Lecture Notes in Chemistry 93

Biswanath Dinda

Essentials of Pericyclic and Photochemical Reactions

Lecture Notes in Chemistry

Volume 93

Series editors

Barry Carpenter, Cardiff, UK Paola Ceroni, Bologna, Italy Barbara Kirchner, Leipzig, Germany Katharina Landfester, Mainz, Germany Jerzy Leszczynski, Jackson, USA Tien-Yau Luh, Taipei, Taiwan Nicolas C. Polfer, Gainesville, USA Reiner Salzer, Dresden, Germany

The Lecture Notes in Chemistry

The series Lecture Notes in Chemistry (LNC) reports new developments in chemistry and molecular science-quickly and informally, but with a high quality and the explicit aim to summarize and communicate current knowledge for teaching and training purposes. Books published in this series are conceived as bridging material between advanced graduate textbooks and the forefront of research. They will serve the following purposes:

- provide an accessible introduction to the field to postgraduate students and nonspecialist researchers from related areas,
- provide a source of advanced teaching material for specialized seminars, courses and schools, and
- be readily accessible in print and online.

The series covers all established fields of chemistry such as analytical chemistry, organic chemistry, inorganic chemistry, physical chemistry including electrochemistry, theoretical and computational chemistry, industrial chemistry, and catalysis. It is also a particularly suitable forum for volumes addressing the interfaces of chemistry with other disciplines, such as biology, medicine, physics, engineering, materials science including polymer and nanoscience, or earth and environmental science.

Both authored and edited volumes will be considered for publication. Edited volumes should however consist of a very limited number of contributions only. Proceedings will not be considered for LNC.

The year 2010 marks the relaunch of LNC.

More information about this series at http://www.springer.com/series/632

Biswanath Dinda

Essentials of Pericyclic and Photochemical Reactions

Biswanath Dinda Department of Chemistry Tripura University Agartala, Tripura India

and

Department of Chemistry NIT Agartala Jirania India

ISSN 0342-4901 Lecture Notes in Chemistry ISBN 978-3-319-45933-2 DOI 10.1007/978-3-319-45934-9 ISSN 2192-6603 (electronic) ISBN 978-3-319-45934-9 (eBook)

Library of Congress Control Number: 2016951666

© Springer International Publishing Switzerland 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Dedicated to my parents and teachers

Preface

The part of pericyclic and photochemical reactions is the cornerstone of organic chemistry of the 20th century. Critical understanding of the principles of these reactions will be useful to design the synthesis of enormous organic compounds with high yields maintaining regio- and stereoselectivity. In this book, utilizing my long teaching experience, I have aimed to present the basic principles of pericyclic and photochemical reactions in the student's comprehension by citing numerous examples with references to develop a thorough and sound sense of actuality on the subject. Literature citations throughout the text will be helpful to the students and teachers, who want to get the access to the original work of the factual material. This book is not designed to be comprehensive with respect to the experimental details and evidences on which the reaction mechanisms are based. The main objectives of this book are to develop a broad understanding and scientific thinking of the students on the subject. The book will help teachers to motivate students in their scientific imagination on the subject for new application in industrial fields avoiding hazardous chemicals. A large number of excellent and representative problems at the end of each chapter and their answers in Appendix-1 of the book will help the students for their self-evaluation on the lessons of the chapter.

This book is basically designed for the students of postgraduate and M. Phil levels. However, the students of upper undergraduate levels in chemistry may use it for advancement of their knowledge on the subject. The book will also be useful for students to compete for different qualifying examinations after postgraduation.

I have consulted three excellent books, Advanced Organic Chemistry by F. A. Carey and R. T. Sundberg, Pericyclic Reactions by I. Fleming and Principles and Applications of Photochemistry by B. Wardle at several points in writing this book.

I wish to acknowledge the technical assistance of my students, Dr. Saikat Das Sarma, Dr. Rajarsi Banik, Dr. Indrajit Sil Sarma, Dr. Prasenjit Rudrapaul, Smt. Ankita Chakraborty, Sri Sukhen Bhowmik, Sk. Nayim Sepay, Sri Subhadip Roy, Sri Arnab Bhattacharya and my son, Dr. Subhajit Dinda for typing of the major part of the manuscript. I would appreciate to receive the letters from teachers and students on errors, questions, criticisms and suggestions on this book so that I may improve this book in the forthcoming edition.

Finally, I like to acknowledge to my wife, Chitralekha, and our children, Subhajit and Manikarna, and son-in-law Shekhar for their constant encouragement and patient endurance. I am grateful to my publishers for their support and interest in this endeavour.

