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TECHNICAL PROGRAMME CHAIR’S INTRODUCTION 

M.A.BRAMER 
University of Portsmouth, UK 

This volume comprises the refereed technical papers presented at AI-2008, the 
Twenty-eighth SGAI International Conference on Innovative Techniques and 
Applications of Artificial Intelligence, held in Cambridge in December 2008. The 
conference was organised by SGAI, the British Computer Society Specialist 
Group on Artificial Intelligence. 

The papers in this volume present new and innovative developments in the field, 
divided into sections on CBR and Classification, AI Techniques, Argumentation 
and Negotiation, Intelligent Systems, From Machine Learning to E-Learning and 
Decision Making. The volume also includes the text of short papers presented as 
posters at the conference. 

This year's prize for the best refereed technical paper was won by a paper entitled 
‘On the Classification Performance of TAN and General Bayesian Networks’ by 
Michael G. Madden (College of Engineering & Informatics, National University 
of Ireland, Galway, Ireland). SGAI gratefully acknowledges the long-term 
sponsorship of Hewlett-Packard Laboratories (Bristol) for this prize, which goes 
back to the 1980s. 

This is the twenty-fifth volume in the Research and Development series. The 
Application Stream papers are published as a companion volume under the title 
Applications and Innovations in Intelligent Systems XVI.

On behalf of the conference organising committee I should like to thank all those 
who contributed to the organisation of this year's technical programme, in 
particular the programme committee members, the executive programme 
committee and our administrators Rachel Browning and Bryony Bramer. 

Max Bramer 
Technical Programme Chair, AI-2008 
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On the Classification Performance of TAN and 
General Bayesian Networks

Michael G. Madden
1

Abstract. Over a decade ago, Friedman et al. introduced the Tree Augmented 

Naïve Bayes (TAN) classifier, with experiments indicating that it significantly 

outperformed Naïve Bayes (NB) in terms of classification accuracy, whereas 

general Bayesian network (GBN) classifiers performed no better than NB. This 

paper challenges those claims, using a careful experimental analysis to show that 

GBN classifiers significantly outperform NB on datasets analyzed, and are 

comparable to TAN performance. It is found that the poor performance reported 

by Friedman et al. are not attributable to the GBN per se, but rather to their use of 

simple empirical frequencies to estimate GBN parameters, whereas basic 

parameter smoothing (used in their TAN analyses but not their GBN analyses) 

improves GBN performance significantly. It is concluded that, while GBN

classifiers may have some limitations, they deserve greater attention, particularly 

in domains where insight into classification decisions, as well as good accuracy, is 

required.

1 Introduction

This paper examines the performance of Bayesian networks as classifiers, 
comparing their performance to that of the Naïve Bayes (NB) classifier and the 
Tree-Augmented Naïve Bayes (TAN) classifier, both of which make strong 
assumptions about interactions between domain variables. 

In the experiments performed for this work, described below in Section 3, 
standard Bayesian networks (referred to as General Bayesian Networks, GBNs, to 
distinguish them from NB and TAN) are compared with NB and TAN classifiers 
on 28 standard benchmark datasets. Our experiments indicate that the GBN 
classifier is substantially better than NB, with performance closer to that of TAN. 
This contrasts with the conclusions drawn in the landmark paper on Bayesian 
network classifiers by Friedman et al. (1997). That paper presented results on 
many of the same datasets, showing that GBNs constructed using the minimum 
description length (MDL) score tend to perform no better than NB. That result has 
been widely noted by other authors (e.g. Grossman & Domingos, 2004; Keogh & 

1 College of Engineering & Informatics, National University of Ireland, Galway, Ireland. 
Email: michael.madden@nuigalway.ie
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Pazzani, 2002)

Our cont
performance is no better than that of NB, and significantly worse than TAN 
(ignoring other considerations such as computational complexity or 
interpretability). Our results indicate that performance is
superior to that of NB and much closer to that of TAN, when the same parameter 
estimation procedure is used for all.

It turns out that Friedman et al. used simple frequency counts for parameter 
estimation in constructing GBN classifiers, whereas they used parameter 
smoothing in constructing TAN classifiers (see Sec. 2.3 for details). Our 
experiments show that if frequency counts are used for both GBN and TAN, 
neither is much better than NB (Sec. 3.3, Figure 5), but if parameter smoothing is 
used for both, they both perform similarly well (Figure 4). Furthermore, since 
GBN classifiers are commonly constructed through heuristic search, it is possible 
for improved GBN construction algorithms to lead to improved performance.

The structure of the paper is as follows. Section 2 reviews Bayesian networks 
and the algorithms for constructing GBN and TAN classifiers that are used in this 
paper. Section 3 presents experiments applying NB, TAN and two GBN 
algorithms to classification problems on 28 standard datasets, and identifies why 
the results of this paper are at odds with those of Friedman et al. as mentioned 
above. Finally, Section 4 draws general conclusions about the suitability of GBNs 
as classifiers.

