and a1, . . . , ar ∈ K (r ≥ 0).
(b) The isometry class of ϕ0 is uniquely determined by ϕ. (Therefore dimϕ0 and the

number r are uniquely determined.)

To clarify these statements, let us recall the following:
(1) A form ϕ0 over K is called anisotropic if ϕ0(x, x) � 0 for all vectors x � 0.
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(2) If char K � 2, then we have for every a ∈ K∗ that
(

a
1

1
0

)
�
(

0
1

1
0

)
� 〈1,−1〉 � 〈a,−a〉.

If char K = 2, however, and a � 0, then
( a

1
1
0

)
�
( 0

1
1
0

)
. Indeed if ϕ =

( 0
1

1
0

)
we

have ϕ(x, x) = 0 for every vector x ∈ K2, while this is not the case for ϕ =
( a

1
1
0

)
.

In characteristic 2 we still have
( a

1
1
0

)
� 〈a,−a〉 (a ∈ K∗), but

( a
1

1
0

)
need not

be isometric to
( 1

1
1
0

)
� 〈1,−1〉.

(3) The form
( 0

1
1
0

)
is given the name “hyperbolic plane” (even in characteristic 2),

and every form ϕ, isometric to an orthogonal sum r × ( 01 1
0

)
of r copies of

( 0
1

1
0

)
,

is called “hyperbolic” (r ≥ 0).
(4) Forms which are isometric to an orthogonal sum

( a1
1

1
0

) ⊥ · · · ⊥ ( ar
1

1
0

)
are called

metabolic (r ≥ 0). If char K � 2, then every metabolic form is hyperbolic. This
is not the case if char K = 2.

(5) If char K = 2, then ϕ is hyperbolic exactly when every vector x of the underlying
vector space Kn is isotropic, i.e. ϕ(x, x) = 0. If ϕ is not hyperbolic, we can
always find an orthogonal basis such that ϕ � 〈a1, . . . , an〉 for suitable ai ∈ K∗.

One can find a proof of Theorem 1.6 in any book about quadratic forms when
char K � 2 (see in particular [10], [43], [55]). Part (b) of the theorem is then an
immediate consequence of Witt’s Cancellation Theorem. There is no general can-
cellation theorem in characteristic 2, as the following example shows:

(
a
1

1
0

)
⊥ 〈−a〉 �

(
0
1

1
0

)
⊥ 〈−a〉 (1.1)

for all a ∈ K∗. If e, f , g is a basis of K3 which has the left-hand side of (1.1) as
value matrix, then e + g, f , g will be a basis which has the right-hand side of (1.1)
as value matrix. For characteristic 2 one can find proofs of Theorem 1.6 and the
other statements we made in [50, Chap. I and Chap. III, §1], [31, §8], [49, §4]. The
following is clear from formula (1.1):

Lemma 1.7. If a form ϕ with dimϕ = 2r is metabolic, then there exists a form ψ
such that ϕ ⊥ ψ � r × ( 01 1

0

) ⊥ ψ.

Definition 1.8.
(a) In the situation of Theorem 1.6, we call the form ϕ0 the kernel form of ϕ and

r the (Witt) index of ϕ. We write ϕ0 = ker(ϕ), r = ind(ϕ). {In the literature one
frequently sees the notation ϕ0 = ϕan (“anisotropic part” of ϕ).}

(b) Two forms ϕ, ψ over K are called Witt equivalent, denoted by ϕ ∼ ψ, if kerϕ �
kerψ. We write ϕ ≈ ψ when kerϕ � kerψ and dimϕ = dimψ. On the basis of
the next theorem, we then call ϕ and ψ stably isometric.

Theorem 1.9. ϕ ≈ ψ exactly when there exists a form χ such that ϕ ⊥ χ � ψ ⊥ χ.
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We omit the proof. It is easy when one uses Theorem 1.6, Lemma 1.7 and the
following lemma.

Lemma 1.10. The form χ ⊥ (−χ) is metabolic for every form χ.

Proof. From Theorem 1.6(a) we may suppose that χ is anisotropic. If χ is different
from the zero form, then χ � 〈a1, . . . , an〉 with elements ai ∈ K∗ (n ≥ 1). Finally,
〈ai〉 ⊥ 〈−ai〉 �

( ai
1

1
0

)
. ��

As is well-known, Witt’s Cancellation Theorem (already mentioned above) is
valid if char K � 2. It says that two stably isometric forms are already isometric:
ϕ ≈ ψ⇒ ϕ � ψ.

