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Preface

This volume represents presentations given at the 80th annual meeting of the
Psychometric Society, organized by the Beijing Normal University, during July
12–16, 2015. The meeting attracted 511 participants from 21 countries, with 254
papers being presented, along with 119 poster presentations, three pre-conference
workshops, four keynote presentations, eight invited presentations, and six invited
and five contributed symposia. This meeting was the first ever held in China,
the birthplace of standardized testing, as was highlighted in the keynote address
“the history in standardized testing” by Dr. Houcan Zhang. We thank the local
organizers Tao Xin and Hongyun Liu and their staff and students for hosting this
very successful conference.

Since the 77th meeting in Lincoln, Nebraska, Springer publishes the proceedings
volume from the annual meeting of the Psychometric Society so as to allow
presenters to quickly make their ideas available to the wider research community,
while still undergoing a thorough review process. The first three volumes of the
meetings in Lincoln, Arnhem, and Madison were received successfully, and we
expect a successful reception of these proceedings too.

We asked authors to use their presentation at the meeting as the basis of their
chapters, possibly extended with new ideas or additional information. The result is a
selection of 29 state-of-the-art chapters addressing a diverse set of topics, including
item response theory, factor analysis, structural equation modelling, time series
analysis, mediation analysis, cognitive diagnostic models, and multi-level models.

Amsterdam, The Netherlands L. Andries van der Ark
Madison, WI Daniel M. Bolt
Hong Kong, China Wen-ChungWang
Urbana-Champaign, IL Jeffrey A. Douglas
Umeå, Sweden Marie Wiberg
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Continuation Ratio Model in Item Response
Theory and Selection of Models for Polytomous
Items

Seock-Ho Kim

Abstract In the continuation ratio model continuation ratio logits are used to model
the probabilities of obtaining ordered categories in polytomously scored items. The
continuation ratio model is an alternative to other models for ordered category items
such as the graded response model, the generalized partial credit model, and the
partial credit model. The theoretical development of the model, descriptions of
special cases, maximum likelihood estimation of the item and ability parameters
are presented. An illustration and comparisons of the models for ordered category
items are presented using empirical data.

Keywords Bayesian estimation • Continuation ratio model • Item response
theory • Maximum likelihood estimation • Multicategory logit model •
Polytomous model

1 Introduction

When a free response item is scored in a dichotomous fashion, a single decision
is performed in a sense that no further decisions will be made beyond the current
decision to be taken. When a free response item is rated in a polytomous fashion,
either a single decision is performed or multiple decisions in which dependent
decisions are made in tandem are required.

Borrowing terms from the game theory (Luce & Raiffa, 1957), a particular
alternative chosen by a rater at a given decision point is called a “choice,” and the
totality of choices available to a rater at the decision point constitutes a “move.” A
sequence of choices, one following another until the rating or scoring of an item
is complete, can be called a “play.” The play or the rating process for a given
item can be depicted with a connected graph, called a decision tree, consists of a
collection of nodes and branches between pairs of nodes. A decision tree with three
decision points and four choices is presented in Fig. 1. The decision tree reflects

S.-H. Kim (�)
Department of Educational Psychology, The University of Georgia, 325 Aderhold Hall, Athens,
GA 30602-7143, USA
e-mail: shkim@uga.edu
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Fig. 1 A decision tree with
three decision points and four
choices

Move 1

Choice 1

Move 2
Choice 1c

Choice 2

Move 3
Choice 2c

Choice 3

Choice 4

the sequential nature of scoring. Each decision point is denoted as a circle and the
chance events with respective but dependent probabilities are denoted as squares
in Fig. 1. The superscript c of the choice number indicates the complement of the
event.

The decision tree in Fig. 1 involves in a set of dependent events. The model
for the ordered choices ought to reflect the joint probabilities and must take into
account the conditional probabilities that characterize the dependence. The model
for ordered category items to be described is called a continuation ratio model.
Such a model that employs continuation-ratio logits with a manifested or directly-
observed explanatory variable was originally developed to handle a multicategory
response variable in logit models (Cox 1972). In the item response theory field,
Mellenbergh (1995) presented conceptual notes on models for discrete polytomous
item responses and indicated that the continuation ratio model could be considered
as a special case of the Bock’s (1972) model (cf. Tutz 1990; Hemker, van der Ark, &
Sijtsma, 2001). The general discussion of the various item response theory models
for polytomously scored items can be found in Hambleton, van der Linden, and
Wells (2010).

2 The Continuation Ratio Model and Parameter Estimation

Let Yij be a random variable that designates the rating or scored item response of
individual i to item j. The continuation ratio model assumes that the manifestation of
Yij or the probability of Yij to be a specific value depends on a person’s latent ability
�i and a vector-valued item characteristic �j [i.e., ajk’s and bjk’s; see the definitions
following Eq. (1)]. The probability that yij D k given ability �i and item parameter
�j, Prob

�
yij D kj�i; �j

�
, is
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Pjk.�i/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂
ˆ̂̂
:̂

exp
��ajk.�i � bjk/

�

kY

hD1

˚
1 C exp

��ajh.�i � bjh/
��

for k D 1; : : : ; Kj � 1

1
Kj�1Y

hD1

˚
1 C exp

��ajh.�i � bjh/
��

for k D Kj;
(1)

where ajk is the slope parameter and bjk is the threshold parameter. The number of
item parameters for item j is 2.Kj � 1/. When an item has two rating categories, that
is, Kj D 2, the continuation ratio model becomes the two-parameter logistic model.