2 Bayesian Networks and Classification

As is well known, a Bayesian network is composed of the network structure and
its conditional probabilities. The structure BS is a directed acyclic graph where the 
nodes correspond to domain variables x1 xn and the arcs between nodes 
represent direct dependencies between the variables. Likewise, the absence of an 
arc between two nodes x1 and x2 represents that x2 is independent of x1 given its 
parents in BS. Using the notation of Cooper & Herskovits (1992), the set of parents 
of a node xi in BS is denoted i. The structure is annotated with a set of conditional 
probabilities, BP, containing a term P(Xi | i) for each possible value Xi of xi and
each possible instantiation i of i

2.1 Inductive Learning of Bayesian Networks

Several algorithms have been proposed since the late 1980s for inductive learning 
of general Bayesian networks. Recent developments include the global

4
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optimization approach of Silander and Myllymäki (2006), the Greedy Equivalence 
Search algorithm (Chickering, 2002), and the Three-Phase Dependency Analysis 
algorithm (Cheng et al., 2002), though this latter algorithm has subsequently been 
shown to be incorrect (Chickering & Meek, 2006).We evaluate two approaches to 
GBN construction, described in the following subsections, both of which have 
relatively low computational complexity:

1. The K2 search procedure (Cooper & Herskovits, 1992) in conjunction with 
the Bayesian BDeu scoring metric (Buntine, 1991), which is a refinement 
of the K2 metric

2. The approach used by Friedman et al. (1997), which combines hill-
climbing search with the MDL score.

These are both search-and-score methods for construction of GBNs; a search 
heuristic is used to propose candidate networks, and a scoring function is used to 
assess, for any two candidates, which one is more likely given the training data.

The scoring functions and search procedures are described in greater detail in 
the following sub-sections. Rather can constructing general BN structures, 
restrictions may be placed on the structures; this is described in Section 2.2. 
Typically, the conditional probabilities (parameters) associated with a network are 
not computed from the data until after the structure has been found; parameter 
estimation is described in Section 2.3.

2.1.1 K2 Search with BDeu Scoring Approach

If D is a database of training cases, Z is the set of variables in each case in D, and 
BSi and BSj are two belief-network structures containing exactly those variables 
that are in Z, then the comparison amounts to calculating P(BSi|D)/P(BSj|D), which 
in turn reduces to calculating P(BSi,D)/P(BSj,D).

Assume that Z is a set of n discrete variables, where a variable xi in Z has ri
possible value assignments, (vi1 viri), and that D has N cases, each with a value 
assignment for each variable in Z. A network structure BS is assumed to contain
just the variables in Z. Each variable xi in BS has zero or more parents, represented 
as a list i. Let wij denote the jth unique instantiation of i relative to D, and 
assume that there are qi such unique instantiations of i. Let Nijk be defined as the 
number of cases in D in which variable xi has the value vik and i is instantiated as 
wij. Let N'ijk denote a Dirichlet parameter. Let Nij and N'ij be defined as:

ir

k
ijkij NN

1 ,

ir

k
ijkij N'N'

1
(1)

With these definitions, the BD metric (Heckerman et al., 1995) is defined as:

ii r

k ijk

ijkijk
q

j ijij

ij
n

i
S

S

N'
NN'

NN'
N'

BP

DBP

111 )(
)(

)(
)(

)(

),(

(2)
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Note that is the gamma function, defined as (x+1) = x (x), which is closely 
related to the factorial function but defined for real numbers, not just integers. In a 
practical implementation, the logs of terms in Eq. 2 are computed.

The K2 metric (Cooper & Herskovits, 1992) corresponds to Eq. 2 with all 
N'ijk = 1. Alternative 

uninformative values are proposed by Buntine (1991):

ii
ijk qr

N'N' (3)

Using s values, Eq. 2 becomes what Heckerman et al. (1995) term the 
BDeu metric, which has the additional property of being structure-equivalent. This 
is the metric used in the current work. Assuming that all structures are equally 
likely a priori, P(BS) is constant, so to maximize P(BS,D) just requires finding the 
set of parents for each node that maximizes the second inner product of Eq. 2. 

The K2 search procedure requires a node ordering. It operates by initially 
assuming that a node has no parents, and then adding incrementally that parent 
whose addition most increases the probability of the resulting network. Parents are 
added greedily to a node until the addition of no one parent can increase the 
structure probability. This is repeated for all nodes in the sequence specified by 
the node ordering.

In the experiments of Section 3, the node ordering in each dataset is arbitrarily 
taken to be the order of attributes in the input files, except that the class node is 
always placed first in the order. In addition, the maximum number of parents a 
node may have is limited to 4.

