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Series Editor’s Preface

The series Molecular Modeling and Simulation—Application and Perspectives
seeks to publish a comprehensive collection of volumes highlighting the most
important and groundbreaking developments in molecular modeling and simula-
tion. The goal is to publish volumes where leading researchers can describe the
latest advances in their field in a comprehensive and nuanced manner that makes the
material both accessible to those outside the field while at the same time being
useful to other experts. The series encourages authors to expand their treatment
of their topic in ways that are impossible to achieve in normal journal articles. With
this second volume in the series “Variational Methods in Molecular Modeling,”
Editor Jianzhong Wu has assembled an outstanding collection of contributions from
the top people in the field of variational methods. The volume starts with a peda-
gogical introduction to the topic that should be of great interest to students desiring
to learn about these methods. In the subsequent nine chapters, the authors provide
an overview of variational methods for the particular topic of their chapter and
follow this with examples that illustrate the application of these methods. The
volume closes with an appendix treating the calculus of variations.

I am deeply grateful to Prof. Jianzhong Wu of the University of California,
Riverside, for his willingness to take on this project and for his wisdom and effort in
putting together such an outstanding volume. I am confident this volume will play
an important role in the future application of these methods to the field of molecular
modeling.

Edward Maginn
University of Notre Dame
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Preface

Calculus of variations is a branch of mathematical analysis that deals with
functionals, i.e., algebraic relations mapping functions into real numbers. The
original ideas were established by Leonhard Euler in 1733, and since then, varia-
tional methods have found widespread applications in science and engineering.
A key objective in the calculus of variations is to identify a specific function that
minimizes (or maximizes) a given functional. The mathematical procedure is
naturally applicable to statistical thermodynamics as demonstrated in the ground-
breaking works of J. Willard Gibbs. Today, the maximum entropy principle
(MaxEnt), a cornerstone of the so-called Bayesian statistics, is broadly used not
only in equilibrium as well as non-equilibrium statistical mechanics but also in
pattern recognition and image processing, risk analysis, urban and regional plan-
ning, and business financing, just to name a few from a large class of probabilistic
problems. Calculus of variations is also useful in both classical and quantum
mechanics as shown in the pioneering works of Joseph-Louis Lagrange and in the
variational principle for determining the ground states of quantum systems.

This monograph is an exposition of recent applications of variational methods in
molecular modeling for thermodynamic systems. While variational principles have
been routinely used in both Lagrangian mechanics and the Kohn–Sham density
functional theory, their applications to complex molecular systems are rarely dis-
cussed in the conventional texts of molecular modeling and statistical mechanics.
Instead of describing molecular motions and electronic structures, this book is
mostly concerned with the formulation and application of free-energy functionals
that connect thermodynamic variables with potential fields or the ensemble aver-
aged atomic, molecular, or particle distributions. Prime examples include classical
density functional theory for simple as well as complex fluids, self-consistent-field
theories for ionic mixtures and polymer blends, phase-field methods for phase
separations and interfacial phenomena, and the Ginzburg-Landau-type theories for
molecular self-assembly and order-disorder transitions. In addition, this book
covers the applications of variational methods to describing time-dependent phe-
nomena and to solving quantum many-body problems.
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To introduce these fascinating topics to a broad audience, each chapter in this
book provides a pedagogical overview of variational methods for specific subjects,
with the key theoretical results illustrated with tutorial examples. With emphasis
placed on physical understanding rather than on rigorous mathematical derivations,
this monograph should be accessible to graduate students and researchers in the
broad areas of applied mathematics, condensed matter physics, materials science
and engineering, chemistry, and chemical and biomolecular engineering without
specific training in the calculus of variations.

