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Preface

It is well known that the celebrated Hille-Yosida theorem, discovered independently
by Hille [1] and Yosida [1], gave the first characterization of the infinitesimal
generator of a strongly continuous semigroup of contractions. This was the begin-
ning of a systematic development of the theory of semigroups of bounded linear
operators. The bounded linear operator Aλ appearing in the sufficiency part of
Yosida’s proof of this theorem is called the Yosida approximation of A; see Pazy
[1]. The objective of this research monograph is to present a systematic study on
Yosida approximations of stochastic differential equations in infinite dimensions
and applications.

On the other hand, a study on stochastic differential equations (SDEs) in infinite
dimensions was initiated in the mid-1960s; see, for instance, Curtain and Falb
[1, 2], Chojnowska-Michalik [1], Ichikawa [1–4], and Metivier and Pistone [1]
using the semigroup theoretic approach and Pardoux [1] using the variational
approach of Lions [1] from the deterministic case. Note, however, that a strong
foundation of SDEs, in infinite dimensions in the semilinear case was first laid by
Ichikawa [1–4]. It is also worth mentioning here the earlier works of Haussman
[1] and Zabczyk [1]. All these aforementioned attempts in infinite dimensions were
generalizations of stochastic ordinary differential equations introduced by K. Itô in
the 1940s and independently by Gikhman [1] in a different form, perhaps motivated
by applications to stochastic partial differential equations in one dimension, like
heat equations. Today, SDEs in the sense of Itô, in infinite dimensions are a well-
established area of research; see the excellent monographs by Curtain and Pritchard
[1], Itô [1], Rozovskii [1], Ahmed [1], Da Prato and Zabczyk [1], Kallianpur and
Xiong [1], and Gawarecki and Mandrekar [1]. Throughout this book, we shall use
mainly the semigroup theoretic approach as it is our interest to study mild solutions
of SDEs in infinite dimensions. However, we shall also use the variational approach
to study stochastic evolution equations with delay and multivalued stochastic partial
differential equations.

To the best of our knowledge, Ichikawa [2] was the first to use Yosida approx-
imations to study control problems for SDEs. It is a well-known fact that Itô’s
formula is not applicable to mild solutions; see Curtain [1]. This motivates the
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need to look for a way out, and Yosida approximations come in handy as these
Yosida approximating SDEs have the so-called strong solutions and Itô’s formula
is applicable only to strong solutions. Yosida approximations, since then, have been
used widely for various classes of SDEs; see Chapters 3 and 4 below, to study many
diverse problems considered in Chapters 5 and 6.

The book begins in Chapter 1 with a brief introduction mentioning moti-
vating problems like heat equations, an electric circuit, an interacting particle
system, a lumped control system, and the option and stock price dynamics to
study the corresponding abstract stochastic equations in infinite dimensions like
stochastic evolution equations including such equations with delay, McKean-Vlasov
stochastic evolution equations, neutral stochastic partial differential equations,
and stochastic evolution equations with Poisson jumps. The book also deals
with stochastic integrodifferential equations, multivalued stochastic differential
equations, stochastic evolution equations with Markovian switchings driven by Lévy
martingales, and time-varying stochastic evolution equations.