Let ϕ be a form over K. We call the equivalence class of ϕ with respect to the
relation ∼, introduced above, the Witt class of ϕ and denote it by {ϕ}. We can add
Witt classes together as follows:

{ϕ} + {ψ} := {ϕ ⊥ ψ}.
The class {0} of the zero form, whose members are exactly the metabolic forms, is

the neutral element of this addition. From Lemma 1.10 it follows that {ϕ}+{−ϕ} = 0.
In this way, the Witt classes of forms over K form an abelian group, which we denote
by W(K). We can also multiply Witt classes together:

{ϕ} · {ψ} := {ϕ ⊗ ψ}.
Remark. The definition of the tensor product ϕ⊗ψ of two forms ϕ, ψ belongs to the
domain of linear algebra [10, §1, No. 9]. For diagonalizable forms we have

〈a1, . . . , an〉 ⊗ 〈b1, . . . , bm〉 � 〈a1b1, . . . , a1bm, a2b1, . . . , anbm〉.
We also have 〈a1, . . . , an〉 ⊗

( 0
1

1
0

)
� n × ( 01 1

0

)
. Finally, for a form

( b
1

1
0

)
with b � 0

we have

〈a〉 ⊗
(

b
1

1
0

)
� 〈a〉 ⊗ 〈b,−b〉 � 〈ab,−ab〉 �

(
ab
1

1
0

)
.

Now it is clear that the tensor product of any given form and a metabolic form is
again metabolic. {For a conceptual proof of this see [31, §3], [50, Chap. I].} There-
fore the Witt class {ϕ⊗ψ} is completely determined by the classes {ϕ}, {ψ}, indepen-
dent of the choice of representatives ϕ, ψ.

With this multiplication, W(K) becomes a commutative ring. The identity ele-
ment is {〈1〉}. We call W(K) the Witt ring of K. For char K � 2 this ring was already
introduced by Ernst Witt in 1937 [58].

We would like to describe the ring W(K) by generators and relations. In charac-
teristic � 2 this was already known by Witt [oral communication] and is implicitly
contained in his work [58, Satz 7].

First we must recall the notion of determinant of a form. For a ∈ K∗, the isometry
class of a one-dimensional form 〈a〉will again be denoted by 〈a〉. The tensor product
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〈a〉 ⊗ 〈b〉 will be abbreviated by 〈a〉〈b〉. We have 〈a〉〈b〉 = 〈ab〉 and 〈a〉〈a〉 = 〈1〉.
In this way the isometry classes form an abelian group of exponent 2, which we
denote by Q(K). Given a, b ∈ K∗, it is clear that 〈a〉 = 〈b〉 exactly when b = ac2

for a c ∈ K∗. So Q(K) is just the group of square classes K∗/K∗2 in disguise. We
identify Q(K) = K∗/K∗2.

It is well-known that for a given form ϕ = (ai j) the square class of the determinant
of the symmetric matrix (ai j) depends only on the isometry class of ϕ. We denote
this square class by det(ϕ), so det(ϕ) = 〈det(ai j)〉, and call it the determinant of ϕ. A
slight complication arises from the fact that the determinant is not compatible with
Witt equivalence. To remedy this, we introduce the signed determinant

d(ϕ) := 〈−1〉 n(n−1)
2 · det(ϕ)

(n := dimϕ). One can easily check that d(ϕ ⊥ ( a1 1
0

)
) = d(ϕ), for any a ∈ K.

Hence d(ϕ) depends only on the Witt class {ϕ}. The signed determinant d(ϕ) also
has a disadvantage though. In contrast with det(ϕ), d(ϕ) does not behave completely
well with respect to the orthogonal sum. Let ν(ϕ) denote the dimension index of ϕ,
ν(ϕ) = dimϕ + 2Z ∈ Z/2Z. Then we have (cf. [55, I §2])

d(ϕ ⊥ ψ) = 〈−1〉ν(ϕ)ν(ψ)d(ϕ)d(ψ).