I am tremendously grateful to all contributors of this monograph for their ded-
icated work and cooperation in finishing their writings in a timely manner.
Preparation of pedagogical materials is not most rewarding in today’s academic
environment, yet it is very time-consuming to summarize the previous research in
particular publications from others. Therefore, I feel especially lucky to have
contributions to this book from a cohort of very distinguished authors. I also want
to thank all reviewers of this monograph for their careful examination of individual
chapters and professional services: Jaydeep P. Bardhan, Northeastern University;
Daniel Borgis, École Normale Supérieure; Joachim Dzubiella, Humboldt
University; Jian Jiang, California Institute of Technology; Isamu Kusaka, Ohio
State University; Yu Liu, East China University of Science and Technology;
Umberto M.B. Marconi, University of Camerino; Friederike Schmid, University of
Mainz; Cyrus Umrigar, Cornell University; Qiang (David) Wang, Colorado State
University; Rik Wensink, University of Paris-Sud XI; Zhenli Xu, Shanghai Jiao
Tong University; and Pingwen Zhang, Peking University. Last, but not least, I
would like to thank Prof. Edward Maginn, the Chief Editor of this book series, for
inviting me to prepare this monograph and Mr. Praveen Kumar, the Springer
Project Coordinator, for his considerable help and patience to put things together.

Riverside, CA, USA Jianzhong Wu
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Variational Methods in Statistical
Thermodynamics—A Pedagogical
Introduction

Zhen-Gang Wang

1 Introduction

In this chapter, we provide a pedagogical introduction to variational methods in
statistical thermodynamics. This chapter is written primarily for graduate students
who have had a first course in statistical mechanics. It is hoped that this chapter
provides a useful and insightful introduction to both the conceptual and practical
aspects of the variational methods that can be helpful in their research in statistical
mechanics.

Variational principle is at the very heart of thermodynamics. Its root is the second
law, usually stated in terms of the entropy, which is an inequality—the only funda-
mental physical law that takes the form of an inequality rather than equality [1]. The
statistical mechanical correspondence of the variational method is the maximum-
term method in the evaluation of the partition function, which forms the basis for
minimization of the free energy. We thus start with a brief review of the variational
nature of thermodynamics and its corresponding statistical mechanical origin.

Except for a limited number of special cases, the partition function cannot be eval-
uated exactly. Thus in constructing the free energy of a system of interest, we usually
have to make approximations. One of the simplest and most useful approximations
is the mean-field approximation, which in essence reduces an intractable many-body
problem to a single-body problem in an effective external field, which is then deter-
mined self-consistently.While for simple systems, the mean-field approximation can
often be constructed intuitively, more systematic derivations are based on variational
methods. We present two common variational methods for approximating the par-
tition function (or equivalently the free energy)—the Gibbs-Bogoliubov-Feynman
(GBF) variational bound, and the steepest-descent method. By way of a toy example
in the evaluation of an integral, we illustrate the use of these two methods. We then

Z.-G. Wang (B)
Division of Chemistry and Chemical Engineering, California Institute
of Technology, Pasadena, CA 91125, USA
e-mail: zgw@caltech.edu

© Springer Science+Business Media Singapore 2017
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2 Z.-G. Wang

use the variational methods to derive the mean-field solution for the Ising model
and the Poisson-Boltzmann theory for electrolyte solutions. Finally, we show that
the GBF method provides a natural way to include fluctuation effects in weakly
correlated systems.

2 The Variational Nature of Thermodynamics

The second law of thermodynamics is commonly expressed by the Clausius inequal-
ity:

dS ≥ δQ

T
(2.1)

where S is the entropy of the system, Q the heat into the system and T the absolute
temperature. In the most general case the temperature refers to that of the heat bath.
For an adiabatic process, the right hand side of the expression is zero, and Eq.2.1
reduces to the well-known expression

dS ≥ 0 (2.2)

This is often termed the principle of increasing entropy. If we consider the system and
surrounding as a closed, isolated system, then this principle states that the entropy
cannot decrease—it increases for an irreversible (nonequilbrium) process and reaches
a maximum at equilibrium.