2.1.2 MDL Scoring Approach

In constructing GBNs, Friedman et al. (1997) use a scoring function based on the 
minimum description length (MDL) principle. The MDL score of a network B
given a database of training cases D is:

)|(log
2
1)|( DBLLBNDBMDL (4)

where |B| is the number of parameters in the network and LL(B | D) denotes the 
log-likelihood of B given D. To calculate LL(B | D), let )(DP be the empirical 
probability measure defined by frequencies of events in D. Then:

))(log(),()|(
,

iiD
i X

iiD XPXPNDBLL
ii

(5)

The search procedure used by Friedman et al. is to start with the empty network 
and successively apply local operations that greedily reduce the MDL score 
maximally until a local minimum is found. The local operations applied are arc 
insertion, arc deletion and arc reversal. 
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2.1.3 Classification using a GBN

A Bayesian network may be used for classification as follows. Firstly, any nodes 
outside of the Markov blanket of the classification node xc may be deleted. Then, 
assume that the value of xc is unknown and the values of all other nodes are 
known. Then, for every possible instantiation of xc, calculate the joint probability 
of that instantiation of all variables in the network given the database D. By the 
definition of a Bayesian network, the joint probability of a particular instantiation 
of all n variables is calculated as:

n

i
iiiinn XxPXxXxP

1
11 )(),...,( (6)

By normalizing the resulting set of joint probabilities of all possible 
instantiations of xc, an estimate of the relative probability of each is found. The 
vector of class probabilities may be multiplied by a misclassification cost matrix, 
if available.
building the GBN, and in Eq. 6, xc is just one of the variables x1 xn.

Although arbitrary inference in a GBN with discrete variables is NP-hard 
(Cooper, 1990), the classification procedure just described just requires Eq. 6 to be 
evaluated once for each possible instantiation of xc; thus its time complexity is 
O(nm rc), where nm is the number of nodes in xc nm n..

2.2 Restricted Bayesian Classifiers

Figure 1 schematically illustrates the structure of the Bayesian classifiers 
considered in this paper. The simplest form of Bayesian classifier is Naïve Bayes.
When represented as a Bayesian network, a Naïve Bayes (NB) classifier has a 
simple structure whereby there is an arc from the classification node to each other 
node, and there are no arcs between other nodes, as illustrated in Figure 1(a). 
Since NB has a fixed structure, learning simply involves estimating the parameters 
according to one of the procedures discussed below in Section 2.3.
Several researchers have examined ways of achieving better performance than 

NB. Friedman et al. (1997) in particular consider (among other structures) Tree 
Augmented Naïve Bayes (TAN), which allows arcs between the children of the 
classification node xc as shown in Figure 1(b), thereby relaxing the assumption of 
conditional independence. In their approach, each node has xc and at most one 
other node as a parent, so that the nodes excluding xc form a tree structure. 
Optimal TAN structures are constructed by finding the maximum weighted 
spanning tree within a complete graph connecting the nodes, where arcs are 
annotated by the conditional mutual information between all pairs of non-class 
nodes, conditioned on the class node, according to Eq. 7. 

7
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)()(
),(

log),,(),(
,, CXPCXP
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(a) Naïve Bayes (b) TAN 
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x 3 

x 4 
(c) General BN 

Figure 1: Illustration of Naive Bayes, TAN and General BN Structures.

2.3 Parameter Estimation

Let ijk denote the conditional probability that a variable xi in BS has the value vik,
for some k from 1 to ri, given that the parents of xi, represented by i, are 
instantiated as wij. Then ijk = P(xi=k| i=wij) is termed a network conditional 
probability. The simplest form of parameter estimation is based on frequency 
counts (referred to as unsmoothed estimates by Friedman et al.):

ijkf
ijk

ij

N
N (8)

A problem with using Eq. 8 is that it can result in zero estimates for some 
parameters if not all combinations of variables are well represented in the training 
data, resulting in a probability of 0 being computed for some instantiations of all 
variables. One solution is to replace zero estimates by a small positive value.

As well as using unsmoothed estimates, Friedman et al. use technique based on 
Dirichlet priors that they term parameter smoothing, which boils down to the 
following calculation:

8



On the Classification Performance of TAN and General Bayesian Networks

0

0

ijk is
ijk

ij

N N N N
N N (9)

where Ni/N = )( ixP is the frequency of the given value of xi observed in the 
dataset. (Friedman et al. report that, after experimentation, a value of N0 = 5 was 
chosen.) 

As part of our controlled comparisons, the same parameter smoothing is used 
for all classifiers in the analyses presented below in Section 3.

To avoid any ambiguity, it should be pointed out that smoothed parameter 
estimates are used only to estimate the conditional probabilities, BP, after the
network structure, BS, has been determined. TAN and GBN structure learning uses 
simple frequency counts (Eq. 8).

3 Experiments

3.1 Methodology

For this work, the Naïve Bayes, TAN and two general BN algorithms were 
compared using 26 datasets from the UCI repository of Machine Learning datasets 
(Asuncion & Newman 2007). For consistency with previous work in this domain
(Cheng & Greiner, 2001; Friedman et al., 1977; Keogh & Pazzani, 2002; Madden, 
2003), continuous variables were discretized using the discretization utility of 
MLC++ (Kohavi et al., 1977) with its default entropy-based setting (Dougherty et 
al., 1995) and any cases with missing values were removed. The two general BN 
algorithms are those listed earlier:

1. GBN-K2: K2 search procedure with the Bayesian BDeu scoring metric 
2. GBN-HC: hill-climbing search with MDL score, following Friedman et al.

The GBN-HC implementation used in this work is that in WEKA (Bouckaert, 
2004a). The NB, TAN and GBN-K2 algorithms were implemented for this work 
in Common Lisp (code available by email on request).