Under the assumption of conditional independence, the probability of a response
vector yi D .yi1; : : : ; yiJ/, is given as Prob .yij�i; �/ D p.yij�i; �1; : : : ; �J/ DQJ

jD1 Pjk.�i/ and the joint probability of the response vectors of a sample of I

subjects is given as Prob .yj�; �/ D p.y1; : : : ; yIj�1; : : : ; �I ; �/ D QI
iD1

QJ
jD1 Pjk.�i/.

When the joint probability is considered as a function of unknown parameters �

and � , we call it the likelihood L. Inference of the values of unknown parameters
from observed data can be accomplished by maximizing the likelihood or its
modifications with respect to the unknown parameters.

Several estimation procedures are available to obtain parameter estimates in
the continuation ratio model. Kim (2002) presented detailed estimation procedures
including the marginal estimation of item parameters (Bock & Aitkin, 1981). Kim
(2002) also presented model fit statistics, estimation of the latent criterion variable
�i (i.e., methods of maximum likelihood, maximum a posteriori, and expected a
posteriori), and information functions for the continuation ratio model.

It can be noted that the continuation ratio model treats a polytomously scored
item as a set of dichotomously scored items (Kim 2013). For example, an item
with four categories or choices can be converted into three dichotomously scored
items with some dependency among the converted dichotomous items. It is possible,
consequently, to obtain the parameter estimates under the continuation ratio model
using computer programs that implemented the marginal maximum likelihood
estimation of item parameters under the usual two-parameter logistic model and
an ability estimation method. Kim (2013) presented means to obtain parameter
estimates using several popular item response theory computer programs utilizing
missing or not-presented options.

Note that other parameter estimation methods (e.g., Bayesian estimation, Markov
chain Monte Carlo, Gibbs sampling; see Baker & Kim, 2004) implemented in
item response theory computer programs can also be applied to obtain both item
and ability parameter estimates under the continuation ratio model. Because of the
relationship between the two-parameter logistic model and the continuation ratio
model, priors of item parameters used in Bayesian estimation can be employed with
minor changes (e.g., Swaminathan & Gifford 1985).

Although the continuation ratio model for the polytomous items with ordered
categories has been available for some time, applications of the model to analyze
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polytomous data are not widely available. An illustration is presented next using
empirical data with the Fortran implementation of the continuation ratio model and
the computer program MULTILOG (Thjssen, Chen, & Bock, 2002). Subsequently,
comparisons of the estimation results from several models for ordered category
items are presented using MULTILOG.

3 An Illustration

The data from an experimental form of a French writing assessment were analyzed.
The experimental form was a performance assessment rating instrument that
consists of three polytomously scored items with four ordered rating categories. The
participants were 120 college students who had complete data for the three item
responses. Although there might be 64 different response patterns, 31 distinctive
patterns were actually observed (see Table 2 for the response patterns and the
number of examinees in each pattern).

The marginal maximum likelihood estimation of item parameters was carried out
on the three French items from the experimental form using the Fortran computer
program modified from the code written for Kim (2002). Ten quadrature fractile
points were used for ability integration during calculations. After several cycles of
the expected and maximization iterations, the item parameter estimates were stable
to four significant figures. Goodness of fit for the model was assessed, and the
resulting chi-square value of the �2 log likelihood was 38.81 with the degrees of
freedom of 12 (i.e., the number of response patterns minus the number of parameters
estimated minus one; see Bock & Aitkin, 1981). Although the solution showed
reasonably good fit, the chi-square was relatively large (i.e., p < :01) due to the
sparseness of data from the small frequencies of the 31 observed response patterns.
Ability parameters were estimated with a method of expected a posteriori (Bock &
Mislevy, 1982) using the Fortran program written for Kim (2002).

Item and ability parameter estimates of the continuation ratio model from
MULTILOG were also obtained. The input files for the MULTILOG run are
shown in the Appendix (i.e., FRENF.MLG and the data file without a name, e.g.,
FRENF.DAT). The exact interpretation of the keywords and command lines can be
found in the manual of the computer program MULTILOG (see Thissen et al. 2002;
du Toit 2003).

Item parameter estimates and standard errors of the continuation ratio model
from the Fortran implementation of the marginal maximum likelihood estimation
as well as those from MULTILOG are presented in Table 1. Because the source
code of the proprietary program is not in general available, the estimation result
from the Fortran implementation based on open source (i.e., the Fortran source
code is available from the author) was used here as a reference purpose. All of
the item parameter estimates for a given item between two computer programs are
very similar. It should be noted that by changing the default settings of the program,
it may be possible to obtain exactly the same estimation results.
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Table 1 The continuation ratio model item parameter estimates and standard errors (s.e.) from the
Fortran program and MULTILOG

Item parameter estimate
Program Item aj1 (s.e.) bj1 (s.e.) aj2 (s.e.) bj2 (s.e.) aj3 (s.e.) bj3 (s.e.)