The principle of increasing entropy implies a variational principle. Imagine we
start an isolated system in some nonequilibrium state, then the second law tells us
that the state of the system will evolve in such a way as to increase its entropy. How-
ever, if the system is to finally attain a well defined final equilibrium, as postulated
in thermodynamics, then the entropy will asymptotically reach a final value—the
maximum value—and cease to increase. Since the entropy is at its maximum in this
final state, its first differential with respect to any real or virtual change in the macro
states of the system (for example, the density distribution in a gas in the absence
of external fields) must vanish, while its second differential will be negative. Thus
mathematically, the condition of equilibrium for an isolated system is expressed as:

δS

δX
= 0 (2.3)

and
δ2S

δX2
< 0 (2.4)

where we use the generic notation X to denote some unconstrained macrostate vari-
able [2]. The second derivative is usually unnecessary (it rarely is explicitly evalu-
ated), as the problem statement usually makes it obvious whether the extreme is a
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maximum or minimum. Henceforth we will focus on the first derivative. For sim-
plicity, we consider here only one variable, but generalization to multivariables is
straightforward.

Isolated systems are not the most convenient systems to work with. In most cases,
the system of interest is in thermal contact with a heat bath. Heat bath or reservoir
is an idealized conceptual construct in thermodynamics. Its size is considered suf-
ficiently large (in fact infinite) and is always in its own internal equilibrium. These
two attributes imply that any finite change in its extensive variables, such as energy,
volume, particle number, are infinitesimal processes for the bath, so that it is always
maintained at internal equilibrium and its intensive properties, such as temperature,
pressure, or chemical potential, remain unchanged.

For an isothermal process where the system is kept in thermal equilibrium with a
thermal bath (thus having the same temperature as the thermal bath), making use of
the first law dE = δQ + δW , the Clausius inequality becomes

d (TS) ≥ dE − δW (2.5)

or
d (E − TS) ≤ δW (2.6)

(We use E rather than U as the notation for the energy of the system because E is
the more common notation in statistical mechanics.) Equation2.6 naturally leads to
the definition of the Helmholtz free energy:

F = E − TS (2.7)

In terms of the Helmholtz free energy, the second law now becomes

dF ≤ δW (2.8)

In the special case of no work, we thus have

dF ≤ 0 (2.9)

Therefore, for an isothermal system, the Helmholtz free energy will decrease for a
spontaneous process and will reach a minimum at equilibrium. Following similar
arguments as for entropy, the equilibrium condition in terms of the Helmholtz free
energy is

δF

δX
= 0 (2.10)

We can obtain Eq.2.10 using an alternative approach, which serves to illustrate
the use of the variational condition on the entropy, Eq. 2.3. Recall that the maximum
entropy condition is for an isolated system. Therefore, to make use of Eq.2.3, we
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E t E (X )

X,E(X )

system 

bath 

Fig. 1 Isothermal system (enclosed within the oval) in contact with the thermal bath. The system
and the bath can be considered an isolated “super” system whose boundary is indicated by the
rectangle. The bath is assumed to be much larger in extent and so Et � E(X)

consider a “super system” consisting of the system of interest and the bath; see Fig. 1
for illustration. Let the total energy of the super system be Et , the energy of the
system of interest be E. We use X to denote the unconstrained internal macrostate
variable for the system. In general, the system energy depends on X, and we write
E(X) to account for this dependence. The total entropy of the super system is then

St [E(X),X;Et] = S [E(X),X] + Sb [Et − E(X)] (2.11)

Because the bath is much larger than the system, we may Taylor expand the last term
around Et . Doing so yields,

St [E(X),X;Et] = S [E(X),X] + Sb (Et) −
(

∂Sb
∂Eb

)
Eb=Et

E(X) (2.12)

We recognize that the derivative (∂Sb/∂Eb) is nothing but the inverse of the
temperature of the bath, so

St [E(X),X;Et] = S [E(X),X] − E(X)

Tb
+ Sb (Et) = −F(X)

Tb
+ Sb (Et) (2.13)

where F(X) = E(X) − TbS [E(X),X] is just the Helmholtz free energy of the sys-
tem at the isothermal condition when the system temperature is kept at the bath
temperature. Since the last term is an immaterial constant independent of the system
variables, the condition of maximum in St for the super system is equivalent to the
condition of minimum in F for the system.