Agartala, Tripura, India January 2016 Biswanath Dinda

Contents

Part I Pericyclic Reactions

1	Gene	ral Aspects of Pericyclic Reactions	3
	1.1	Introduction	3
	1.2	Molecular Orbitals and Their Symmetry Properties.	4
	1.3	Classification of Pericyclic Reactions	6
	1.4	Concertedness of Pericyclic Reactions	9
	1.5	Orbital Symmetry Property of Pericyclic Reactions	9
	1.6	Further Reading	11
	Refer	ences	11
2	Elect	rocyclic Reactions	13
	2.1	Introduction	13
	2.2	Orbital Symmetry Basis for Stereospecificity	14
	2.3	The Orbital Correlation Diagrams of Reactants	
		and Products	15
	2.4	Applications of Neutral Conjugated Systems	
		in Electrocyclic Reactions	19
	2.5	Applications of Ionic Conjugated Systems	
		in Electrocyclic Reactions	27
	2.6	Problems	32
	2.7	Further Reading	34
	Refer	ences	34
3	Cyclo	oaddition Reactions	37
	3.1	Introduction	37
	3.2	[2+2]-Cycloaddition Reactions	38
		3.2.1 Overview of Thermal and Photochemical	
		[2+2]-Cycloaddition Reactions.	38
		3.2.2 Applications of [2+2]-Cycloaddition Reactions	39
	3.3	[4+2]-Cycloaddition Reactions	43
		3.3.1 The Diels–Alder Reactions	44

	3.4	Cycloa	iddition Reactions of More Than Six Electrons	
		System	1S: [4+4]-, [6+6]-, [6+4]-, [8+2]-, [12+2]-,	01
	2.5	and [14	4+2]-Cycloadditions	91
	3.5		Opic Reactions	95
		3.5.1	Overview of Cheletropic Reactions	95
	26	3.3.2 D.11	Applications of Cheletropic Reactions	90
	3.0	Problet	ms	102
	3./ D.f.	Further		102
	Refere	ences	•••••••••••••••••••••••••••••••••••••••	103
4	Sigma	tropic F	Rearrangements	107
	4.1	Introdu	ıction	107
	4.2	Orbital	Symmetry Basis for Allowed and Forbidden	
		Sigmat	ropic Rearrangements and Their Stereochemistry	108
		4.2.1	Orbital Symmetry Analysis of [1,3]-, [1,5]-,	
			and [1,7]-Sigmatropic Shifts of Hydrogen	
			and Alkyl Groups	108
		4.2.2	Orbital Symmetry Analysis of [3,3]-	
			and [2,3]-Sigmatropic Rearrangements	110
	4.3	[1,3]-,	[1,5]-, and [1,7]-Sigmatropic Hydrogen	
		and Al	kyl Shifts and Their Applications	112
		4.3.1	[1,3]-Sigmatropic Hydrogen and Alkyl Shifts	112
		4.3.2	[1,5]-Sigmatropic Hydrogen and Alkyl Shifts	113
		4.3.3	[1,7]-Sigmatropic Hydrogen and Alkyl Shifts	118
	4.4	[3,3]-S	igmatropic Rearrangements	119
		4.4.1	The Cope Rearrangements	119
		4.4.2	The Oxy-Cope and the Anionic Oxy-Cope	
			Rearrangements	123
		4.4.3	The Amino- and Aza-Cope Rearrangements	126
		4.4.4	The Claisen Rearrangements and Their Modified	
			Versions: The Carroll, Eschenmoser, Ireland,	
			Johnson, Gosteli, Bellus, and Enzymatic Claisen	
			Rearrangements	129
		4.4.5	The Thio- and Aza-Claisen Rearrangements	137
	4.5	[2,3]-S	igmatropic Rearrangements	140
		4.5.1	Overview of Different Types of [2,3]-Sigmatropic	
			Rearrangements	140
		4.5.2	[2,3]-Sigmatropic Rearrangements of Allyl	
			Ammonium Ylides	141
		4.5.3	[2,3]-Sigmatropic Rearrangements of Benzyl	
			Ammonium Ylides: The Sommelet-Hauser	
			Rearrangement	143
		4.5.4	[2,3]-Sigmatropic Rearrangement of Allyl	
			Sulfonium Ylides	144