Let us now describe W(K) by means of generators and relations. Every one-
dimensional form 〈a〉 satisfies d(〈a〉) = 〈a〉. This innocent remark shows that the
map from Q(K) to W(K), which sends every isometry class 〈a〉 to its Witt class
{〈a〉}, is injective. We can thus interpret Q(K) as a subgroup of the group of units of
the ring W(K), Q(K) ⊂ W(K)∗.

W(K) is additively generated by the subset Q(K), since every non-hyperbolic
form can be written as 〈a1, . . . , an〉 = 〈a1〉 ⊥ · · · ⊥ 〈an〉. Hence Q(K) is a system of
generators of W(K). There is an obviously surjective ring homomorphism

Φ : Z[Q(K)]� W(K)

from the group ring Z[Q(K)] to W(K). Recall that Z[Q(K)] is the ring of formal
sums
∑

g
ngg with g ∈ Q(K), ng ∈ Z, and almost all ng = 0. Φ associates to such a

sum the in W(K) constructed sum
∑

g
ngg.

The elements of the kernel of Φ are the relations on Q(K) we are looking for. We
can write down some of those relations immediately: for every a ∈ K∗, 〈a〉 + 〈−a〉
is clearly a relation. For a, b ∈ K∗ and given λ, μ ∈ K∗, the form 〈a, b〉 represents
the element c := λ2a + μ2b. If c � 0, then we can find another element d ∈ K∗ with
〈a, b〉 � 〈c, d〉. Comparing determinants shows that 〈d〉 = 〈abc〉. Hence

〈a〉 + 〈b〉 − 〈c〉 − 〈abc〉 = (〈a〉 + 〈b〉)(〈1〉 − 〈c〉)
is also a relation. We have the technically important:
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Theorem 1.11. The ideal Ker Φ of the ring Z[Q(K)] is additively generated (i.e. as
abelian group) by the elements 〈a〉+ 〈−a〉, a ∈ K∗ and the elements 〈a〉+ 〈b〉 − 〈c〉 −
〈abc〉 with a, b ∈ K∗, 〈b〉 � 〈−a〉, c = λ2a + μ2b with λ, μ ∈ K∗.

Remark. Ker Φ is therefore generated as an ideal by the element 〈1〉+ 〈−1〉 and the
elements (〈1〉 + 〈a〉)(1 − 〈c〉) with 〈a〉 � 〈−1〉, c = 1 + λ2a with λ ∈ K∗. For applica-
tion in the next section, the additive description of Ker Φ above is more favourable
though.

A proof of Theorem 1.11, which also works in characteristic 2, can be found in
[31, §5], [38, §1], [35, II, §4] (even over semi-local rings instead of over fields1),
[50, p. 85]. For characteristic � 2 the proof is a bit simpler, since every form has an
orthogonal basis in this case, see [55, I § 9].

1.3 Specialization of Symmetric Bilinear Forms

In this section, a “form” will again be understood to be a nondegenerate symmetric
bilinear form. Let λ : K → L∪∞ be a place from the field K to a field L. Let o = oλ
be the valuation ring associated to λ and m its maximal ideal. As usual for rings, o∗
stands for the group of units of o, so that o∗ = o \m. This is the set of all x ∈ K with
λ(x) � 0,∞.

We will now denote the Witt class of a one-dimensional form 〈a〉 over K (or L) by
{a}. The group of square classes Q(o) = o∗/o∗2 can be embedded in Q(K) = K∗/K∗2
in a natural way via ao∗2 �→ aK∗2. We interpret Q(o) as a subgroup of Q(K), so
Q(o) = {〈a〉 | a ∈ o∗} ⊂ Q(K). Our specialization theory is based on the following:

Theorem 1.12. There exists a well-defined additive map λW : W(K)→ W(L), given
by λW ({a}) = {λ(a)} if a ∈ o∗, and λW ({a}) = 0 if 〈a〉 � Q(o) (i.e. (aK∗2) ∩ o∗ = ∅).2

Proof. (Copied from [32, §3].) Our place λ is a combination of the canonical place
K → (o/m)∪∞with respect to o, and a field extension λ : o/m ↪→ L. Thus it suffices
to prove the theorem for the canonical place. So let L = o/m and λ(a) = a := a +m
for a ∈ o.