Variational conditions using other thermodynamic potentials can be derived fol-
lowing similar arguments. Of particular interest is the variational condition using the
grand potential, which for a single-component system, is defined as

W [N(X),X] = F [N(X),X] − μbN(X) (2.14)
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where μb is the chemical potential of the particle reservoir (bath). X, for example,
can be the density distribution of the particles. The grand potential is convenient
for treating systems with spatial inhomogeneity as well as for describing phase
transitions, because the temperature and chemical potential of the system are set
by the reservoir (i.e., do not need to be solved for), so equality of chemical potential
is automatically satisfied.

3 The Variational Origin of Statistical Thermodynamics

The central task of statistical thermodynamics is the computation of the partition
function in a given ensemble, from which we obtain the appropriate thermodynamic
potential (free energy) and all other equilibrium thermodynamic properties. Themost
common ensemble is the canonical ensemble at fixed volume, particle number and
temperature (set by the thermal bath). Symbolically, we write the canonical partition
function as:

Q =
∫

d� exp [−βH(�)] (3.1)

where � is a collective symbol to denote the microstates of the system, H is the
Hamiltonian, and β = (kT)−1 with T being the temperature of the bath.

∫
d� is a

short-hand notation for summing over the microstates. For example, in the case of
classical fluids, it denotes summing over all the particle momenta and positions. For
the Ising model, it corresponds to summing over all spin states.

From the partition function, we obtain the free energy as

F = −kT lnQ = −kT ln

{∫
d� exp [−βH(�)]

}
(3.2)

To see the connection to variational principle, we perform the summation over
the microstates in two steps. First, we group all the microstates that correspond
to a particular value of the macrostate X, and then we sum over the value of the
macrostate X. Mathematically, this is accomplished by inserting the following iden-

tity
∫
dXδ

[
X − X̂(�)

]
= 1 into the partition function

Q =
∫

d�

∫
dXδ

[
X − X̂(�)

]
exp [−βH(�)] =

∫
dX

∫
d�δ

[
X − X̂(�)

]
exp [−βH(�)]

(3.3)
Where X̂(�) is the microscopic denition of X in terms of the microstate �. The inner
integral over � yields a constrained partition function

Q(X) =
∫

d�δ
[
X − X̂(�)

]
exp [−βH(�)] (3.4)
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from which we can define a constrained free energy

F(X) = −kT lnQ(X) (3.5)

Thus, the partition function now becomes

Q =
∫

dX exp [−βF(X)] (3.6)

F(X) defines a free energy surface in the macrostate variable X; it is a constrained
free energy for a fixed value of the internal variableX. In generalF(X) is some highly
nonlinear function of X and as such the integral cannot be evaluated exactly. Here we
use Laplace’s method [3], by noting that the integral will be dominated by values of
X around the maximum of the integrand, or the minimum of the free energy F(X).
Denoting by X∗ the value of X at the minimum, it is obtained from

∂F(X)

∂X
= 0 (3.7)

Expanding F(X) around F(X∗) to quadratic order, we get

F(X) = F(X∗) + 1

2
F(2)(X − X∗)2 (3.8)

where F(2) is the second derivative evaluated at X = X∗. Performing the straightfor-
ward Gaussian integral, we obtain

Q =
√

2π

F(2)
exp

[−βF(X∗)
]

(3.9)

The equilibrium free energy is then

F = −kT lnQ = F(X∗) + 1

2
kT ln

F(2)

2π
(3.10)

Because the free energy is extensive, i.e., O(N), but the second term is at most
O(lnN), for large N , the second term can be safely ignored and we have simply

F = −kT lnQ = F(X∗) (3.11)

This is just the maximum-term method for evaluating the partition function [4]
and is practically exact for thermodynamically large systems. We thus see that the
maximum-term method, or equivalently, the minimization of the constrained free
energy F(X) with respect to the variable X, is the origin of variational principle in
statistical thermodynamics [2]. We will thus use the term variational free energy
synonymously with the constrained free energy.
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As an illustration of the use of the maximum-term method, we take the energy E
as the macrovariable. Thus we have,