Contents

		4.5.5 [2,3]-Sigmatropic Rearrangements of Allyl	
		Sulfoxides: The Mislow-Evans Rearrangements 1	45
		4.5.6 [2,3]-Sigmatropic Rearrangements of Allyl	
		Selenoxides 1	46
		4.5.7 [2,3]-Sigmatropic Rearrangements of Anions of	
		Allyl Ethers: The Wittig and Aza-Wittig	
		Rearrangements	46
		4.5.8 [2,3]-Sigmatropic Rearrangements	
		of Allyl Amine Oxides: The Meisenheimer	
		Rearrangement	48
	4.6	[3,5]-Sigmatropic Rearrangement 1	48
	4.7	[4,5]-Sigmatropic Rearrangement 1	49
	4.8	[5,5]-Sigmatropic Rearrangement 1	49
	4.9	[9,9]-Sigmatropic Rearrangement 1	150
	4.10	Problems 1	151
	4.11	Further Reading 1	156
	Referen	nces 1	156
5	Group	Transfer Reactions	61
	5.1	Introduction 1	61
	5.2	The Ene Reactions 1	61
		5.2.1 Overview of the Ene Reactions	61
		5.2.2 Stereochemistry and Regioselectivity 1	63
		5.2.3 Applications of Intermolecular-, Intramolecular-,	
		and Enantioselective-Ene Reactions 1	165
	5.3	The Metallo-Ene Reactions 1	169
	5.4	The Retro-Ene Reactions 1	170
	5.5	Diimide and Related Reductions 1	171
	5.6	Thermal Elimination Reactions of Xanthates, N-Oxides,	
		Sulfoxides, and Selenoxides 1	173
	5.7	Problems 1	174
	5.8	Further Reading 1	176
	Referen	nces	176
л -	11 11		
Part	CH PI	notocnemical keactions	

6	Princ	iples of Photochemical Reactions	181
	6.1	Introduction	181
	6.2	Light Sources Used in Photochemical Reactions.	182
	6.3	Laws of Photochemistry	182
	6.4	The Beer–Lambert's Law of Light Absorption	183
	6.5	Physical Basis of Light Absorption by Molecules:	
		The Franck–Condon Principle	184
	6.6	Electronic Transitions and Their Nomenclature.	185
	6.7	Spin Multiplicity of Electronic States	186

6.8	The HC	OMO and LUMO Concept of Electronic Transitions	187
6.9	The Se	lection Rules for Electronic Transitions	187
6.10	Physica	l Properties of Excited States: Jablonski Diagram	188
6.11	Lifetim	es of Electronic Excited States.	190
6.12	Efficien	cy of Photochemical Processes: Quantum Yield	
	of Phot	ochemical Reaction	191
6.13	Intramo	blecular Process of Excited States: Fluorescence	
	and Pho	osphorescence	191
	6.13.1	Fluorescence and Its Measurement	191
	6.13.2	Kasha's Rule for Fluorescence	193
	6.13.3	Vavilov's Rule for Fluorescence	193
	6.13.4	Phosphorescence and Its Measurement	194
6.14	Intermo	blecular Physical Processes of Excited States:	
	Photose	ensitization Processes	195
	6.14.1	Photosensitization/Quenching	
		and Excimer/Exciplex Formation	195
	6.14.2	The Stern–Volmer Equation for Determination	
		of Quenching Rate	196
	6.14.3	Deviation from Stern–Volmer Kinetics	197
	6.14.4	The Excimers and Exciplexes	198
	6.14.5	Long-Range Energy Transfer Process: The FRET	
		Process	199
	6.14.6	Short-Range Energy Transfer Process: The Dexter	
		Theory of Energy Transfer	201
	6.14.7	Photodynamic Tumor Therapy Using Singlet	
		Oxygen	204
	6.14.8	Photo-induced Electron Transfer (PET) Process	205
	6.14.9	The Marcus Theory of Electron Transfer	207
6.15	Photocl	nemical Reactions and Their Kinetics	210
	6.15.1	Determination of the Excited State Configuration	211
	6.15.2	Determination of the Yield of Products	211
	6.15.3	Determination of the Lifetime of Intermediates	212
	6.15.4	Low-Temperature Matrix Studies	212
6.16	Further	Reading	213
Referen	nces		213
Photoc	hemistr	v of Alkenes, Dienes, and Polvenes	215
7.1	Introdu	ction	215
7.2	Cis-Tra	ans-Isomerizations	215
	7.2.1	Cis-Trans-Isomerizations of Alkenes.	215
	7.2.2	Cis-Trans-Isomerization of Dienes	218
7.3	Photoch	nemical Electrocyclic and Addition Reactions	219