In Chapter 2, to make the book as self-contained as possible and reader friendly,
some important mathematical machinery, namely, concepts and definitions, lemmas,
and theorems, that will be needed later on in the book will be provided. As the
book studies SDEs using mainly the semigroup theory, it is first intended to provide
this theory starting with the fundamental Hille-Yosida theorem and then define
precisely the Yosida approximations as well as such approximations for multivalued
monotone maps. There is an interesting connection between the semigroup theory
and the probability theory. Using this, we shall also delve into some recent results
on asymptotic expansions and optimal convergence rate of Yosida approximations.
Next, some basics from probability and analysis in Banach spaces are considered
like those of the concepts of probability and random variables, Wiener process,
Poisson process, and Lévy process, among others. With this preparation, stochastic
calculus in infinite dimensions is dealt with next, namely, the concepts of Itô
stochastic integral with respect to Q-Wiener and cylindrical Wiener processes,
stochastic integral with respect to a compensated Poisson random measure, and
Itô’s formulas in various settings. In some parts of the book, the theory of stochastic
convolution integrals is needed. So, we then state some results from this theory
without proofs. This chapter coupled with Appendices dealing with multivalued
maps, maximal monotone operators, duality maps, random multivalued maps, and
operators on Hilbert spaces, more precisely, notions of trace class operators, nuclear
and Hilbert-Schmidt operators, etc., should give a sound background. Since there
are many excellent references on this subject matter like Curtain and Pritchard [1],
Ahmed [1], Altman [1], Bharucha-Reid [1], Bichteler [1], Da Prato and Zabczyk
[1, 2], Dunford and Schwartz [1], Ichikawa [3], Gawarecki and Mandrekar [1], Joshi
and Bose [1], Pazy [1], Barbu [1, 2], Knoche [1], Peszat and Zabczyk [1], Prévôt and
Röckner [1], Padgett [1], Padgett and Rao [1], Stephan [1], Tudor [1], Yosida [1],
and Vilkiene [1–3], among others, the objective here is to keep this chapter brief.

Chapter 3 addresses the main results on Yosida approximations of stochastic
differential equations in infinite dimensions in the sense of Itô. The chapter
begins by motivating this study from linear stochastic evolution equations. After
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a brief discussion on linear equations, the pioneering work by Ichikawa (1982)
on semilinear stochastic evolution equations is considered in detail next. We
introduce Yosida approximating system as it has strong solutions so that Itô’s
formula can be applied. It will be interesting to show that these approximating
strong solutions converge to mild solutions of the original system in mean square.
This result is then generalized to stochastic evolution equations with delay. We
next consider a special form of a stochastic evolution equation that is related to
the so-called McKean-Vlasov measure-valued stochastic evolution equation. We
introduce Yosida approximations to this class of equations, showing their existence
and uniqueness of strong solutions and also the mean-square convergence of these
strong solutions to the mild solutions of the original system. We next generalize this
theory to McKean-Vlasov-type stochastic evolution equations with a multiplicative
diffusion. In the rest of the chapter, we consider Yosida approximation problems of
many more general stochastic models including neutral stochastic partial functional
differential equations, stochastic integrodifferential equations, multivalued-valued
stochastic differential equations, and time-varying stochastic evolution equations.
The chapter concludes with some interesting Yosida approximations of controlled
stochastic differential equations, notably, stochastic evolution equations driven by
stochastic vector measures, McKean-Vlasov measure-valued evolution equations,
and also stochastic equations with partially observed relaxed controls.

In Chapter 4, we consider Yosida approximations of stochastic differential
equations with Poisson jumps. More precisely, we introduce Yosida approximations
to stochastic delay evolution equations with Poisson jumps, stochastic evolution
equations with Markovian switching driven by Lévy martingales, multivalued-
valued stochastic differential equations driven by Poisson noise, and also such
equations with a general drift term with respect to a general measure. As before,
we shall also obtain mean-square convergence results of strong solutions of such
Yosida approximate systems to mild solutions of the original equations.

In Chapter 5, many consequences and applications of Yosida approximations
to stochastic stability theory are given. First, we consider the pioneering work
of Ichikawa (1982) on exponential stability of semilinear stochastic evolution
equation in detail and also the stability in distribution of mild solutions of such
semilinear equations. As an interesting consequence, exponential stabilizability
for mild solutions of semilinear stochastic evolution equations is considered next.
Since an uncertainty is present in the system, we obtain robustness in stability of
such systems with constant and general decays. This study is then generalized to
stochastic equations with delay; that is, polynomial stability with a general decay is
established for such delay systems. Consequently, robust exponential stabilization
of such delay equations is obtained. Subsequently, stability in distribution is
considered for stochastic evolution equations with delays driven by Poisson jumps.
Moreover, moment exponential stability and also almost sure exponential stability
of sample paths of mild solutions of stochastic evolution equations with Markovian
switching with Poisson jumps are dealt with. We also study the weak convergence
of induced probability measures of mild solutions of McKean-Vlasov stochastic
evolution equations, neutral stochastic partial functional differential equations,
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and stochastic integrodifferential equations. Furthermore, the exponential stability
of mild solutions of McKean-Vlasov-type stochastic evolution equations with a
multiplicative diffusion, stochastic integrodifferential evolution equations, and time-
varying stochastic evolution equations are considered.