Q(X) =
∫

d�δ [E − H(�)] exp [−βH(�)] = �(E)e−βE (3.12)

where �(E) is the degeneracy, i.e., the microcanonical partition function. The vari-
ational free energy is then

F(E) = −kT lnQ(E) = E − kT ln�(E) (3.13)

The variational condition Eq.3.7 becomes

1 − kT
∂ ln�(E)

∂E
= 0 (3.14)

i.e.,
∂ ln�(E)

∂E
= β (3.15)

Note that the left hand side of this equation is the microcanonical definition of β
for the system. Thus this variational condition has the simple interpretation that the
value of the energy that minimizes the free energy of an isothermal system is such
that it results in a temperature of the system that equals the temperature of the thermal
bath. This is just the condition for thermal equilibrium!

4 The Method of Steepest Descent

While the free energy minimization principle and the maximum-term method are
exact, analytical expressions for the exact variational free energy are seldom avail-
able. Therefore, in practice variational methods are most often used to construct
approximate theories for interacting many-body systems. Two variational methods
are widely used in the literature: the method of steepest descent (also called the
saddle-point, or stationary-phase method) and the Gibbs-Bogoliubov-Feynman vari-
ational bound. We start with the method of steepest descent in this section.

The method of steepest descent is a generalization of Laplace’s method [3] intro-
duced in the last section in our discussion of themaximum-termmethod.We consider
the following integral

I =
∫

dxq(x) exp [−αh(x)] (4.1)

where x is a real variable and h(x) and q(x) are analytic functions of x which may
in general be complex, and α is a large positive parameter. We put a negative sign in
the exponential to make apparent the analogy with the Boltzmann weight. Since α
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is large, the dominant contribution to the integral comes from the neighborhood of
the stationary point of h(x). The integration is often extended to the complex plane,
in which case the stationary point becomes a saddle point [3]; hence the method is
also called the saddle-point method. We will use these two terms interchangeably.
For many examples in statistical mechanics, the saddle point occurs for imaginary
values of x. Extending the function h(x) to h(z), and expanding h(z) about z = z∗ to
quadratic order, and performing the resulting Gaussian integral along the steepest-
descent direction, we obtain

I =
√

2π

αh(2)(z∗)
exp

[−αh(z∗)
] [
q(z∗) + O

(
α−1

)]
(4.2)

where h(2)(z∗) is the second derivative in the steepest-descent direction [3].
Since we usually work more with the free energy than with the partition function,

we define f = − ln I . f is then given by

f = αh(z∗) + 1

2
ln

αh(2)(z∗)
2π

− ln q(z∗) + O
(
α−1

)
(4.3)

If we keep only the leading O(α) term, f can be further approximated as

f ≈ αh(z∗) (4.4)

To explain the saddle-pointmethod and illustrate its use,we consider the following
integral:

I =
∫ ∞

−∞
dx exp

[
−α

(
1

2
x2 − ikx

)]
(4.5)

This integral can, of course, be evaluated exactly by simply completing the square in
the exponential, but we use it here to show the key ideas in the saddle-point method.
Although the variable x is real, the integrand is complex, and it is convenient to
extend the integration on the real axis to the complex domain z by using the Cauchy
theorem.We note that there is a stationary point at z∗ = ik, which is purely imaginary.
This suggests that we make a closed contour as shown in Fig. 2, with the direction
of the segments indicated by the red dash arrow. Since there are no residues in the
region enclosed by the contour, by the Cauchy theorem we have

IC1 + IC2 + IC3 + IC4 = 0 (4.6)

where IC1 is just the original integral I . It can be easily shown that the stationary
point z∗ = ik is a saddle point: it is a maximum (for the integrand) with respect to
variations in x but a minimum with respect to variations in y. Thus IC3 runs through
the saddle point in the direction of the steepest descent. By taking the limit b → ∞,
the integration along C2 and C4 vanish (because of the vanishing of the integrand).
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y

x

(0,ik)

( b,0) (b, 0)

( b,ik) (b,ik)

C1

C2

C3

C4

Fig. 2 Integration contour in the complex plane used to evaluate integral Eq. 4.5. The saddle point
is indicated by the black dot located at (0, ik), and b → ∞