7

	7.4	Photochemical [2+2]-Cycloaddition and Dimerization	
		Reactions	225
	7.5	Photochemical Rearrangements	226
		7.5.1 The di- π -Methane Rearrangements	227
		7.5.2 The aza-di- π -Methane Rearrangements	233
		7.5.3 The tri- π -Methane Rearrangements	234
	7.6	Problems	236
	7.7	Further Reading	237
	Refere	nces	237
8	Photoc	chemistry of Carbonyl Compounds	241
	8.1	Introduction	241
	8.2	Hydrogen Abstraction and Fragmentation Reactions	242
	8.3	Cycloaddition and Rearrangement Reactions	
		of Unsaturated Carbonyl Compounds	251
	8.4	Isomerization of Unsaturated Carbonyl Compounds	260
	8.5	Cycloaddition Reactions of Carbonyl Compounds	
		with Alkenes	261
		8.5.1 Limitations.	268
	8.6	Problems	271
	8.7	Further Reading	272
	Refere	nces	272
9	Photoc	chemistry of Aromatic Compounds	277
	9.1	Introduction	277
	9.2	Photoisomerization Reactions of Aromatic Compounds	277
	9.3	Photocycloaddition Reactions of Aromatic Compounds	
		with Unsaturated Compounds	278
		9.3.1 Photo-Diels–Alder Cycloaddition Reactions	
		of Aromatic Compounds	287
	9.4	Photo-Induced Hydrogen Abstraction and Addition	
		Reactions of Aromatic Compounds	288
	9.5	Photocyclization Reactions of Aromatic Compounds	289
	9.6	Photorearrangement Reactions of Aromatic Compounds	290
	9.7	Photooxidation Reactions of Aromatic Compounds	292
	9.8	Photodimerization Reactions of Aromatic Compounds	292
	9.9	Photosubstitution Reactions of Aromatic Compounds	294
	9.10	Problems	296
	9.11	Further Reading	297
	Refere	nces	298
10	Photof	fragmentation Reactions	301
	10.1	Introduction	301
	10.2	The Barton Reaction	302
	10.3	The Hypohalite Reactions	304
	10.4	The Hofmann-Löffler-Freytag Reaction	307

	10.5	Problems	311
	10.6	Further Reading	312
	Referen	nces	312
11	Photoc	hemistry in Nature and Applied Photochemistry	315
	11.1	Introduction	315
	11.2	Depletion of Stratospheric Ozone Layer	
		from Photochemical Degradation	315
	11.3	Photochemical Smog in Polluted Zones of Troposphere	316
	11.4	Photochemistry of Vision: Geometrical Isomerisation	
		of Retinal	317
	11.5	Phototherapy of Neonatal Jaundice	318
	11.6	Photosynthesis of Plants and Bacteria.	319
		11.6.1 Artificial Photosynthesis	323
	11.7	Photo-Induced DNA-Damage and Its Repair	323
	11.8	Conservation of Solar Energy as Electrical Energy:	
		Photovoltaic Solar Cells	323
	11.9	Photo-Induced Supramolecular Devices	328
	11.10	Further Reading	330
	Referen	nces	330
Арр	endix .		333
Inde	ex		347

Abbreviations

acac	Acetylacetonate
BINAP	Bis-(2,2'-diphenylphosphinyl)-1,1'-binaphthalene
BINOL	Binaphthol
Boc	Tertiary-butoxycarbonyl [Me ₃ COCO]
BOX	Bisoxazoline
Bz	Benzyl [PhCH ₂]
DBMP	6-di-tert-butyl-4-methyl phenol
DBP	Dibutyl phthalate
DBU	Diazabicycloundecane
DMA	Dimethylallene
DPM	Di- <i>π</i> -methane
ee	Enantiomeric excess
Et	Ethyl [C ₂ H ₅]
FVP	Flash vacuum pyrolysis
HMPA	Hexamethylphosphoramide
HOMO	Highest occupied molecular orbital
hv	Ultraviolet or visible irradiation
IL	Ionic liquid
i-Pr	Iso-propyl[Me ₂ CH]
KHMDS	Potassium hexamethyldisilazane or potassium bis(trimethylsilyl)
	amide [(Me ₃ Si) ₂ NK]
LDA	Lithium diisopropylamide [LiNi-Pr ₂]
LUMO	Lowest unoccupied molecular orbital
Me	Methyl [CH ₃]
MTAD	N-methylthiazolinedione
N,N-DEA	N, N-diethanolamine [NH(CH ₂ CH ₂ OH) ₂]
n-Pr	Normal-propyl [MeCH ₂ CH ₂]
ODPM	Oxa-di- <i>π</i> -methane
PET	Photo-induced electron transfer
Ph	Phenyl [C ₆ H ₅]