Finally, in Chapter 6, it will be interesting to consider some applications of
Yosida approximations to stochastic optimal control problems like optimal control
over finite time horizon, a periodic control problem of stochastic evolution equa-
tions, and an optimal control problem of McKean-Vlasov measure-valued evolution
equations. Moreover, we also consider some necessary conditions of optimality of
relaxed controls of stochastic evolution equations. The chapter as well as the book
concludes with optimal feedback control problems of stochastic evolution equations
driven by stochastic vector measures.

I have tried to keep the work of various authors drawn from all over the literature
as original as possible. I thank sincerely all of them whose work have been included
in the book with due citations they deserve in the bibliographical notes and remarks
and elsewhere. I believe to the best of my knowledge that I have covered in this
monograph all the work that I have known. There may be more interesting materials,
but it is impossible to include all in one book. I apologize to those authors in case I
have missed out their work. This is certainly not deliberate.

Mexico City, Mexico T. E. Govindan
July 22, 2016
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Chapter 1
Introduction and Motivating Examples

Stochastic differential equations are well known to model stochastic processes
observed in the study of dynamic systems arising from many areas of science, engi-
neering, and finance. Existence and uniqueness of mild, strong, relaxed, and weak
solutions; stability, stabilizability, and control problems; regularity and continuous
dependence on initial values; approximation problems notably of Yosida; among
others, of solutions of stochastic differential equations in infinite dimensions have
been investigated by several authors, see, for instance, Ahmed [1, 6, 8] Bharucha-
Reid [1], Curtain and Pritchard [1], Da Prato [2], Da Prato and Zabczyk [1, 3, 4],
Gawarecki and Mandrekar [1], Kotelenez [1], Liu [2], Mandrekar and Rüdiger
[1], McKibben [2], and Prévôt and Röckner [1] and the references therein. Yosida
approximations play a key role in many of these problems.

In this chapter, we motivate the study of some of the abstract stochastic
differential equations considered in this book by modeling real-life problems such as
a heat equation, an electric circuit, an interacting particle system, and the stock and
option price dynamics in a loose language. Rigorous formulations of many concrete
problems and theoretical examples are taken up later on in the subsequent chapters.

1.1 A Heat Equation

Let us consider the following heat equation with a stochastic perturbation

dx(z, t) =
∂ 2

∂ z2 x(z, t)dt+σx(z, t)dβ (t), t > 0, (1.1)

x(0, t) = x(1, t) = 0, x(z,0) = x0(z),

© Springer International Publishing Switzerland 2016
T. E. Govindan, Yosida Approximations of Stochastic Differential Equations
in Infinite Dimensions and Applications, Probability Theory and Stochastic
Modelling 79, DOI 10.1007/978-3-319-45684-3_1
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2 1 Introduction and Motivating Examples

where σ is a real number and β (t) is a real standard Wiener process. Consider also
the semilinear stochastic heat equation of the form

dx(z, t) =

[
∂ 2

∂ z2 x(z, t)− x(z, t)
1+ |x(z, t)|

]

dt+
σx(z, t)

1+ |x(z, t)|dβ (t), t > 0, (1.2)

xz(0, t) = xz(1, t) = 0, x(z,0) = x0(z),

where | · | is the absolute value on R = (−∞,∞). For details, we refer to Ichikawa
[2, 3].