We thus have

I = −IC3 =
∫ ∞+ik

−∞+ik
dz exp

[
−α

(
1

2
z2 − ikz

)]
(4.7)

Completing the square in the exponential, we get

I = e− 1
2 αk2

∫ ∞+ik

−∞+ik
dz exp

[
−1

2
α (z − ik)2

]
(4.8)

Along theC3 contour, z = x + ik. Thus integrating along x, i.e., the steepest-descent
direction, we obtain

I = e− 1
2 αk2

∫ ∞

−∞
dx exp

[
−1

2
αx2

]
=

√
2π

α
e− 1

2 αk2 (4.9)

As expected, this result is just Eq.4.2 without the higher-order corrections.
The real power of the saddle-point method, of course, is to evaluate integrals that

cannot be performed exactly. As an example, consider the following integral,

I =
∫ ∞

−∞
dx exp [−h(x)] (4.10)

withh(x) = 1
2x

2 − ikx − λ(e−ix + eix)whereλ > 0.Wechoose this example, because
it shares similar mathematical form as the functional integral we introduce in our
derivation of the Poisson-Boltzmann equation for the electrolyte solution. Clearly,
for nonvanishing values of λ, the integral cannot be evaluated in closed form. We
thus obtain an approximate solution using the saddle-point method. Extending the
variable to the complex domain, we find the saddle-point condition to be given by

z∗ = ik + iλ(eiz
∗ − e−iz∗) (4.11)
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Inspection of this equation suggests that the saddle point is located on the imaginary
axis. We thus denote the saddle-point value as z∗ = iy∗, so that the above equation
becomes

y∗ = k − λ(ey
∗ − e−y∗

) = k − 2λ sinh y∗ (4.12)

which yields a real solution for y∗. (It can be checked that the real solution is unique;
this can be done, for example, by graphing the functions on the two sides of the
equation.) The value of the function at the saddle point, upon using Eq.4.12, is

h(y∗) = 1

2
y∗2 + 2λ

(
y∗ sinh y∗ − cosh y∗) (4.13)

It can be easily seen that the steepest-descent direction around the saddle point is in
the direction of x, with a second derivative given by

h(2)(y∗) = 1 + 2λ cosh y∗ (4.14)

The approximate value of the integral is then

I ≈
(

2π

1 + 2λ cosh y∗

)1/2

exp

[
2λ

(
cosh y∗ − y∗ sinh y∗) − 1

2
y∗2

]
(4.15)

5 The Gibbs-Bogoliubov-Feynman Variational Principle

We start with the mathematical inequality

ex ≥ 1 + x (5.1)

for any real number x. If x is a stochastic variable, we may write

ex = e〈x〉+x−〈x〉 ≥ e〈x〉 (1 + x − 〈x〉) (5.2)

where the angular brackets denotes the average over the distribution of x. Taking the
average of both sides in the above expression, we get

〈ex〉 ≥ e〈x〉 (5.3)

Now consider the partition function Eq.3.1. In general, the partition function
cannot be evaluated exactly. The idea of the Gibbs-Bogoliubov-Feynman variational
method is to evaluate it approximately using a reference Hamiltonian HR(�) for
which the partition function can be obtained exactly. Let the partition function for
this reference Hamiltonian be QR, so
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QR =
∫

d� exp [−βHR(�)] (5.4)

Next, we write

Q =
∫

d� exp [−βHR(�) − βH(�) + βHR(�)] (5.5)

Multiplying and dividing by QR, and noting

〈A〉R = Q−1
R

∫
d�A(�) exp [−βHR(�)] (5.6)

where A is any variable that depends on the microstate �, we obtain

Q = QR〈exp [−βH + βHR]〉R ≥ QR exp [−β〈H〉R + β〈HR〉R] (5.7)

Taking the logarithm and multiplying by −kT , we obtain

F ≤ FR + 〈H〉R − 〈HR〉R (5.8)

where FR is the free energy for the reference system. This is the Gibbs-Bogoliubov-
Feynman inequality [5–7], which allows to estimate the closest upper bound that can
be achieved for a given choice of the reference system. Noting further that,

FR = 〈HR〉R − TSR (5.9)

Equation5.8 can alternatively be written as

F ≤ 〈H〉R − TSR ≡ Fvar (5.10)

Therefore, to best approximate the true free energy F, we choose a reference Hamil-
tonian that makes Fvar a minimum.