PhH	Benzene
P _i	Phosphate, inorganic
Ру	Pyridine
rt	Room temperature
sens	Sensitizer
SOMO	Singly occupied molecular orbital
TADDOL	$\alpha, \alpha, \alpha, \alpha$ -tetraaryl-1,3-dioxolane-4,5-dimethanol
TBDPS	Tert-butyldiphenylsilyl
TBS	Tert-butylmethyl silyl
t-Bu	Tertiary-butyl [Me ₃ C]
TCB	Tetracyanobenzene
THF	Tetrahydrofuran
TMS	Trimethylsilyl[Me ₃ Si]
Ts	Tosyl $[4-MeC_6H_4]$
TS	Transition structure

List of Figures

Figure 1.1	Formation of bonding and antibonding orbitals	5
Figure 1.2	Molecular orbitals formation in allyl systems	6
Figure 1.3	Molecular orbitals of 1,3-butadiene and their symmetry	
	properties. (S means symmetric and A means	
	antisymmetric)	6
Figure 1.4	Molecular orbitals of 1,3,5-hexatriene and their wave	
	functions and symmetry properties	7
Figure 1.5	Huckel TS for thermal cycloaddition reactions	11
Figure 2.1	a Thermal electrocyclization of $4n\pi e$ conjugated	
	system; b photochemical electrocyclization	
	of $4n\pi e$ conjugated system	15
Figure 2.2	a Thermal electrocyclization of $4n+2\pi$ e conjugated	
	system; b photochemical electrocyclization of 4n+2	
	π e conjugated system	16
Figure 2.3	a C_2 -axis of symmetry is maintained in thermal	
	conversion of cyclobutene to butadiene; b mirror	
	plane symmetry is maintained in photochemical	
	conversion of cyclobutene to butadiene	17
Figure 2.4	a Mirror plane (m) symmetry is maintained in thermal	
	conversion of 1,3,5-hexatriene into 1,3-cyclohexadiene;	
	\mathbf{b} C ₂ -axis of symmetry is maintained in photochemical	
	conversion of 1,3-cyclohexadiene into 1,3,5-hexatriene	
	or vice versa	18
Figure 3.1	Frontier orbital interactions of a thermally forbidden	
	$[\pi^2 s + \pi^2 s]$ -cycloaddition reaction, b photochemically	
	allowed $[\pi^2 s + \pi^2 s]$ -reaction of alkenes	38
Figure 3.2	Frontier orbital interactions of thermally allowed	
	antarafacial interaction of a ketene (LUMO)	
	and an olefin (HOMO)	39
Figure 3.3	Frontier orbital interactions in Diels–Alder reactions	48

Figure 3.4	Orbital interactions of HOMO of diene and LUMO	40
Eiguro 25	of dienophile and vice versa in a Diels-Alder reaction	49
Figure 5.5	symmetry properties of buladiene, engineer, and	
	m sum means mirror S means summetria and A means	
	<i>m-sym</i> means minor, 5 means symmetric, and A means	50
Figure 3.6	Symmetry correlation diagram for ethylene butadiene	50
I iguie 5.0	and cyclohevene orbitals	51
Figure 3.7	The orbitals set for supra- supra- $[\pi^4+\pi^2]$ -cycloaddition	51
I iguie 5.7	in Huckel and Mobius TSs	51
Figure 3.8	The orbital interactions in <i>endo</i> , and <i>exo</i> -transition	51
I iguie 5.6	states (TSs) in a Diels-Alder reaction	53
Figure 3.0	The figure illustrates the HOMO LUMO energy gap	55
Figure 5.9	in terms of EMO theory on the reactivity of diana	
	and dianophile in normal electron demand Diels. Alder	
	reaction. The nerrower the gap the higher	
	will be the TS stability and faster will be the reactivity	56
Figure 2.10	a LUMO aparay of diapaphila is lowered by Lewis	50
Figure 5.10	a LUMO energy of dienophile is lowered by Lewis	
	acid catalyst in NED D-A reactions and D LUMO	
	in HED D. A monthand	60
E	In IED D-A reactions	08
Figure 3.11	Frontier orbital interactions in a 1,3-dipolar	01
F '		81
Figure 3.12	Orbital coefficients of the HOMO and LUMO	
	of some 1, 3-dipoles. Adapted with permission	
	from (Houk et al. 1973 J Am Chem Soc, $95:7287$).	0.0
F: 0.10	Copyright (1973) American Chemical Society	82
Figure 3.13	The orbital interactions of HOMO and LUMO	
	in the TS in the reaction of nitrone 125	~ -
	with <i>ortho</i> -hydroxyl styrene 137	85
Figure 3.14	Orbital interactions in the TS for cheletropic addition	
	reactions in (4n+2) and 4n electron systems	96
Figure 4.1	Orbital interactions in thermal and photochemical	
	reactions of [1,3]-sigmatropic hydrogen shift	109
Figure 4.2	Orbital interactions in thermal and photochemical	
	reactions of [1,5]-sigmatropic hydrogen shift	109
Figure 4.3	Orbital interactions in Huckel-type TSs for thermal	
	[1,5]-, and [1,3]-sigmatropic hydrogen shifts	110
Figure 4.4	Suprafacial orbital interactions in thermal and	
	photochemical reactions of [1,7]-sigmatropic	
	hydrogen shift	110
Figure 4.5	Orbital interactions in the TSs of thermal reactions	
	of [1,3]- and [1,5]-sigmatropic suprafacial alkyl shifts	111