Previous comparisons of similar classifiers (Cheng & Greiner, 2001; Friedman 
et al., 1977; Madden, 2003) have estimated classifier accuracy using holdout sets 
for the larger datasets and 5-fold cross validation for smaller datasets. However, it 
has been shown that such analyses may suffer from high sensitivity to the specific 
divisions used (Bouckaert, 2004a). Also, previous analyses have compared 
accuracy figures by simply considering the magnitude of the estimated accuracy 
without performing statistical significance tests (Cheng & Greiner, 2001; 
Friedman et al., 1977), or using t-tests that are not corrected to account for the 
overlap in folds from a multi-fold cross-validation run (Madden, 2003). This latter 
approach has been shown to have a high Type I error (Nadeau & Bengio, 2000).
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To avoid such problems, the experimental methodology used in this work 
follows the 10 x 10 fold sorted cross-validation approach proposed by Bouckaert 
(2004b), with associated t-tests to measure significance. This has been shown to 
have good replicablility, thereby facilitating future comparisons, and because by 
applying it consistently across all datasets and algorithms, coherent comparisons 
can be drawn.

3.2 Results 

Table 1 lists the accuracy (and standard deviation of accuracy) of each of the four 
classification algorithms being considered, as measured from 10 runs of 10-fold 
cross-validation on each dataset. In each row, the best of the four classifier results 
are displayed in bold. Specifically, for each dataset, the classifier with the highest 
performance is highlighted in bold and compared with that of the other two 
classifiers, using a paired t-test at the 5% significance level based on the 10x10 
fold sorted cross-validation results.
different from the best, it is also highlighted, but if the differences between all four
classifiers are not statistically significant, then none of them are highlighted.

As these results show, there are no statistical differences between the 
algorithms on 10 of the 26 datasets, at the 5% significance level. In just 2 other 
cases, NB is best (including joint best), in 13 cases TAN is best, in 10 cases GBN-
K2 is best and in 7 cases GBN-HC is best.

Figure 2 shows two scatter-plots comparing TAN with NB and with GBN-HC.
Figure 2(a) shows that TAN generally outperforms NB, as was also demonstrated 
in the experiments of Friedman et al. (1997). Figure 2(b) also shows TAN 
outperforming GBN-HC, though the difference in performance is not as marked as 
in the results of Friedman et al.
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Figure 2: Relative accuracies of: (a) TAN and NB; (b) TAN and GBN-HC.
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Figure 3: Relative accuracies of: (a) GBN-K2 and NB; (b) GBN-HC and NB.

Table 1: Classification performance (accuracy std dev) of four algorithms as measured on
28 datasets; results in bold are best or joint best, as described in text.

No. Dataset Naïve Bayes TAN GBN-K2 GBN-HC

1 Adult 84.03 ± 0.53 L 86.15 ± 0.35 W 86.16 ± 0.33 W 86.02 ± 0.48
2 Australian 85.80 ± 4.03 D 85.06 ± 3.90 D 86.22 ± 3.83 D 85.93 ± 4.06
3 Breast Cancer 97.38 ± 1.84 D 96.99 ± 1.88 D 97.32 ± 1.81 D 97.15 ± 1.83
4 Car 85.15 ± 2.74 L 93.96 ± 1.90 W 89.61 ± 2.20 L 86.36 ± 3.15
5 Chess 87.85 ± 1.70 L 92.09 ± 1.39 L 94.45 ± 1.41 W 94.95 ± 1.47
6 Cleve 82.87 ± 6.20 D 81.04 ± 6.77 D 81.07 ± 6.22 D 82.33 ± 6.27
7 Connect-4 72.11 ± 0.63 L 76.43 ± 0.40 L 79.08 ± 0.66 W 73.88 ± 0.70
8 Corral 87.05 ± 9.46 L 99.23 ± 3.19 W 99.62 ± 2.53 W 99.38 ± 2.37
9 DNA Splice 95.26 ± 0.98 L 94.92 ± 1.10 L 95.93 ± 1.05 W 95.81 ± 1.02