Fortran 1 2:22 .0:65/ �1:36 .0:25/ 2:60 .1:01/ �0:09 .0:26/ 3:89 .1:77/ 1:34 .0:17/

2 2:59 .1:32/ �1:85 .0:37/ 2:72 .1:25/ �0:31 .0:14/ 3:61 .1:11/ 1:12 .0:18/

3 2:14 .0:43/ �1:55 .0:25/ 1:79 .0:48/ �0:34 .0:19/ 3:91 .1:33/ 0:92 .0:17/

MULTILOG 1 2:17 .0:61/ �1:38 .0:27/ 2:43 .0:67/ �0:11 .0:15/ 3:68 .1:24/ 1:32 .0:18/

2 2:68 .1:06/ �1:84 .0:32/ 2:96 .0:79/ �0:31 .0:13/ 3:82 .1:28/ 1:11 .0:15/

3 2:17 .0:52/ �1:55 .0:29/ 1:71 .0:47/ �0:37 .0:22/ 4:49 .1:54/ 0:93 .0:13/

Plots of the category response functions of the three items under the continuation
ratio model were obtained and presented in Fig. 2. For each of the items, the
monotonic decreasing curve corresponds to the lowest category; the middle two
curves correspond to the two middle categories; the monotonic increasing curve
corresponds to the highest category. These indicate in each item that the examinees
of indefinitely low ability will be assigned the lowest category and, conversely,
that examinees of indefinitely high ability will be assigned the highest category.
Considering the size of standard errors, these differences may be trivial. In sum, all
category response functions from the programs are nearly the same, reflecting the
similarity in the item parameter estimates.

Ability estimates from the method of expected a posteriori assuming that
item parameter estimates under the continuation ratio model from the Fortran
implementation to be true values were obtained and reported in Table 2. Ability
estimates were also obtained from MULTILOG. A standard normal prior was used
in ability estimation. Due to the similarity of the item parameter estimates, the
ability estimates are very similar. One peculiar ability estimate was obtained for
the response pattern of 443. The ability estimate was less than those obtained from
the response patterns of 441 and 442. A procedure or constraint to prevent to yield
illogical ability estimates may be applied in practice.

4 Comparisons of Polytomous Models

The same data from the experimental form of the French writing assessment
were analyzed to compare models for ordered category items. Category response
functions of the items under the graded response model (Samejima 1969), the
generalized partial credit model (Muraki 1992), and the partial credit model
(Masters 1982) were obtained using MULTILOG. Example input files for various
polytomous models can be found in du Toit (2003).

Item parameter estimates under the graded response model, the generalized
partial credit model, and the partial credit model are reported in Table 3. It should
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Fig. 2 Category response functions for items 1–3 under the continuation ratio model from the
Fortran program (red) and MULTILOG (blue)

be noted that the actual, unconstrained parameters estimated in the generalized
partial credit model and the partial credit model from MULTILOG are those
under the nominal response model. The output from MULTILOG contained both
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Table 2 Expected a posteriori (EAP) ability estimates and the posterior standard deviations
(p.s.d.) from the Fortran program and MULTILOG

Program Program

Fortran MULTILOG Fortran MULTILOG

Pattern n EAP (p.s.d.) EAP (p.s.d.) Pattern n EAP (p.s.d.) EAP (p.s.d.)

111 4 �2:10 (0.57) �2:10 (0.53) 233 9 0:01 (0.49) 0:02 (0.40)

112 1 �1:56 (0.44) �1:61 (0.47) 323 6 �0:00 (0.49) �0:05 (0.41)

121 4 �1:47 (0.41) �1:47 (0.47) 332 4 0:23 (0.45) 0:18 (0.42)

211 1 �1:53 (0.44) �1:58 (0.48) 234 1 0:53 (0.28) 0:69 (0.36)

122 4 �1:14 (0.49) �1:09 (0.45) 243 1 0:51 (0.27) 0:60 (0.37)

212 1 �1:19 (0.48) �1:17 (0.46) 333 24 0:42 (0.27) 0:37 (0.37)

221 4 �1:08 (0.50) �1:07 (0.45) 342 2 0:73 (0.45) 0:83 (0.39)

123 2 �0:70 (0.47) �0:75 (0.45) 423 1 0:55 (0.31) 0:54 (0.39)

132 1 �0:51 (0.43) �0:48 (0.46) 441 1 1:41 (0.34) 1:31 (0.41)

222 10 �0:69 (0.43) �0:76 (0.42) 334 5 0:74 (0.43) 0:89 (0.31)

312 1 �0:55 (0.46) �0:63 (0.49) 343 1 0:69 (0.40) 0:82 (0.32)

223 5 �0:46 (0.33) �0:46 (0.41) 442 1 1:46 (0.32) 1:40 (0.42)

232 8 �0:33 (0.40) �0:24 (0.42) 344 4 1:40 (0.27) 1:25 (0.33)

322 3 �0:34 (0.39) �0:33 (0.42) 434 2 1:42 (0.25) 1:24 (0.33)

134 1 0:52 (0.33) 0:66 (0.38) 443 1 1:40 (0.27) 1:17 (0.32)

Continued to the right-hand-side columns 444 7 1:74 (0.48) 1:81 (0.48)

unconstrained item parameter estimates as well as those transformed estimates with
Bock’s (1972) contrasts. The estimates reported under the generalized partial credit
model and the partial credit model in Table 3 are the ones actually estimated by
MULTILOG (see du Toit 2003 pp. 570–595).