6 A Toy Example

In order to illustrate the use of the steepest-descent and GBF methods and compare
between the two, we consider the following integral,

I =
∫ ∞

−∞
dx exp [−h(x)] (6.1)
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in which h(x) = 1
2 εx

2 + 1
4!ux

4 − kx is a purely real function with u > 0. (Note the
parameter α is unnecessary as it can be absorbed by a rescaling of the variable x.)
This function has a similar mathematical form to the φ4 field theory widely used in
the study of critical phenomena [8], with k playing the role of the external field. We
will be interested in the value of the integral as a function of k as well as the mean
and variance for the variable x. Without loss of generality we can set u = 1 (this
can always be achieved by a redefinition of ε and k.) For large and positive ε, the
quartic term is unimportant. As ε decreases towards zero; the effect of the quartic
term becomes more pronounced. Since the integral has the mathematical structure
of a partition function, we refer to h as the “Hamiltonian”.

As the function is real with a real minimum, the steepest-descent approximation
reduces to the Laplace approximation. The minimum condition is given by

εx∗ + 1

6
x∗3 = k (6.2)

The value of the “Hamiltonian” at the minimum is

h(x∗) = −1

2
εx∗2 − 1

8
x∗4 (6.3)

The second derivative is given by

h(2)(x∗) = ε + 1

2
x∗2 (6.4)

The approximate value of the “free energy” corresponding to the integral is

f = − ln I ≈ −1

2
εx∗2 − 1

8
x∗4 + 1

2
ln

ε + 1
2x

∗2

2π
(6.5)

As the nonlinear effect is strongest for ε = 0, we investigate this special case. One
easily gets in this case x∗ = 61/3k1/3, and the “free energy” is then

f = −3

4
61/3k4/3 + 1

2
ln

62/3k2/3

4π
(6.6)

Note that the free energy becomes logarithmically divergent as k → 0, while the
original integral is clearly convergent. This is indication of the breaking down of the
approximation.

Within the steepest-descent approximation, the average is taken to be the saddle-
point value,

〈x〉 = x∗ (6.7)

(upon ignoring higher-order corrections in an expansion in α−1; see Eqs. 4.1–4.4),
and the variance of x is given by
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〈(�x)2〉 = 1

h(2)(x∗)
(6.8)

which follows from the use of linear response theory

〈(�x)2〉 = ∂〈x〉
∂k

(6.9)

We now evaluate the integral Eq. 6.1 using the GBF bound. To this end, we intro-
duce a two-parameter reference “Hamiltonian”,

hR = 1

2
a(x − x∗)2 (6.10)

where x∗ and a are the variational parameters. The GBF bound now reads:

f = − ln I ≤ fR + 〈h〉R − 〈hR〉R (6.11)

where the average 〈· · · 〉R here means

〈· · · 〉R =
( a

2π

)1/2
∫ ∞

−∞
dx (· · · ) exp

[
−1

2
a(x − x∗)2

]
(6.12)

For the reference “Hamiltonian” Eq.6.10, one easily finds

〈hR〉R = 1

2
(6.13)

fR = 1

2
ln

( a

2π

)
(6.14)

〈h〉R = 1

2
εx∗2 + 1

2
εa−1 + 1

4!
(
x∗4 + 6a−1x∗2 + 3a−2

)
− kx∗ (6.15)

The parameters x∗ and a are obtained by minimization of the right hand side of
Eq.6.11 using Eqs. 6.13–6.15, yielding, respectively

εx∗ + 1

3!x
∗3 + 1

2
a−1x∗ − k = 0 (6.16)

and
2a2 − 2εa − ax∗2 − 1 = 0 (6.17)