10 Flare 80.12 ± 3.47 D 82.65 ± 3.47 D 82.24 ± 3.39 D 82.56 ± 3.48
11 German 74.61 ± 4.31 D 72.07 ± 4.04 D 74.20 ± 3.97 D 73.25 ± 4.07
12 Glass2 81.16 ± 8.68 D 79.37 ± 8.95 D 79.00 ± 9.35 D 77.29 ± 9.86
13 Heart 82.74 ± 6.70 D 83.11 ± 7.30 D 82.30 ± 7.49 D 83.04 ± 7.32
14 Hepatitis 86.38 ± 10.97 D 88.00 ± 11.64 D 87.00 ± 13.29 D 86.38 ± 14.22
15 Letter 74.67 ± 1.05 L 86.28 ± 0.61 W 81.76 ± 0.73 L 75.12 ± 0.72
16 Lymphography 82.16 ± 10.61 D 81.07 ± 9.57 D 77.46 ± 9.47 D 75.06 ± 10.98
17 Mofn-3-7-10 85.34 ± 3.43 L 91.96 ± 2.63 W 86.85 ± 3.56 L 93.04 ± 2.86
18 Nursery 90.29 ± 0.77 L 93.30 ± 0.81 W 91.18 ± 0.89 L 91.68 ± 0.82
19 Pima 75.69 ± 4.42 D 76.37 ± 3.94 D 76.33 ± 4.26 D 76.18 ± 4.27
20 Segment 91.27 ± 1.70 L 95.27 ± 1.49 W 94.64 ± 1.56 W 93.45 ± 1.48
21 Soybean-Large 91.83 ± 3.50 W 92.35 ± 3.08 W 89.22 ± 4.22 L 78.02 ± 6.45
22 Spect 68.53 ± 9.14 L 70.29 ± 8.99 W 68.98 ± 8.50 W 74.19 ± 8.89
23 Tic Tac Toe 69.76 ± 4.45 L 76.32 ± 3.82 W 69.26 ± 4.74 L 68.38 ± 4.83
24 Vehicle 60.62 ± 4.88 L 70.36 ± 4.58 W 67.30 ± 5.18 W 62.50 ± 5.46
25 Vote 90.27 ± 4.30 L 93.84 ± 3.26 W 93.57 ± 3.53 W 95.11 ± 3.03
26 Waveform-21 80.90 ± 1.64 W 81.96 ± 1.70 W 81.67 ± 1.56 W 79.73 ± 1.96
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But what about the claim that GBNs perform as badly as, or even worse than, 
NB? Figure 3 shows two scatter-plots comparing GBN-K2 and GBN-HC with 

vertical axis and B is plotted on the horizontal axis. Visually, points above the 
diagonal are those where classifier A has higher accuracy. Our results do not 
provide evidence for that claim. They show that the classification performance of 
both GBN algorithms is good relative to NB, although the performance of GBN-
K2 is a little better than that of GBN-HC. On the basis of paired t-tests, it is found 
that GBN-K2 is better than NB on 11 datasets whereas NB is better than it on just 
1; likewise, GBN-HC is better than BN on 9 datasets whereas NB is better on 1. 

Furthermore, when GBN-K2, rather than GBN-HC, is compared with TAN, the 
differences between them are not at all pronounced, as shown in Figure 4.
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Figure 4: Relative accuracies of TAN and GBN-K2.

3.3 Discussion of Results

The results presented in Table 2 and illustrated in Figure 3 indicate that GBN 
outperforms NB overall. This conclusion is clearly at variance with the 
experimental results of Friedman et al., who compared GBN and NB on 25 
datasets and reported that GBN was significantly better on 6 and significantly 
worse on 6. (All of those datasets are included in this study except for CRX and 
Glass, which are variants of the Australian and Glass2 datasets that are included.) 
Our GBN-HC algorithm is the same one that they used.

Differences in experimental methodology might account for some of the 
disparities in conclusions drawn from our work and that of Friedman et al, as their 
experiments may be more prone to Type I errors and have lower replicability. 
However, we believe that parameter estimation has a much more significant 
effect. For the TAN and NB algorithms, they present results using unsmoothed 
(Eq. 8) and smoothed (Eq. 9) parameter estimates. As would be expected, 
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parameter smoothing has little effect on the performance of NB, but it improves 
the performance of TAN since zero probability estimates are more likely to arise 
in more complex structures. However, Friedman et al. present results for GBN 
without smoothing only; they do not present corresponding smoothed GBN 
results, even though one would expect parameter smoothing to improve the 
performance of GBN also. In contrast, the results presented above in Table 2 and 
Figures 2-4 use parameter smoothing for all classifiers.

To explore this further, we repeated our analyses using unsmoothed parameter 
estimates. Figure 5(a) presents a plot comparing Unsmoothed GBN with 
Unsmoothed NB. These results are qualitatively similar to those of Friedman et
al.; Unsmoothed GBN is not much better than Unsmoothed NB. However, the 
comparison in Figure 5(b) is also interesting, as it shows that Unsmoothed TAN is 
also no better than Unsmoothed NB.

In a further set of experiments, we used unsmoothed parameter estimates but 
replaced zero probabilities with small epsilon values. When we did so, the results 
were quite close to the smoothed result of Table 1. We therefore conclude that the 
essential cause of the poor performance of the TAN and GBN classifiers relative 
to NB in Figure 5 may be attributed to the zero probabilities in the computations.
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Figure 5: Relative Accuracies of: (a) Unsmoothed GBN-HC vs Unsmoothed NB;
(b) Unsmoothed TAN vs Unsmoothed NB.

4 Conclusions: Suitability of GBN as a Classifier

The results of the preceding section have shown that, when TAN and GBN-K2
classifiers are compared under careful experimental procedures and using the 
same parameter estimation procedure for both, there is little to distinguish between 
them in terms of classification accuracy.

An advantage of TAN is its low computational complexity, which is O(n2 N).
However, for a fixed maximum number of parents per node, to complexity of the 
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GBN-K2 algorithm is O(n3 N r), which is just a factor (n r) worse. (Here, r is the 
maximum number of different values any node may have.)
Nonetheless, if GBN classifiers are more expensive to construct than TAN 

classifiers and do not offer greater classification accuracy, why use them? There 
are other possible drawbacks of GBNs as classifiers:

1. It is often observed in Machine Learning that we should not solve a more 
general problem than required, so why build a full GBN if all that is 
required is a classifier?