1.1.1 Stochastic Evolution Equations

The equations (1.1) and (1.2) can be formulated in the abstract setting as follows:
Take X = L2(0,1) and Y = R. Define A = d2/dz2 with D(A) = {x ∈ X|x,x′ are

absolutely continuous with x′, x′′ ∈ X, x(0) = x(1) = 0}. Equation (1.1) can be
expressed in a real Hilbert space X by

dx(t) = Ax(t)dt+ g(x(t))dw(t), t > 0, (1.3)

x(0) = x0,

where g(x) = σx and w(t) is a Y-valued Q-Wiener process. From Ichikawa [3], the
explicit solution of equation (1.3) takes the form

x(t) = e−σ
2t/2+σβ (t)S(t)x0,

where {S(t) : t ≥ 0} is the C0-semigroup generated by A given by

S(t)x0 =
∞

∑
n=1

e−2n2π2t sin nπz
∫ 1

0
x0(r)sin nπrdr.

To model the second equation (1.2), take X and Y as defined earlier. Define A =
d2/dz2 with D(A) = {x ∈ X|x,x′ absolutely continuous, x′, x′′ ∈ X, x′(0) = x′(1) =
0}. Equation (1.2) can be expressed as a semilinear stochastic evolution equation in
the Hilbert space X as

dx(t) = [Ax(t)+ f (x(t))]dt+ g(x(t))dw(t), t > 0, (1.4)

x(0) = x0,

where w(t) is a Y-valued Q-Wiener process and

f (x) =−g(x)
σ

=− x
1+ ||x||X , x ∈ X.
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The concept of a Q-Wiener process will be defined precisely later on in Chapter 2.
Linear stochastic evolution equations of the form (1.3) will be considered in

Sections 3.1 and 6.1 in connection with optimal control problems. The semilinear
stochastic equations of the form (1.4) will be discussed in detail in Section 3.2 and
later on in Sections 5.1 and 5.2. More general time-varying semilinear stochastic
equations will be studied in Sections 3.8 and 5.9. See also Section 6.2.

1.2 An Electric Circuit

An electric circuit is considered in which two resistances, a capacitance and an
inductance, are connected in series. Assume that the current is flowing through the
loop, and its value at time t is x(t) amperes. Let us use the following units: volts
for the voltage, ohms for the resistance R, henry for the inductance L, farads for the
capacitance c, coloumbs for the charge on the capacitance, and seconds for the time.
It is well known that with this system of units, the voltage drop across the inductance
is Ldx(t)/dt, and that across the resistances R and R1 is (R+R1)x(t). The voltage
drop across the capacitance is q/c, where q is the charge on the capacitance. It is
also known that x(t) = dq/dt. A fundamental Kirchhoff’s law states that the sum of
the voltage drops around the loop must be equal to the applied voltage:

L
dx(t)

dt
+(R+R1)x(t)+

q
c
= 0. (1.5)

On differentiating equation (1.5) with respect to t, we deduce

L
d2x(t)

dt2
+(R+R1)

dx(t)
dt

+
1
c

x(t) = 0. (1.6)

The voltage drop across R1 is applied to a nonlinear amplifier A1. The output is
provided with a special phase-shifting network P. This introduces a constant time
lag between the input and the output P. The voltage drop across R in series with the
output P is

e(t) = qg(ẋ(t− r));

where q is the gain of the amplifier to R measured through the network. The
equation (1.6) takes the form

L
d2x(t)

dt2
+Rẋ(t)+ qg(ẋ(t− r))+

1
c

x(t) = 0.
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Finally, a second device is introduced to help stabilize the fluctuations in the current.
If ẋ(t) = y(t), the controlled system may be described by

ẋ(t) = y(t)+ u1(t)

ẏ(t) = −R

L
y(t)− q

L
g(y(t− r))− 1

cL
x(t)+ u2(t). (1.7)

The controlled system (1.7) can be expressed in the matrix form

Ẋ(t) = AX(t)+G(X(t− r))+BU, (1.8)

where

X =

(
x
y

)

, U =

(
u1

u2

)

, A =

(
0 1

−1/cL −R/L

)

, B =

(
1 0
0 1

)

,

and

G(X(t− r)) =

(
0

−qg(y(t− r))/L

)

.

The controlled vector U is created and introduced by the stabilizer.