Plots of category response functions obtained from the MULTILOG runs for
the continuation ratio model, and the three other polytomous item response theory
models are presented in Fig. 3. The third and fourth category response functions
from the continuation ratio model seem different from those from the other
polytomous item response theory models. The category response functions for item
2 from the graded response model and the generalized partial credit model look
nearly the same.

The full-information fit statistics from MULTILOG were G2.12/ D 40:4 for the
continuation ratio model, G2.22/ D 45:5 for the graded response model, G2.22/ D
50:6 for the generalized partial credit model, and G2.24/ D 51:5 for the partial
credit model. All likelihood-ratio goodness-of-fit statistic values were statistically
significant (i.e., p < :01) and relatively large due to the sparseness of data.

In addition, the Akaike’s (1992) AIC (i.e., an information criterion) was obtained.
The AIC values were 791.55 for the continuation ratio model, 784.66 for the graded
response theory model, 789.75 for the generalized partial credit model, and 786.67
for the partial credit model (see Kang & Cohen, 2007). The graded response model
seems to be the best fitting one for the current data. Thissen, Nelson, Rosa, and
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Table 3 Item parameter estimates and standard errors (s.e.) from the graded
response (GR) model, the generalized partial credit (GPC) model, and the partial
credit (PC) model

MULTILOG estimate
GR model Item aj (s.e.) bj1 (s.e.) bj2 (s.e.) bj3 (s.e.)

1 2:81 (0.45) �1:26 (0.17) �0:08 (0.12) 1:46 (0.21)

2 3:00 (0.51) �1:75 (0.22) �0:31 (0.11) 1:19 (0.17)

3 2:42 (0.35) �1:47 (0.22) �0:26 (0.14) 1:15 (0.20)

MULTILOG estimate

GPC model Item ˛j (s.e.) �j1 (s.e.) �j2 (s.e.) �j3 (s.e.)

1 2:31 (0.42) �2:84 (0.64) �0:23 (0.35) 3:42 (0.73)

2 2:77 (0.54) �4:81 (0.99) �0:86 (0.38) 3:27 (0.64)

3 1:87 (0.31) �2:66 (0.54) �0:54 (0.33) 2:22 (0.54)

MULTILOG estimate

PC model Item ˛j (s.e.) �j1 (s.e.) �j2 (s.e.) �j3 (s.e.)

1 2:27 (0.23) �2:79 (0.52) �0:23 (0.35) 3:38 (0.59)

2 2:27 (0.23) �4:11 (0.71) �0:75 (0.36) 2:81 (0.51)

3 2:27 (0.23) �3:11 (0.58) �0:60 (0.34) 2:57 (0.52)

McLeod (2001) reported that the graded response model might fit rating data better
than the generalized partial credit model.

Based on the item parameter estimates from the various polytomous item
response theory models, the ability parameters were estimated by the method of
expected a posteriori using MULTILOG (see Table 4). Ability estimates from
the continuation ratio model, the graded response model, the generalized partial
credit model, and the partial credit models were very similar. As mentioned in the
discussion of Table 2, one peculiar ability estimate was obtained for the response
pattern of 443 under the continuation ratio model. Other models for the polytomous
items didn’t exhibit such an illogical ability estimate.

5 Discussion

The purpose of the present paper was to provide information for the parameter
estimation under the continuation ratio model using the Fortran implementation and
MULTILOG. An illustration was provided with the performance assessment rating
data. Marginal maximum likelihood estimation of item parameters was employed
with the method of expected a posteriori for ability estimation. Item parameter
estimates from the two programs under the continuation ratio model were very
similar, and the ability estimates were also very much alike.
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Fig. 3 Category response functions for the continuation ratio model (blue), the graded response
model (red), the generalized partial credit model (green), and the partial credit model (black)

In addition, the item and ability parameter estimates under the continuation ratio
model were compared with those from the graded response model, the generalized
partial credit model, and the partial credit model using MULTILOG. Although the
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Table 4 Expected a posteriori (EAP) ability estimates and the posterior stan-
dard deviations (p.s.d.) under the continuation ratio (CR) model, the graded
response (GR) model, the generalized partial credit (GPC) model, and the partial
credit (PC) model

Model

CR GR GPC PC

Pattern n EAP (p.s.d.) EAP (p.s.d.) EAP (p.s.d.) EAP (p.s.d.)