2. GBNs are in general more complex than TAN classifiers, though not 
necessarily; in fact, as discussed below, A GBN classifier may end up with 
fewer arcs than a TAN classifier on the same domain, since not all nodes 
might be within the Markov blanket.

3. The GBN that best describes the domain as a whole does not necessarily 
correspond to the one that best discriminates between classes, and the 
classification node might potentially be unconnected from the network.

While aware of these drawbacks, we propose three reasons for their use:
1. Insightful analysis: In many practical domains, particularly where it is 

required to convince end-users such as scientists or engineers that 
classification decisions are reasonable and logical, it is as important to gain 
insight into the problem as it is to achieve high classification accuracy. 
GBN classifiers support this by modelling the distribution, allowing more 
complex interactions between nodes to be represented than with TAN and 
a
Markov blanket. They also aid in identifying conditional independencies in 
the data, which may also be useful for domain insight.

2. Representational power: Zhang & Ling (2001) have examined the 
representational power of discrete BNs and have concluded that, if each 
node has at most u parents, a BN can represent parity functions of 
maximum order u. This implies, as would be expected, that GBN has 
greater representational power than TAN which in turn has greater 
representational power than NB. 

3. Appropriate complexity: As noted above, a GBN classifier may have fewer 
arcs than a TAN classifier for the same domain. In TAN, nodes are must 
have the class node as a parent, and a full tree of arcs between non-class 
nodes, so all but two nodes have exactly two parents each. In GBN, there 
are no such constraints; a node may have no parents or several. On the 
Adult dataset for example, the typical GBN had 13 arcs with 0-3 parents 
per node, which is the same number of arcs as Naïve Bayes for the dataset,
which has exactly one parent per node. The TAN classifier for the Adult
dataset was more complex, with 25 arcs. On the Connect 4 dataset, Naïve 
Bayes has 13 arcs, TAN has 83 arcs and GBN has a median of 74 arcs.

GBN approaches are not as widely used for classification tasks as TAN. 
Notable exceptions include the work of Cheng & Greiner (2001), the application 
by Baesens et al. (2002) of Monte Carlo Markov Chain search to constructing 
GBN classifiers, and (2004) algorithm for learning GBNs 
that maximize conditional likelihood.
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However, a larger number of researchers have analysed TAN and proposed 
improvements. Examples include the work of Keogh and Pazzani (2002) who 
proposed the use of classification accuracy rather than conditional mutual 
information in building TAN-style classifiers; Zhang & Ling (2001), who 

Cerquides and de 
Mántaras ( 2005), who identified theoretical weaknesses in the TAN approach and 
proposed corrections for them; and Garg & Roth (2001) who addressed the 
question of why classifiers such as TAN that make often inaccurate assumptions 
tend to perform well. 

Although the experiments here have shown that the GBN-K2 algorithm has 
quite good classification performance, it is likely that other algorithms would 
perform even better. Given the relative complexity of GBN construction compared 
to TAN construction, improving the performance of GBN classifiers would appear
to be a topic with some potential for research. A limitation of GBN-K2 is that it 
requires an ordering on nodes. In specific applications it may be possible to 
determine a reasonable node ordering from domain knowledge, but it would be 
interesting to analyse the performance of other algorithms that do not require node 
ordering. That being said, GBN-HC does not require node ordering and its 
performance on the test datasets was slightly weaker than that of GBN-K2, but its 
simple hill-climbing search without restarts is quite limited. 

In the future, it is hoped to analyse more sophisticated algorithms, particularly 
the algorithm of Silander and Myllymäki (2006), which searches for a globally 
optimal network. In order to address the issue noted earlier in this section that the 
optimal GBN for a domain is not necessarily the optimal one for classification, it 
would be necessary to develop an approach that constructs a Markov blanket 
around the classification node.

Overall, we believe that GBNs may deserve greater attention as classifiers, 
particularly in problem domains where data is plentiful and insight into the 
domain, as well as high accuracy, is required, although work remains to be done to 
optimize them for classification tasks.

Acknowledgements

This research has been supported by a Marie Curie Transfer of Knowledge 
Fellowship of the EU 6th Framework Programme, contract CT-2005-029611.

References

1. Baesens, B., Egmont-Petersen, M., Castelo, R. and Vanthienen, J. (2002) Learning Bayesian 
network classifiers for credit scoring using Markov Chain Monte Carlo search. Proc. 2002 
International Congress on Pattern Recognition, IEEE Computer Society.

15



M.G. Madden

2. Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning Repository.
http://www.ics.uci.edu/ ~mlearn/MLRepository.html. University of California, Irvine.

3. Bouckaert, R.R. (2004): Bayesian networks in Weka. Technical Report 14/2004. Computer 
Science Department. University of Waikato.

4. Bouckaert, R.R. (2004): Estimating Replicability of Classifier Learning Experiments. Proc. 21st
International Conference on Machine Learning.