1.2.1 Stochastic Evolution Equations with Delay

Motivated by this electric circuit and stochastic partial differential equations with
delay, consider the following stochastic evolution equation with delay in a real
Hilbert space X:

dx(t) = [Ax(t)+ f (x(t− r))]dt+ g(x(t− r))dw(t), t > 0, (1.9)

x(t) = ϕ(t), t ∈ [−r,0], 0 ≤ r < ∞,

where A : D(A) → X (possibly unbounded) is the infinitesimal generator of a C0-
semigroup {S(t) : t ≥ 0}, f : X → X and g : X → L(Y,X) (space of all bounded
linear operators from Y into X), where Y is another real Hilbert space and w(t) is a
Y-valued Q-Wiener process. We assume that the past process {ϕ(t),−r ≤ t ≤ 0} is
known.

We shall be considering such stochastic evolution equations with a constant delay
in Section 3.3.1 and stochastic equations with a variable delay in Sections 3.3.2
and 3.3.3. See also Sections 5.3.1 and 5.4.
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1.3 An Interacting Particle System

Consider a biological, chemical, or physical interacting particle system in which
each particle moves in some space according to the dynamics described by the
following system of N coupled semilinear stochastic evolutions equations:

dxk(t) = [Axk(t)+ f (xk(t),μN(t))]dt+
√
Qdwk(t), t > 0, (1.10)

xk(0) = x0, k = 1,2, . . . ,N,

where μN(t) is the empirical measure given by

μN(t) =
1
N

N

∑
k=1

δxk(t)

of the N particles x1(t), x2(t), . . . ., xN(t) at time t. According to McKean-Vlasov
theory, see, for example, McKean [1], Dawson and Gärtner [1], and Gärtner [1],
under proper conditions, the empirical measure-valued process μN converges in
probability to a deterministic measure-valued function μ as N goes to infinity. It
is interesting to observe that the limit μ corresponds to the probability distribution
of a stochastic process determined by the equation (1.11) given next. We also refer
to Kurtz and Xiong [1].

1.3.1 McKean-Vlasov Stochastic Evolution Equations

Consider the following stochastic process described by a semilinear Itô equation in
a real separable Hilbert space X:

dx(t) = [Ax(t)+ f (x(t),μ(t))]dt+
√
Qdw(t), t > 0, (1.11)

μ(t) = probability distribution of x(t),

x(0) = x0,

where w(t) is a given X-valued cylindrical Wiener process; A : D(A) ⊂ X →
X (possibly unbounded) is the infinitesimal generator of a strongly continuous
semigroup {S(t) : t ≥ 0} of bounded linear operators on X; f is an appropriate X-
valued function defined on X ×Mγ2(X), where Mγ2(X) denotes a proper subset of
probability measures on X; Q is a positive, symmetric, bounded operator on X; and
x0 is a given X-valued random variable. For details, see Section 3.4.1.

We shall also consider more general Mc-Kean-Vlasov type stochastic systems in
Section 3.4.2 and subsequently in Sections 3.11.1, 5.5, and 6.3.
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1.4 A Lumped Control System

A method to stabilize lumped control systems is to use a hereditary proportional-
integral-differential (PID) feedback control. Consider a linear distributed hereditary
system with a finite delay of the form

dx(t)
dt

= Ax(t)+ f (xt)+Bu(t), t > 0, (1.12)

where x(t) ∈ X represents the state, u(t) ∈ Rm (m-dimensional Euclidean space)
denotes the control, xt(s) = x(t + s), −r ≤ s ≤ 0, A : D(A) ⊂ X → X is the
infinitesimal generator of an analytic semigroup {S(t) : t ≥ 0}, and B : Rm → X.

The feedback control u(t) will be a PID-hereditary control defined by

u(t) = K0x(t)− d
dt

∫ t

−r
K1(t− s)x(s)ds, (1.13)

where K0 : X → Rm is a bounded linear operator and K1 : [0,∞) → L(X,Rm) is a
strongly continuous operator-valued map. The closed system corresponding to the
PID-hereditary control (1.13) takes the form

d
dt

[

x(t)+B
∫ t

−r
K1(t− s)x(s)ds

]

= (A+BK0)x(t)+ f (xt), t > 0.