Figure 4.6	Suprafacial orbital interactions in chair- and boat-like	
	TSs in thermal [3,3]-sigmatropic rearrangements	111
Figure 4.7	Suprafacial orbital interactions in the TS (Huckel type)	
	of [2,3]-sigmatropic rearrangements	111
Figure 5.1	Orbital interactions of ene and enophile in the TS	
	of an ene reaction	163
Figure 6.1	Schematic diagram of the electronic ground state	
	and the first excited electronic state of a diatomic	
	molecule. The vertical arrows show vibronic	
	transitions due to absorption of photons	184
Figure 6.2	Generalized ordering of molecular orbital energies	
	of organic molecules and electronic transitions	
	that occur by excitation with light	185
Figure 6.3	Electronic states of molecular orbitals of an organic	
	compound	186
Figure 6.4	Modified Jablonski diagram for an organic molecule	
	showing ground and excited states and intramolecular	
	photophysical processes from excited states. Radiative	
	processes—fluorescence $(hv_{\rm f})$ and phosphorescence $(hv_{\rm p})$	
	are shown in straight lines, radiationless processes-	
	internal conversion (IC), inter system crossing (ISC),	
	and vibrational cascade (vc) are shown in wavy lines.	
	Adapted with permission from (Smith MB and March	
	J 2006 March's Advanced Organic Chemistry: Reactions,	
	Mechanisms and Structures, 6th Ed., John Wiley,	
	New York). Copyright (2007) John Wiley & Sons	189
Figure 6.5	Intramolecular energy transfer of	
	dimethylaminobenzonitrile by TICT process	190
Figure 6.6	Basic components of a spectrofluorometer	192
Figure 6.7	Schematic diagram of a rotating can phosphoroscope	
	with shutter system	195
Figure 6.8	Stern–Volmer plot of fluorescence quenching	198
Figure 6.9	Electronic movements occurring in the long-range	
	singlet-singlet energy transfer process	199
Figure 6.10	The dependence of efficiency of energy transfer	
	E_{T} on donor-acceptor distance R, as per Forster	
	theory in a FRET process	200
Figure 6.11	Conformational change occurs in green fluorescent	
	protein (GFP) of jellyfish during fluorescence emission.	
	Adapted with permission from (Wardle B 2009 Principles	
	and applications of photochemistry, Wiley, p. 102).	
	Copyright (2009) John Wiley & Sons	200
Figure 6.12	Electron movements in Dexter short-range	
	(triplet-triplet) energy transfer process	202

Figure 6.13	Electron movement in a triplet-triplet annihilation	
	process	204
Figure 6.14	Generalized structure of porphyrin. The R groups	
	represent different side groups attached	
	to the porphyrin ring	205
Figure 6.15	Molecular orbital representation of electron transfer	
	in a PET process. a Oxidative electron transfer,	
	where B is electron poor acceptor molecule,	
	and b reductive electron transfer, where B	
	is electron-rich donor molecule	206
Figure 6.16	Potassium cation sensor as a molecular fluorescence	
	switch in a PET process of anthracene fluorophore	
	having a macrocyclic donor unit	206
Figure 6.17	Principle of PET process in K ⁺ bound sensor	206
Figure 6.18	Potential energy (PE) description of an electron transfer	
	reaction. The parabolic curves intersect at the transition	
	state (#)	207
Figure 6.19	Reorganization of polar solvent dipoles during	
	PET process	208
Figure 6.20	Free energy change, ΔG^0 dependence of electron	
	transfer rate, K _{ET} according to Marcus theory	
	of electron transfer process	208
Figure 6.21	Normal and inverted regions of Marcus equation	
	for electron transfer process in a Zinc porphyrin—C ₆₀	
	dyad	209
Figure 6.22	Change of potential energy surfaces for excited-state	
	and ground-state molecules. Adapted with permission from	
	(Turro NJ 1991 Modern Molecular Photochemistry,	
	University Science Books). Copyright (1991) University	
	Science Books	211
Figure 7.1	Mechanism of photochemical cis-trans-isomerization	
	of alkenes	216
Figure 7.2	The orbital array of di- π -methane rearrangement	
	through singlet excited state	228
Figure 11.1	Photochemical reaction in the vision process.	318
Figure 11.2	Cis-trans-isomerisation of bilirubin.	319
Figure 11.3	Structures of chlorophyll a and chlorophyll b	320
Figure 11.4	Structures of β -carotene and phycoerythrobilin	321
Figure 11.5	Photochemical electron transport chain in a Z-scheme	
	during light-dependent reactions of photosynthesis.	
	EA and ED refer to the electron acceptor and electron	