5. Buntine, W. (1991). Theory Refinement on Bayesian Networks. Proc. 7th International 
Conference on Uncertainty in Artificial Intelligence.

6. Cerquides, J. and de Mántaras, R. (2005). TAN Classifiers Based on Decomposable 
Distributions.Machine Learning Vol. 59, pp 323-354.

7. Cheng, J. and Greiner, R. (2001). Learning Bayesian Belief Network Classifiers: Algorithms and 
System. Proc. 14th Canadian Conference on Artificial Intelligence.

8. Cheng, J., Greiner, R., Kelly, J., Bell, D. and Liu, W. (2002). Learning Belief Networks from 
Data: An Information Theory Based Approach. Artificial Intelligence, Vol. 137, pp 43-90.

9. Chickering, D.M. (2002). Optimal Structure Identification with Greedy Search. Journal of 
Machine Learning Research, Vol. 3, pp 507-554.

10. Chickering, D.M. and Meek, C. (2006). On the Incompatibility of Faithfulness and Monotone 
DAG Faithfulness. Artificial Intelligence, Vol. 170, pp 653-666.

11. Cooper, G.F. (1990). The Computational Complexity of Probabilistic Inference Using Bayesian 
Belief Networks. Artificial Intelligence, Vol. 42, pp 393-405.

12. Cooper, G.F. and Herskovits, E. (1992). A Bayesian Method for the Induction of Probabilistic 
Networks from Data. Machine Learning, Vol. 9, pp 309-347. Kluwer Academic Publishers.

13. Domingos, P. & Pazzani, M. (1996). Beyond Independence: Conditions for the Optimality of the 
Simple Bayesian Classifier. Proc. 13th International Conference on Machine Learning.

14. Domingos, P. & Pazzani, M. (1997). On the Optimality of the Simple Bayesian Classifier under 
Zero-One Loss. Machine Learning, Vol. 29. Kluwer Academic Publishers.

15. Dougherty, J., Kohavi, R. and Sahami, M. (1995). Supervised and Unsupervised Discretization of 
Continuous Features. Proc. 12th International Conference on Machine Learning.

16. Friedman, N., Geiger, D. and Goldszmidt, M. (1997). Bayesian Network Classifiers. Machine 
Learning, Vol. 29, pp 131-163. Kluwer Academic Publishers, Boston.

17. Garg, A. and Roth, D. (2001) Understanding Probabilistic Classifiers. Proc. 12th European 
Conference on Machine Learning.

18. Grossman, D. and Domingos, P. (2004). Learning Bayesian Network Classifiers by Maximizing 
Conditional Likelihood. Proc. 21st International Conference on Machine Learning.

19. Heckerman, D., Geiger, D. and Chickering, D.M. (1995). Learning Bayesian Networks: The 
Combination of Knowledge and Statistical Data. Machine Learning, Vol. 20, pp 197-243.

20. Keogh, E. and Pazzani, M.J. (2002). Learning the Structure of Augmented Bayesian Classifiers. 
International Journal on Artificial Intelligence Tools, Vol. 11, No. 4, pp 587-601.

21. Kohavi, R., Sommerfield, D. and Dougherty, J. (1997). Data Mining using MLC++. International 
Journal on Artificial Intelligence Tools, Vol. 6, No. 4, pp 537-566.

22. Ling, C.X. and Zhang, H. (2002). The Representational Power of Discrete Bayesian Networks. 
Journal of Machine Learning Research, Vol. 3.

23. Madden, M.G. (2003). The Performance of Bayesian Network Classifiers Constructed using 
Different Techniques. Proc. European Conference on Machine Learning, Workshop on
Probabilistic Graphical Models for Classification.

24. Nadeau, C. and Bengio, Y. (2000). Inference for the generalization error. Advances in Neural 
Information Processing Systems 12, MIT Press.

25. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. 
Morgan Kaufmann, San Francisco.

26. Silander, T. and Myllymäki, P. (2006). A Simple Approach for Finding the Globally Optimal 
Bayesian Network Structure. Proc. 22nd Conference on Uncertainty in Artificial Intelligence.

27. Zhang, H. and Ling, C.X. (2001) An improved learning algorithm for augmented Naive Bayes. 
Proc. Fifth Pacific-Asia Conference on Knowledge Discovery in Databases.

16



CBR AND CLASSIFICATION 



Code Tagging and Similarity-based Retrieval
with myCBR

Thomas R. Roth-Berghofer and Daniel Bahls

Abstract This paper describes the code tagging plug-in coTag, which allows an-
notating code snippets in the integrated development environment eclipse. coTag
offers an easy-to-use interface for tagging and searching. Using the similarity-based

search engine of the open-source tool myCBR, the user can search not only for ex-
actly the same tags as offered by other code tagging extensions, but also for similar

tags and, thus, for similar code snippets. coTag provides means for context-based
adding of new as well as changing of existing similarity links between tags, sup-

ported by myCBR’s explanation component.