111 4 �2:10 (0.53) �2:06 (0.51) �2:05 (0.52) �2:03 (0.53)

112 1 �1:61 (0.47) �1:57 (0.43) �1:61 (0.45) �1:50 (0.45)

121 4 �1:47 (0.47) �1:46 (0.42) �1:44 (0.43) �1:50 (0.45)

211 1 �1:58 (0.48) �1:49 (0.43) �1:52 (0.44) �1:50 (0.45)

122 4 �1:09 (0.45) �1:10 (0.40) �1:10 (0.41) �1:09 (0.41)

212 1 �1:17 (0.46) �1:11 (0.41) �1:18 (0.42) �1:09 (0.41)

221 4 �1:07 (0.45) �1:02 (0.41) �1:03 (0.41) �1:09 (0.41)

123 2 �0:75 (0.45) �0:79 (0.44) �0:79 (0.40) �0:71 (0.40)

132 1 �0:48 (0.46) �0:64 (0.43) �0:64 (0.40) �0:71 (0.40)

222 10 �0:76 (0.42) �0:73 (0.48) �0:72 (0.40) �0:71 (0.40)

312 1 �0:63 (0.49) �0:73 (0.48) �0:79 (0.40) �0:71 (0.40)

223 5 �0:46 (0.41) �0:42 (0.39) �0:42 (0.40) �0:34 (0.40)

232 8 �0:24 (0.42) �0:31 (0.39) �0:27 (0.40) �0:34 (0.40)

322 3 �0:33 (0.42) �0:37 (0.40) �0:35 (0.40) �0:34 (0.40)

134 1 0:66 (0.38) 0:10 (0.52) �0:04 (0.41) 0:04 (0.41)

233 9 0:02 (0.40) 0:02 (0.40) 0:04 (0.41) 0:04 (0.41)

323 6 �0:05 (0.41) �0:01 (0.41) �0:04 (0.41) 0:04 (0.41)

332 4 0:18 (0.42) 0:10 (0.41) 0:11 (0.41) 0:04 (0.41)

234 1 0:69 (0.36) 0:32 (0.45) 0:36 (0.42) 0:44 (0.43)

243 1 0:60 (0.37) 0:45 (0.46) 0:52 (0.43) 0:44 (0.43)

333 24 0:37 (0.37) 0:44 (0.40) 0:44 (0.42) 0:44 (0.43)

342 2 0:83 (0.39) 0:58 (0.47) 0:60 (0.43) 0:44 (0.43)

423 1 0:54 (0.39) 0:34 (0.49) 0:36 (0.42) 0:44 (0.43)

441 1 1:31 (0.41) 1:11 (0.51) 0:68 (0.43) 0:44 (0.43)

334 5 0:89 (0.31) 0:79 (0.42) 0:78 (0.43) 0:86 (0.44)

343 1 0:82 (0.32) 0:90 (0.41) 0:95 (0.44) 0:86 (0.44)

442 1 1:40 (0.42) 1:15 (0.49) 1:04 (0.44) 0:86 (0.44)

344 4 1:25 (0.33) 1:30 (0.42) 1:32 (0.46) 1:32 (0.46)

434 2 1:24 (0.33) 1:25 (0.43) 1:23 (0.45) 1:32 (0.46)

443 1 1:17 (0.32) 1:37 (0.43) 1:41 (0.46) 1:32 (0.46)

444 7 1:81 (0.48) 1:88 (0.52) 1:88 (0.54) 1:88 (0.54)

overall patterns of the categorical response functions were similar in terms of plots,
the continuation ratio model and the partial credit model yielded slightly different
results from the graded response model and the generalized partial credit model.
The model comparison using AIC indicated that the graded response model was the
best fitting model to the data used in the illustration.
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As long as the continuation ratio model yields similar item and ability parameters
to other polytomous item response theory models as well as comparable information
based goodness of fit measures, it can be viewed as an attractive alternative
when polytomous items are analyzed. This study used a small data set for only a
demonstration purpose. In order to understand the behavior of the item and ability
parameter estimates under the continuation ratio model, a more extensive large scale
simulation study should be performed.

It should be noted that in the continuation ratio model continuation ratio logits
are sequentially used to model the probabilities of obtaining ordered categories in
a polytomous item. In order to successfully apply the model to data, this sequential
characteristic or nature of the assignment of ordered categories should be present in
the construction of data. Inspecting the data if such a characteristic is present seems
to be a prerequisite issue before applying logits to a multicategory variable.

In sum, the continuation ratio model considered in this paper can be applied to
polytomous response items if they possess a special characteristic that the categories
or ordered levels of the response are assigned in a forward, sequential manner. Note
that not all polytomous, ordered responses have such a characteristic.

As long as the assumption is satisfied, the continuation ratio model is a unique
model for the polytomous items due to the asymptotic independence of the
categories within the item (cf. Fienberg 1980 pp. 110–111). Response categories
of an item can be separately determined as if those were a set of dichotomous
items. Hence, an application of the continuation ratio model in the context of
differential item functioning may be promising because category response functions
are rather independently obtained so that the category response functions from
different groups can be directly compared (cf. Penfield, Gattamorta, & Childs,
2009). This model may also have a good potential use in metric linking and equating
for polytomous items because the methods applicable to dichtomous items can
be applied without any serious modifications (cf. Kim, Harris, & Kolen, 2010).
The continuation ratio model may be a good choice for polytomous items when
calibration is required for a test of items with mixed types (i.e., dichotomous and
polytomous).