It is known that A+BK0 is the infinitesimal generator of an analytic semigroup.

1.4.1 Neutral Stochastic Partial Differential Equations

Consider a neutral stochastic partial differential equation in a real separable Hilbert
space X of the form:

d[x(t)+ f (t,xt)] = [Ax(t)+ a(t,xt)]dt+ b(t,xt)dw(t), t > 0, (1.14)

x(t) = ϕ(t), t ∈ [−r,0] (0 ≤ r < ∞);

where xt(s) := x(t+ s), −r ≤ s ≤ 0, −A : D(−A)⊂ X → X (possibly unbounded) is
the infinitesimal generator of a C0-semigroup {S(t) : t ≥ 0} on X, w(t) is a Y-valued
Q-Wiener process, a : R+×X → X, where R+ = [0,∞), b : R+×X → L(Y,X) and
f : R+×X → D((−A)α), 0 <α ≤ 1, and ϕ(t) is the past stochastic process assumed
to be known. For details, see Section 3.5 below.

Such equations will be considered again in Section 5.6.



1.5 A Hyperbolic Equation 7

1.5 A Hyperbolic Equation

Consider the hyperbolic type deterministic integral equation

utt(t,z) = Δu(t,z)+
∫ t

0
b(t− s)Δu(s,z)ds+ f (t,z), t > 0, (1.15)

u(t,0) = u(t,π) = 0,

where Δ= ∂ 2/∂ z2, or the equivalent system

ut = v, vt = Δu+
∫ t

0
b(t− s)Δu(s, ·)ds+ f (t, ·).

The equation (1.15) may be written in the form

x′(t) = Ax(t)+
∫ t

0
B(t− s)x(s)ds+F(t), t > 0, (1.16)

where

x =

(
u
v

)

, F =

(
0
f

)

.

and

A =

(
0 I
Δ 0

)

, B(t) =

(
0 0

b(t)Δ 0

)

.

1.5.1 Stochastic Integrodifferential Equations

Integrodifferential equations arise, for example, in mechanics, electromagnetic
theory, heat flow, nuclear reactor dynamics, and population dynamics, see Kannan
and Bharucha-Reid [1] and the references therein for details. Note that a dynamic
system with memory may lead to integrodifferential equations.

Consider a stochastic version of the Volterra integrodifferential equation (1.16)
of the form

x′(t) = Ax(t)+
∫ t

0
B(t− s)x(s)dβ (s)+ f (t), t > 0, (1.17)

x(0) = x0,
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where A (possibly unbounded) is the infinitesimal generator of a C0-semigroup
{S(t) : t ≥ 0} on a real separable Hilbert space X with domain D(A), f belongs
to a function space A on X-valued functions, B(t) is a (not necessarily bounded)
convolution kernel type linear operator on the domain D(A) (for each t ≥ 0) such
that B(·)x ∈ A for each x ∈ D(A), x0 is an X-valued random variable, and β (·) is
a Hilbert-Schmidt operator-valued Brownian motion. For details, see Section 3.6.1
below and Kannan and Bharucha-Reid [1].

We shall also be interested in considering a semilinear stochastic integrodiffer-
ential equation of the form

x′(t) = Ax(t)+
∫ t

0
B(t,s)f (s,x(s))ds

+

∫ t

0
C(t,s)g(s,x(s))dw(s)+F(t,x(t)), t > 0, (1.18)

x(0) = x0,

where A is a linear operator (possibly unbounded) is the infinitesimal generator of a
C0-semigroup {S(t) : t ≥ 0} on a real separable Hilbert space X with domain D(A);
B(t,s)0≤s≤t≤T and C(t,s)0≤s≤t≤T (0 < T < ∞) are linear operators mapping X into
X, F : [0,∞)×X → X, f : [0,∞)×X → X and g : [0,∞)×X → L(Y,X), w(t) is a
Y-valued Q-Wiener process and x0 is a known random variable. For details, see
Section 3.6.2 below.

See also Sections 3.6.2 and 5.7 for another class of such equations.