Key words: Code tagging, code reuse, information retrieval, case-based reasoning,
similarity-based search, knowledge management, eclipse

1 A Programmer’s Dilemma

During their professional life developers work in many projects, use many APIs and

programming languages. Thereby, they re-encounter many tasks and problems that

they have already solved in the past. But especially in the domain of programming,

the accurate way of using a specific API, coding in a certain language or a certain

algorithm can be hard to remember. One often remembers the fact that a similar

situation has already been solved, but the respective piece of code cannot be found

or is not even available on the file system anymore.

Not only one’s own experience may contain the solution to a difficult situation.

There is also the possibility to share experience with other developers. With the
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advance of technologies, a developer has to become acquainted to more and more

new programming techniques and modules in everyday life. The introduction to an

unfamiliar technology requires a lot of time and money. Since the own experience

does not contain the required knowledge, other resources must be used.

Many portals with tutorials, introductions, and best practices regarding API’s

and programming languages exist on the Web. But even though their quality is often

good, finding them costs time, since it is awkward to retrieve via small text boxes

on web pages that are neither meant for complex developer questions nor for code

insertion. Anyway, the used search tool is a web browser in this case, which is not

aware of your working context.

Yet another reason to share code references can be given by the need for doc-

umentation. New members of a large project team get lost quickly if they are not

somehow familiar with the project. In order to understand the structure of the code,

they have to pose many questions to others, or at least to themselves. Thereby, it

may be helpful to have a system that is capable of providing guidance.

Delivering the right information at the right place at the right time is the main

goal of knowledge management. As soon as there is a tool that helps formulating

the problem quickly and easily, finds the desired piece of code reliably, and presents

it after a few seconds right inside the developers working place, i.e., in his or her in-

tegrated development environment (IDE), then the requirements of good knowledge

management are met.

With the evolution of the Web towards Web 2.0, one technique for information

description called tagging has become very popular. Even though, tagging often

lacks semantical foundations, its acceptance in social domains such as bookmark

sharing1 or photo exchange2 among many others proves its practical usefulness.

Easy-to-use interfaces allow annotating digital resources with concepts drawn from

ones own personal information model (8) and intuitive navigation, due to their sim-

ple search and find algorithms.

In this paper, we strive for the goal to bring these capabilities also to the domain

of programming, starting out with personal re-use of code by providing means for

marking and finding relevant knowledge via tagging of code snippets and similarity-

based search.

The plug-in coTag3 allows annotating code snippets in the open source IDE
eclipse4. Using the similarity-based search engine of the open-source tool myCBR5

(9), the user can search not only for exactly the same tags as offered by other code

tagging extensions, but also for similar tags and, thus, for similar code snippets. co-
Tag offers an easy-to-use interface for tagging, searching, and context-based adding
of new as well as changing of existing similarity links between existing tags.

1 http://del.icio.us
2 http://flickr.com
3 http://cotag.opendfki.de
4 http://eclipse.org
5 http://mycbr-project.net
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The rest of the paper is structured as follows: Section 2 gives an introduction to

other approaches supporting code reuse. The details to our approach including case

structure and similarity measures are elaborated in Section 3. All implementation

issues such as the integration into eclipse, the integration of the CBR tool myCBR,
and the design of the user interfaces are presented in Section 4. First evaluation

results are presented in Section 5. The paper concludes with an outlook to further

development plans in Section 6.

2 Related Work

Many approaches to support documentation, navigation, and reuse of software arte-

facts have been developed over the years. Each of them varies slightly regarding

motivation and purpose. We want to introduce some related ideas in the following

and make clear how they differ from our approach.

An interesting concept has been followed by (4) who built a suggestion system

for the domain of software design. It applies a company’s own development expe-

rience as a case base of a CBR system. Therefore, it has been integrated into the

commercial UML tool Enterprise Architect6 and assists every software designer of

the belonging company in generating new UML diagrams. Although, it covers a

bunch of questions respective software design, it cannot answer language specific

ones, since it doesn’t comprise coding details. Also, the practical usage of a foreign

API cannot be explained, because its UML diagrams are not available ad hoc.

A similar approach was followed with CIAO-SI (6). This tool also is based on

CBR techniques. At the beginning of a new development project CIAO-SI suggests

software artefacts (models, documents, source code) that have been used in past

projects. Therefore, the developer must formulate a query that consists of the re-

spective application domain and additional software characteristics. With the use

of CASE7 tools, the resulting artefacts can be adapted to the requirements of the

new project. CIAO-SI assists developers in the complete application design phase.

It considers the outlines of the planned project in a macroscopic level of detail. In

contrast to this, our intention is to show small code snippets or passages of source

code documents in a much smaller context and to provide light-weight assistance

for individual developers in day-to-day use.

Quite complementary to the above is the following approach (10). With Tag-

SEA8 Storey et al. aim at a better documentation and navigation of source code by

enriching bookmarks with meta-data such as provenance and social tags.9 TagSEA

allows sharing of these among project teams. But their goal was to provide a more

sophisticated use of bookmarks within source code, not to answer questions about

6 http://www.sparxsystems.de/
7 Computer Aided Software Engineering
8 http://tagsea.sourceforge.net
9 Their bookmarks are called waypoints following the metaphor used in navigation systems.
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