Appendix

FRENF.MLG
L2
>PROBLEM RANDOM, PATTERNS, NITEMS=9, NGROUPS=1, NPATTERNS=31,
DATA=’FRENF.DAT’;

>TEST ALL, L2;
>END;
3
019
111111111
Y
9
(4X,9A1,F3.0)

111 099099099 4
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112 099099109 1
121 099109099 4
211 109099099 1
122 099109109 4
212 109099109 1
221 109109099 4
123 099109110 2
132 099110109 1
222 109109109 10
312 110099109 1
223 109109110 5
232 109110109 8
322 110109109 3
134 099110111 1
233 109110110 9
323 110109110 6
332 110110109 4
234 109110111 1
243 109111110 1
333 110110110 24
342 110111109 2
423 111109110 1
441 111111099 1
334 110110111 5
343 110111110 1
442 111111109 1
344 110111111 4
434 111110111 2
443 111111110 1
444 111111111 7
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Using the Asymmetry of Item Characteristic
Curves (ICCs) to Learn About Underlying
Item Response Processes

Sora Lee and Daniel M. Bolt

Abstract In this chapter, we examine how the nature and number of underlying
response subprocesses for a dichotomously scored item may manifest in the form of
asymmetric item characteristic curves. In a simulation study, binary item response
datasets based on four different item types were generated. The item types vary
according to the nature (conjunctively versus disjunctively interacting) and number
(1–5) of subprocesses. Molenaar’s (2014) heteroscedastic latent trait model for
dichotomously scored items was fit to the data. A separate set of simulation analyses
considers also items generated with non-zero lower asymptotes. The simulation
results illustrate that form of asymmetry has a meaningful relationship with the item
response subprocesses. The relationship demonstrates how asymmetric models may
provide a tool for learning more about the underlying response processes of test
items. online at www.SpringerLink.com

Keywords Item response theory • Asymmetric ICCs • Item complexity • Item
validity

1 Introduction

The item characteristic curves (ICCs) of most traditional item response theory (IRT)
models are symmetric. Specifically, the change in probability observed above the
inflection point in the ICC is a mirror image of the change that occurs below the
inflection point. IRT models such as the Rasch model, the two and three-parameter
logistic and normal ogive models are well-known examples.

Recently, there has been a growing psychometric literature related to asymmetric
ICCs, and models that can be used to represent and explain such asymmetry. There
are good reasons to believe that the nature of the psychological response process
underlying many educational test items will be better reflected by asymmetric
models. As considered by Samejima (2000), items scored as binary can often
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be viewed as representing outcomes of multiple conjunctively or disjunctively
interacting subprocesses. An example is a complex math word problem, in which
the final answer may be arrived at only following the correct execution of a series
of steps (e.g., converting the stated problem into an algebraic equation, solving the
algebraic equation, etc.), where failure at any one step would lead to an overall
incorrect response on the item. Assuming the individual steps (i.e., subprocesses)
each conform to a logistic model, the overall item score should yield an asymmetric
curve. In the case of conjunctively interacting subprocesses, the result should be
an asymmetric ICC that accelerates at a slower rate to the right of the inflection
point than it accelerates to the left of the inflection point (Samejima 2000). The
extent of the asymmetry will be affected by the number of conjunctively interacting
subprocesses.

Alternatively, for many items, the item score might be the outcome of disjunc-
tively interacting subprocesses. An example is ability-based guessing model of San
Martín, Del Pino, and De Boeck (2006), a model designed for multiple-choice items.
Under the ability-based guessing model, a separate problem-solving process and
guessing process are applied in sequential fashion such that an incorrect outcome
from the problem solving process (e.g., the answer arrived at is not among the
available response options), can be overcome by the guessing process. The nature
of the asymmetry created by these two disjuctive subprocesses at the item score
level (assuming again that each subprocess follows a logistic/normal ogive form)
is the opposite to that described for the complex math word problem example.
Specifically, the ICC will accelerate at a faster rate to the right of the inflection
point than it accelerates to the left of the inflection point (Samejima 2000).

Model-based approaches to representing asymmetric ICCs of these kinds can
take different forms. Samejima (2000) presents a logistic positive exponent (LPE)
model in which an exponent parameter (or “acceleration” parameter) is introduced
to a standard logistic model. While estimation algorithms have been proposed for
this model (e.g., Samejima 2000; Bolfarine & Bazan, 2010), a challenge is the
confound between the exponent parameter and the difficulty parameter (Lee 2015;
Bolt, Deng, & Lee, 2014).

An alternative approach is Molenaar’s (2014) normal ogive residual
heteroscedasticity (RH) model. Molenaar (2014) illustrated how violation of the
residual homoscedasticity assumption that underlies normal ogive models yields
asymmetric ICCs for binary items. Such heteroscedasticity can be taken to reflect
a greater variability in anticipated performances on an item conditional upon
ability, and could conceivably reflect different underlying causes. In this chapter we
consider the possibility that the heteroscedasticity reflects the nature and number of
conjuctively/disjunctively interacting subprocesses described above, a feature that
might often intuitively be expected to vary across items within a test. One of the
advantages of the RH model is that the parameter associated with asymmetry is not
confounded with difficulty, as in the LPE.