We have a well-defined additive map Λ : Z[Q(K)]→ W(L) such that Λ(〈a〉) = {a}
if a ∈ o∗, and Λ(〈a〉) = 0 if 〈a〉 � Q(o). Clearly Λ vanishes on all elements 〈a〉+ 〈−a〉
with a ∈ K∗. According to Theorem 1.11 we will be finished if we can show that Λ
also disappears on every element

Z = 〈a1〉 + 〈a2〉 − 〈a3〉 − 〈a4〉
with ai ∈ K∗ and 〈a1, a2〉 � 〈a3, a4〉.
1 The case where K has only two elements, K = F2, is not covered by the more general theorems
there. The statement of Theorem 1.11 for K = F2 is trivial however, since K has only one square
class 〈1〉 and 〈1, 1〉 ∼ 0.
2 The letter W in the notation λW refers to “Witt” or “weak”, see §1.1 and §1.7.
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This will be the case when the four square classes 〈ai〉 are not all in Q(o). Suppose
from now on, without loss of generality, that a1 ∈ o∗. Then we have Z = 〈a1〉y, where

y = 1 + 〈c〉 − 〈b〉 − 〈bc〉
is an element such that 〈1, c〉 � 〈b, bc〉. So b = u2 + w2c for elements u,w ∈ K.
Clearly the equation Λ(〈a〉x) = {a}Λ(x) is satisfied for any a ∈ o∗, x ∈ Z[Q(K)].
Therefore it is enough to verify that Λ(y) = 0. We suppose without loss of generality
that u and w are not both zero, otherwise we already have that y = 0.

Let us first treat the case 〈c〉 ∈ Q(o), so without loss of generality c ∈ o∗. Then
we have

Λ(y) = (1 + {c})Λ(1 − 〈b〉).
If {c} = {−1}, we are done. So suppose from now on that {c} � {−1}. Then the form
〈1, c〉 is anisotropic over L. Since we are allowed to replace u and v by gu and gv for
some g ∈ K∗, we may additionally assume that u and v are both in o, but not both in
m. Since 〈1, c〉 is anisotropic, we have b = u2 + cw2 � 0 and

Λ(y) = (1 + {c})(1 − {u2 + cw2}) = 0.

The case which remains to be tackled is when the square class cK∗2 doesn’t
contain a unit from o. Then u−2w2c is definitely not a unit and either b = u2(1 + d)
or b = w2c(1 + d) with d ∈ m. Hence Λ(1 − 〈b〉) is 0 or 1 − {c}, and both times
Λ(y) = 0. ��
Scholium 1.13. The map λW : W(K) → W(L) can be described very conve-
niently as follows: Let ϕ be a form over K. If ϕ is hyperbolic (or, more generally
metabolic), then λW ({ϕ}) = 0. If ϕ is not hyperbolic, then consider a diagonaliza-
tion ϕ � 〈a1, a2, . . . , an〉. Multiply each coefficient ai for which it is possible by a
square so that it becomes a unit in o, and leave the other coefficients as they are. Let
for example ai ∈ o∗ for 1 ≤ i ≤ r and 〈ai〉 � Q(o) for r < i ≤ n (possibly r = 0 or
r = n). Then λW ({ϕ}) = {〈λ(a1), . . . , λ(ar)〉}.

Let us now recall a definition from the Introduction §1.1.

Definition 1.14. We say that a form ϕ over K has good reduction with respect to λ,
or that ϕ is λ-unimodular if ϕ is isometric to a form (ai j) with ai j ∈ o and det(ai j) ∈
o∗. We call such a representation ϕ � (ai j) a λ-unimodular represention of ϕ (or a
unimodular representation with respect to the valuation ring o).

This definition can be interpreted geometrically as follows. We associate to ϕ a
couple (E, B), consisting of an n-dimensional K-vector space E (n = dimϕ) and a
symmetric bilinear form B : E × E → K such that B represents the form ϕ after a
choice of basis of E. We denote this by ϕ =̂ (E, B). Since ϕ has good reduction with
respect to λ, E contains a free o-submodule M of rank n with E = KM, i.e. E =
K ⊗o M, and with B(M ×M) ⊂ o, such that the restriction B|M × M : M ×M → o is
a nondegenerate bilinear form over o, i.e. gives rise to an isomorphism x �→ B(x,−)
from the o-module M to the dual o-module M̌ = Homo(M, o).