	donor of the two photosystems. Adapted with permission	
	from (Wardle B, 2009 Principles and Applications	
	of Photochemistry, Wiley, p. 226). Copyright (2009)	
	John Wiley & Sons	321
Figure 11.6	The working mechanism of a silicon p-n junction solar	
	cell. Adapted with permission from (Wardle B, 2009	
	Principles and Applications of Photochemistry, Wiley,	
	p. 217). Copyright (2009) John Wiley & Sons	324
Figure 11.7	Schematic diagram of a dye-sensitized solar cell where	
	semiconductor TiO ₂ nanoparticles are coated	
	with Ru(II)-based dye. Adapted with permission from	
	(Wardle B, 2009 Principles and Applications of	
	Photochemistry, Wiley, p. 202). Copyright (2009)	
	John Wiley & Sons	325
Figure 11.8	Photo-induced electron transfer from excited	
	MDMO-doped PPV to PCBM.	327
Figure 11.9	Schematic device structure for polymer/fullerene bulk	
	heterojunction solar cells. Adapted with permission from	
	(Gunes et al. 2007 Chem Rev 107:1324). Copyright (2007)	
	American Chemical Society	328
Figure 11.10	Molecular structures of the components for a light-driven	
	molecular scale machine. Adapted with permission from	
	(Bolzani et al. 2006 Aust J Chem 59:193). Copyright	
	(2006) CSIRO Publishing	329

List of Tables

Symmetry properties of the orbital ψ_n of a linear	
conjugated polyene	8
Woodward–Hoffmann rules for electrocyclic reactions	16
Woodward–Hoffmann rules for [m+n]-cycloaddition	
reactions	49
Global electrophilicity of some dienophiles in D-A	
reactions with 1,3-butadiene ($\Delta \omega = 1.05 \text{ eV}$)	55
Relative rates of reactivity of some substituted butadienes	
in D–A reactions with maleic anhydride	56
Representative dienes and dienophiles used in Diels-Alder	
reactions	57
List of common 1, 3-dipoles with resonating structures	79
Woodward-Hoffmann rules for sigmatropic rearrangements	112
Comparison of light absorptions due to $\pi \to \pi^*$	
and $n \to \pi^*$ electronic transitions	186
	Symmetry properties of the orbital ψ_n of a linear conjugated polyene

List of Schemes

Scheme 3.1	Regioselectivity of Diels–Alder reaction	46
Scheme 4.1	Major types of sigmatropic rearrangements	108
Scheme 9.1	Mechanism for formation of photochemical adducts	
	from the reaction of aromatic compounds with alkenes	279
Scheme 10.1	Generalized pathway for photofragmentation reaction	302

Part I Pericyclic Reactions

Chapter 1 General Aspects of Pericyclic Reactions

1.1 Introduction

Reactions in Organic Chemistry are broadly classified into three major categories ionic, radical, and pericyclic. Ionic reactions involve the formation of ionic intermediates by movement of pair of electrons in one direction of a covalent bond. In a unimolecular reaction, it occurs by ionization process and in a bimolecular reaction, it occurs when one component acts as a nucleophile (or electron pair donor) and another component as electrophile (or electron pair acceptor). For example,

Radical reaction involves the homolytic cleavage of a covalent bond by movement of single electrons in opposite directions. The movement of a single electron is represented by fish hook arrow. For example,

© Springer International Publishing Switzerland 2017 B. Dinda, *Essentials of Pericyclic and Photochemical Reactions*, Lecture Notes in Chemistry 93, DOI 10.1007/978-3-319-45934-9_1 Pericyclic reactions involve the continuous flow of electrons in cyclic transition states (TS) by breaking and making of bonds in a concerted process, without formation of an intermediate. Hence, these reactions are known as concerted reactions [1]. These reactions are insensitive to solvent polarity and free radical initiators or inhibitors. These reactions are activated by heat (thermal) or light (photochemical). Detailed study of the mechanisms of these reactions by Woodward and Hoffmann [2] predicted that these reactions occur by the maintenance of symmetry properties of the orbitals of reactant(s) and product(s). The Diels–Alder reaction is a typical example.