The purpose of this study is to examine whether the RH model can be used
to inform about the underlying response processes associated with test items.
Specifically, we examine how manipulation of both the nature and number of
interacting subprocesses may be related to detectable asymmetries in the ICCs of
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test items. Such an application, if successful, would support the RH model as item-
level validation tool. From another perspective, it would suggest that the RH model
may help in learning more about the underlying response process of a test item.

1.1 Other Implications of Ignoring Asymmetry in ICCs

The possibility that asymmetric ICCs can be used for item validation purposes
represents just one additional reason for considering models such as the RH model.

The potential value of attending to asymmetry has already been considered
from several different perspectives, suggesting that the implications of ignoring
asymmetric ICCs, where they are present, can be significant. Woods and Harpole
(2015), for example, have demonstrated the potential for inflated Type I error in DIF
analyses when residual heteroscedasticity is present but ignored by the model testing
for DIF. Molenaar (2014) illustrates how the estimated item information functions
can be highly inaccurate when asymmetries are ignored. Such inaccuracies can not
only influence how items are adaptively selected, but also the resulting estimated
standard errors of ability estimates. With respect to person scoring, Samejima (2000)
also notes an inconsistency in item weighting that emerges when using symmetric
models, a problem that can be resolved using asymmetric models. Finally, ignoring
asymmetry can also create problems related to the IRT metric. For example, Bolt
et al. (2014) demonstrate how the presence of asymmetric ICCs may ultimately be
responsible for the score deceleration problem seen when standardized tests are used
to measure growth across grade levels.

1.2 Item Response Processes and Asymmetric ICCs

As indicated above, the purpose of this preliminary study was to examine whether
the asymmetry of ICCs may also provide a way of learning about the nature and
number of underlying item subprocesses, and whether the relationship is strong
enough to allow asymmetric items to provide insight into the items. With multi-
dimensional item response models, it has been common to attend to conjunctive
or disjunctive response processes by considering different ways in which the
latent traits, or more specifically, the processes associated with different latent
traits, may interact. For example, cognitively diagnostic models emphasize skill
attribute interactions as conjunctive versus disjunctive (e.g., Junker & Sijtsma, 2001;
Maris 1995). Similarly, a distinction is often made between MIRT models that are
compensatory versus noncompensatory (see e.g., Bolt & Lall, 2003). However, as
emphasized in this paper, it can be useful to consider different forms of subprocess
interaction in relation to collections of items that are statistically unidimensional.
In Samejima’s (2000) presentation of the LPE model, the number and nature of
interacting subprocesses define the complexity of the item. We adopt the same
terminology in this chapter, but use residual heteroscedasticity as a means of
capturing such complexity as opposed to the exponent parameter used in the LPE.
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2 Molenaar’s Normal Ogive RH Model

The use of a normal ogive to represent an item response function for a binary item
score follows from a model that assumes an underlying continuous latent response
propensity that, conditional upon latent ability � , is normally distributed. The mean
of the conditional distribution is assumed to be a linear function of � . The remaining
variability in the response propensity conditional upon � , denoted "ij� , represents
sources of random noise, and is assumed to have a constant variance across � ,
denoted �2

"i j� , referred to as the residual variance. In effect, scoring the item as
binary can be viewed as defining a threshold with respect to "i that translates the
continuous response propensity into a binary score. A normal ogive curve for the
probability of correct response follows from the integration under the conditional
normal distribution of the area above the threshold. Generalizations of this model
to polytomous scores are straightforward, and simply require the consideration of
multiple thresholds in relation to "i as opposed to just one (see e.g., Lord & Novick,
1968, pp. 370–371 for details).

The assumption of homoscedasticity of the response propensity variance across
ability levels naturally plays an important role in how the probability of a correct
response is defined. If heteroscedasticity of variance is present, it will alter the form
of the probability curve assuming other features of the model are held constant.
Generalization of the normal ogive model to accommodate heteroscedasticity of
variance naturally requires specification of a suitable function for �2

"ij� . Molenaar
proposed the following form of heteroscedasticity in the context of polytomously
scored items (Molenaar, Dolan, & De Boeck, 2012):

�2
�ij� D 2ı0Œ1 C exp.�ı1�/��1 (1)

where ı0 is a baseline parameter, and ı1 is heteroscedasticity parameter, ı0 2
.0; 1/ and ı1 2 .�1; 1/. Note that if ı1 D 0, then the residual variances are
homoscedastic with �2

"ij� D ı0; if ı1 > 0, then the residual variance is increasing
with � ; if ı1 < 0, residual variances are decreasing with � .