1.6 The Stock Price and Option Price Dynamics

This problem was proposed by R. Merton (1976). The total change in the stock
price is posited to be the composition of two types of changes: First, the normal
vibrations in price, for example, due to temporary imbalance between supply and
demand, changes in capitalization rates, changes in the economic outlook, or other
new information that causes marginal changes in the stock’s value. In essence, the
impact of such information per unit time on the stock price is to produce a marginal
change in the price P-a.s.. This component is modeled by a standard geometric
Brownian motion with a constant variance per unit time and it has a continuous
sample path. The abnormal vibrations in price are due to the arrival of important new
information about the stock that has more than a marginal effect on price. Usually
such information will be specific to the firm. It is reasonable to expect that there
will be active times in the stock when such information arrives and quiet times
when it does not although the active and quiet times are random. By its very nature,
important information arrives only at discrete points in time. This component is
modeled by a jump process reflecting the non-marginal impact of the information.
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To be consistent with the general efficient market hypothesis of Fama [1] and
Samuelson [1], the dynamics of the unanticipated part of the stock price motions
should be a martingale. Just as once the dynamics are posited to be continuous-time
process, the natural prototype process for the continuous component of the stock
price change is a Wiener process, so the prototype for the jump component is a
Poisson driven process.

Given that the Poisson event occurs (i.e., some important information on the
stock arrives), then there is a drawing from a distribution to determine the impact
of this information on the stock price, i.e., if S(t) is the stock price at time t and Y
is the random variable description of this drawing, neglecting the continuous part,
the stock price at time t+ h, S(t+ h), will be the random variable S(t+ h) = S(t)Y,
given that one such arrival occurs between t and t+h. It is assumed throughout that
Y has a probability measure with compact support and Y ≥ 0. Moreover, the {Y}
from successive drawings are i.i.d..

As discussed in Merton [2], the posited stock price returns are a mixture of both
types and can be formally written as a stochastic differential equation

dS(t)
S(t)

= (α− γk)dt+σdβ (t)+ dN(t), t > 0, (1.19)

where α is the instantaneous expected return on the stock, σ2 is the instantaneous
variance of the return, conditional on no arrivals of important new information (i.e.,
the Poisson event does not occur); β (t) is a standard Wiener process; N(t) is the
Poisson process; N(t) and β (t) are assumed to be independent; γ is the mean number
of arrivals per unit time; k =E(Y−1) where Y−1 is the random variable percentage
change in the stock price if the Poisson event occurs.

The σdβ (t) part describes the instantaneous part of the unanticipated return due
to the normal price vibrations, and the dN(t) part describes the abnormal price
vibrations. If γ = 0 (and thereafter, dN(t) ≡ 0), then the return dynamics would be
identical to those posited in Black and Scholes [1] and Merton [3]. Equation (1.19)
can be rewritten in a somewhat more cumbersome form as

dS(t)
S(t)

= (α− γk)dt+σdβ (t),

if the Poisson event does not occur, and

dS(t)
S(t)

= (α− γk)dt+σdβ (t)+ (Y− 1),

if the Poisson event occurs, where with P-a.s., no more than one Poisson event
occurs in an instant, and if the event does not occur, then Y−1 is an impulse function
producing a finite jump in S to SY.

Having established the stock price dynamics, let us now consider the dynamics
of the option price. Suppose that the option price, W, can be written as a
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twice-continuously differentiable function of the stock price and time; namely,
W(t) = F(S, t). If the stock price follows the dynamics described in equation (1.19),
then the option return dynamics can be written in a similar form as

dW(t)
W(t)

= (αW − γkW)dt+σWdβ (t)+ dNW(t), (1.20)

whereαW is the instantaneous expected return on the option;σ2
W is the instantaneous

variance of the return, conditional on the Poisson event not occurring, NW(t) is
a Poisson process with parameter γ , where NW(t) and β (t) are assumed to be
independent; kW ≡ E(YW − 1), where YW − 1 is the random variable percentage
change in the option price if the Poisson event occurs.