A Diels-Alder reaction

1.2 Molecular Orbitals and Their Symmetry Properties

In pericyclic reactions, the reactivity of the reactions can be explained on the basis of Perturbational Molecular Orbital (PMO) theory [3]. The basic postulate of PMO theory is that a chemical reaction takes place by the perturbation of molecular orbitals (MOs) of reactants on heating and on irradiation with light. The degree of perturbation is a function of degree of overlapping interactions of the atomic orbitals in an MO. These interactions are strongest among the orbitals close in energies. These orbital overlapping interactions produce degenerate MOs of different energies. The suitable degenerate MOs take part in the reactions to give products through cyclic TSs in a concerted process. The interactions of two atomic orbitals will produce two MOs, one of them will be stabilized and other will move to higher energy. The linear combination of atomic orbitals is known as LCAO theory or PMO theory. The shapes of the MOs that are formed by the linear combination of atomic orbitals (LCAO) are related to the shapes of atomic orbitals. The MOs are denoted by ψ (psi) and atomic orbitals by Φ (phi). Dewar and Hoffmann first developed a general PMO method to explain the reactivity in organic chemistry. To illustrate the idea, let us consider a diatomic molecule where an MO formed by the combination of atomic orbitals of A and B is represented as

$$\psi = \Phi_A + \Phi_B$$

Quantum mechanics shows that the linear combination of two wave functions gives two combinations and hence two MOs are generated from two-component atomic orbitals. One MO is bonding orbital, more stable than the component atomic orbitals and other one is an antibonding orbital, less stable than the component orbitals.

$$\psi_{+} = \Phi_{A} + \Phi_{B} \text{ (bonding MO)}$$

 $\psi_{-} = \Phi_{A} - \Phi_{B} \text{ (antibonding MO)}$

The MOs that have resulted from overlap of various kinds of atomic orbitals are shown in Fig. 1.1.

Similarly, the linear combination of three p-orbitals in allyl system will give rise to three new MOs ψ_1 , ψ_2 and ψ_3 . The antibonding interactions increase the energy of the MO. Thus, the energy of ψ_2 is higher than that of ψ_1 and ψ_3 is of higher energy than ψ_2 . The wave functions and their symmetry in relation to the mirror plane are shown in Fig. 1.2.

Similarly, the linear combination of four atomic π orbitals in 1, 3-butadiene will generate four MOs ψ_1 , ψ_2 , ψ_3 , and ψ_4 (Fig. 1.3).

Next, the linear combination of six atomic p-orbitals of 1,3,5-hexatriene will give rise to six MOs. The wave functions and symmetry properties of these MOs are shown in Fig. 1.4.

On the basis of the above examples of polyene systems, the symmetry properties of MO, ψ_n of a linear conjugated polyene are summarized in Table 1.1.

Presented + and - are mathematical signs

Fig. 1.1 Formation of bonding and antibonding orbitals

Fig. 1.2 Molecular orbitals formation in allyl systems

Fig. 1.3 Molecular orbitals of 1,3-butadiene and their symmetry properties. (S means symmetric and A means antisymmetric)

1.3 Classification of Pericyclic Reactions

Pericyclic reactions are classified into four classes. These are electrocyclic reactions, cycloadditions, sigmatropic rearrangements, and group transfer reactions.

Electrocyclic reactions are characterized by the creation of a ring from an open-chain conjugated system with the formation of a new σ bond at the ends of the conjugated system or its reverse process.

Fig. 1.4 Molecular orbitals of 1,3,5-hexatriene and their wave functions and symmetry properties

Table 1.1 Symmetry	Wave function	Nodes	m-symmetry	C2-symmetry
a linear conjugated polyene	$\psi_{odd:}\;\psi_{1,}\;\psi_{3,}\;\psi_{5}$	0 or even	S	А
a inical conjugated polyene	$\psi_{even:} \psi_2, \psi_4, \psi_6$	odd	А	S

Cycloaddition reactions are characterized by the addition of two π -systems by the formation of two new σ bonds, at the ends of both components, with the reduction of one π -bond from each component, e.g., Diels–Alder reactions.

1, 3-Dipolar cycloadditions are another family member of cycloaddition reactions, e.g.,

Cheletropic reactions are a special group of cycloadditions or cycloreversions in which two σ bonds are made or broken from the same atom.

Signatropic rearrangements are characterized by the movement of a σ bond to a more distant terminus of an adjacent π system followed by movement of the π system to accommodate this new σ bond, e.g.,