Molenaar (2014) derived a corresponding model for dichotomously scored
items based on the same model for heteroscedasticity. The resulting item response
function is:

P.yi D 1j�/ D ˚.
˛i� C ˇip

2Œ1 C exp.�ı1i�/��1=2
/ (2)

where ı1i is the item heteroscedastic parameter, and ˛i and ˇi denote the slope
(discrimination) and intercept (difficulty) parameters associated with the normal
ogive model. As for the polytomous model, the model in (2) reduces to the standard
normal ogive model in the case where ı1i D 0. Further details on this model are
provided by Molenaar (2014).
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Fig. 1 Residual heteroscedasticity and item characteristic curves

Figure 1 provides an illustration of how manipulation of the ı1i parameter
introduces ICC asymmetry. The plots at the top of the figure illustrate the het-
eroscedasticity associated with the RH model for three different hypothetical items
that vary only with respect to ı1i. The middle figure corresponds to the condition
of homoscedasticity, while the figures on the left and right correspond to examples
where the residual variance decreases and increases, respectively, in relation to � .
When translated into probability curves, the items yield different ICCs. In particular,
a negative ı1i results in an ICC with a steeper slope to the right of the inflection point
than the corresponding symmetric ICC, and a flatter slope to the left of the inflection
point. Just the opposite is observed for the item with a positive delta value.

A primary goal of the current paper is to illustrate how Molenaar’s RH model can
be used to capture differences in the underlying response processes associated with
different items. To this end, we also attempt to illustrate how asymmetric ICCs can
be a naturally expected outcome for educational test data. We also seek to clarify
the potential of the RH model in recovering the nature of the asymmetry associated
with these different response processes.
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It is worth noting that estimation procedures also exist for other models that can
flexibly account for asymmetric ICCs. For example, Bolfarine and Bazan (2010)
considered the use of Bayesian estimation techniques with Samejima’s LPE model.
Preliminary work (Lee 2015), however suggests that the RH model of Molenaar
may be slightly better in terms of recovery, perhaps in large part due to the greater
separation of parameters associated with the asymmetry and item difficulty. We
therefore focus on Molenaar’s RH model in the current paper.

2.1 Bayesian Estimation of Heteroscedastic Two-Parameter
and Three-Parameter Normal Ogive Models

Molenaar (2014) presents a marginal maximum likelihood algorithm for the RH
model. In this paper we consider the model in a Bayesian estimation framework, as
well as a three-parameter version that introduces a lower asymptote parameter.

Under the two-parameter Residual Heteroscedasticity (2P-RH) model, we
assume the following priors for the item parameters:

ˇi � Normal(0,1)

˛i � Lognormal(0,2)

ı1i � Normal(0,1)

and for the person parameter:

� � Normal(0,1)

For the three-parameter Residual Heteroscedasticity (3P-RH) model, we consider
use of the same parameters, but add a fixed lower asymptote parameter, � :

P.yi D 1j�/ D � C .1 � �/˚.
˛i� C ˇip

2Œ1 C exp.�ı1i�/��1=2
/ (3)

In the current study, � D 0:2 when generating the data, and we also fix
� D 0:2 when estimating the model, as might reflect a multiple-choice test with five
options per item. Thus the three-parameter simulation evaluates how well the model
functions in the presence of known guessing effects. Our preliminary analyses did
consider a 3P-RH model with an estimated lower asymptote, although the model
resulted in simulated chains with poor convergence.
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3 Simulation Study

To evaluate the effectiveness of the RH model in informing about underlying
response process, we simulated item response data to conform to different types
of response processes. In effect, we assumed each binary item was the outcome of
one of four possible types, ordered from the least to most complex: (1) a disjunctive
two-subprocess item; (2) a single subprocess item; (3) a conjunctive two-subprocess
item; and (4) a conjunctive five-subprocess item. In all cases, data were simulated
as unidimensional. It is worth noting that unlike models such as in Whitely (1980),
the presence of distinct subprocesses is not associated with multidimensionality,
reflecting the fact that as a statistical dimension, a single underlying latent trait can
often reflect what is in reality a complex constellation of skills. Regardless of the
item type, each subprocess was simulated from a normal ogive model, i.e.,

Pik.�/ D P.uik D 1j�/ D ˚.˛ik� C ˇik/; (4)

where Pik.�/ denotes the probability of successfully executing subprocess k on item
i (i.e., uik D 1), and ˛ik, ˇik denote item subprocess discrimination and difficulty
(threshold) parameters, respectively. The distinguishing characteristics of the items
relate to the number of subprocesses as well as the nature of their interaction.

3.1 Low Complexity Disjunctive Items: A Two
Subprocess Model

The first item type simulated assumes two subprocesses with a disjunctive
interaction:

P.yi D 1j�/ D Pi1.�/ C .1 � Pi1.�//Pi2.�/ (5)

As noted earlier, such a model could reflect an ability-based guessing context (San
Martín et al. 2006), whereby a student can solve the item in one of two ways:
(1) ordinary problem solving behavior, where the solution may be arrived at using
the intended approach, while if not attained is followed by (2) guessing behavior,
where the various response options are evaluated apart from the intended problem-
solving process, and the most sensible option is chosen.

3.2 Moderate Complexity Items: One Subprocess Model

For comparison purposes, we consider also a one subprocess item:

P.yi D 1j�/ D Pi1.�/ (6)