1.6.1 Stochastic Evolution Equations with Poisson jumps

Consider the following class of stochastic differential equations with Poisson jumps
in a Hilbert space X of the form

dx(t) = [Ax(t)+ f (x(t))]dt+ g(x(t))dw(t)

+

∫

Z
L(x(t),u)Ñ(dt,du), t > 0, (1.21)

x(0) = x0,

where Ñ is a compensated Poisson random measure associated with a counting
Poisson random measure N; A, generally unbounded, is the infinitesimal generator
of a C0-semigroup {S(t) : t ≥ 0}, the mappings f : X → X, g : X → L(Y,X) and
L : X×Y → X are some measurable functions. Let Ñ(dt,du) = N(dt,du)− dtν(du)
be independent of w(t), a Y-valued Q-Wiener process. Here ν is the characteristic
measure associated with a stationary Ft-Poisson point process {p(t), t ∈ Dp} (see
Definition 2.20), and x0 is a known random variable.

We shall consider stochastic equations of the type (1.21) with delay in
Sections 4.1 and 5.3.2 and with Markovian switchings in Sections 4.2, 4.3, and 5.8.



Chapter 2
Mathematical Machinery

The purpose of this chapter is to introduce the necessary background from the
semigroup theory, particularly, the Yosida approximations and their properties, anal-
ysis and probability in Banach spaces, including Itô stochastic calculus, stochastic
convolution integrals, among others. As pointed out before, no attempt has been
made to make the presentation self-contained as there are many excellent books
available in the literature.

2.1 Semigroup Theory

Let (X, || · ||X) be a Banach space.

Definition 2.1 A one parameter family {S(t) : 0 ≤ t < ∞} of bounded linear
operators mapping X into X is a semigroup of bounded linear operators on X if

(i) S(0) = I, (I is the identity operator on X),
(ii) S(t+ s) = S(t)S(s) for every t,s ≥ 0 (the semigroup property).

A semigroup of bounded linear operators, {S(t) : t ≥ 0}, is uniformly continu-
ous if

lim
t↓0

||S(t)− I||= 0.

The linear operator A defined by

D(A) = {x ∈ X : lim
t↓0

S(t)x− x
t

exists} (2.1)
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and

Ax = lim
t↓0

S(t)x− x
t

=
d+S(t)x

dt
|t=0 for x ∈ D(A), (2.2)

is the infinitesimal generator of the semigroup {S(t) : t ≥ 0}, where D(A) is the
domain of A.

Theorem 2.1 A linear operator A is the infinitesimal generator of a uniformly
continuous semigroup if and only if A is a bounded linear operator.

Proof See Pazy [1, Theorem 1.2]. �
Definition 2.2 A semigroup {S(t) : t ≥ 0} of bounded linear operators on X is a
strongly continuous semigroup of bounded linear operators if

lim
t↓0

S(t)x = x for every x ∈ X. (2.3)

A strongly continuous semigroup of bounded linear operators on X will be called a
C0-semigroup. A C0-semigroup {S(t) : t > 0} is called compact if it is a compact
operator.

Theorem 2.2 Let {S(t) : t ≥ 0} be a C0-semigroup. There exist constants α ≥ 0
and M ≥ 1 such that

||S(t)|| ≤ Meα t for 0 ≤ t < ∞. (2.4)

Proof See Ahmed [1, Theorem 1.3.1]. �
Corollary 2.1 If {S(t) : t ≥ 0} is a C0-semigroup then for every x ∈ X, t → S(t)x is
a continuous function from R+ into X.

Proof See Ahmed [1, Corollary 1.3.2]. �
Theorem 2.3 Let {S(t) : t ≥ 0} be a C0-semigroup and let A be its infinitesimal
generator. Then

(a) For x ∈ X,

lim
h→0

1
h

∫ t+h

t
S(s)xds = S(t)x.

(b) For x ∈ X,
∫ t

0
S(t)xdx ∈ D(A) and A

(∫ t

0
S(t)xdx

)

= S(t)x− x.

(c) For x ∈ D(A),S(t)x ∈ D(A) and

d
dt

S(t)x = AS(t)x = S(t)Ax.