The positive root of Eq.6.17 is given by

a = 1

4

[
2ε + x∗2 +

√
8 + (2ε + x∗2)2

]
(6.18)
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Fig. 3 Results obtained from the steepest-descent method (blue curve) and the GBF variational
method (red curve), compared to the exact numerical results (black circles), for the example given
by Eq.6.1. From left to right the “free energy”, the mean, and the variance

The minimized “free energy” after simplification using Eqs. 6.16 and 6.17 is:

f = 1

2
ln

( a

2π

)
− 1

4
+ 1

4
εa−1 − 1

2
εx∗2 − 1

8
x∗4 − 3

8
a−1x∗2 (6.19)

By the Gaussian ansatz, the mean and variance are given respectively by

〈x〉 = x∗ (6.20)

〈(�x)2〉 = a−1 (6.21)

In Fig. 3, we plot the “free energy”, the mean and the variance as a function of k
for two values of the parameter ε. For comparison, we include the results from the
steepest-descent method (blue curve), from the GBF method (red curve), and from
exact numerical solution (black circles). In all cases, the variational method provides
a far closer agreement with the numerical results than the simple steepest descent.
For the mean, which in essence is an equation of state, the agreement is excellent
even for ε = 0, and very good agreement is also obtained for the “free energy”
under the “worst” condition ε = 0 and k = 0. Note also that the GBF variational
free energy is always higher than the true free energy, though no such restrictions
apply for the steepest-descent method. The result for the fluctuation from the GBF
method is quite good for ε = 1; it is less accurate quantitatively for ε = 0, but still
captures the qualitative behavior. In contrast, the steepest-descent method yields
qualitatively incorrect behavior for ε = 0. Finally we note that both approximations
become increasingly more accurate at large k and/or ε.

Those who are familiar with the statistical field theory will recognize the steepest-
descent and the GBF treatments as the respective analogue of the random-phase
approximation (RPA) [9, 10] and the self-consistent Hartree approximation [11].
(We note, however, that the term RPA has different meanings in the different com-
munities. For example, in liquid-state theory, it usually refers to approximating the
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direct correlation function by the pair interaction potential in the closure for the
Ornstein-Zernike equation [12]. In many-body and condensed matter physics, RPA
is considered synonymous with the self-consistent Hartree approximation [13]. In
this chapter, we will use the term RPA to refer to a simple Gaussian approximation
around the saddle-point, or equivalently, linear response by perturbation around the
saddle-point [9, 10].)

7 Mean-Field Solution for the Interacting Ising Model

The Ising model is the best known model for a wide range of phase transitions,
including ferromagnetism, liquid-vapor transition, and phase separation in binary
mixtures. In its most common form, the model consists of N “spins” on a lattice with
coordination number z in an external field h. Each spin can be either in an up or down
state, which is denoted by the spin variable si = ±1 with + for the up state and −
for the down state. The spins interact with each other through nearest neighbor pairs
in such a way as to favor the same orientation. The Hamiltonian for the system is

H = −1

2
J
∑
i,j

′
sisj −

∑
i

hisi (7.1)

where J > 0 is the coupling constant, hi is the external field, here allowed to be
spatially dependent for generality, and the prime on the first sum restricts i and j to
be nearest neighbors of each other. Henceforth, to economize notation, we set the
energy unit to be kT and the entropy unit to be k.

The partition function of the system is then

Z =
∑
{s}

exp (−H) (7.2)

where {s} is a collective notation for all the spin states. It can be easily shown [4]
that the model can be applied to describe a lattice-gas fluid in a grand canonical
ensemble by introducing the occupation variable σ = (1 + s)/2 and identifying the
nearest-neighbor attraction energy ε = −4J and chemical potential μ = −4Jz + 2h.

The mean-field solution of the Ising model in typical textbooks is usually derived
using a Braggs-William randommixing approximation [4], which amounts to ignor-
ing the correlations due to interaction and treating the distribution of the spins as
completely random. Alternatively, one may invoke a local self-consistent field argu-
ment by replacing the local instantaneous field at location i, hi + J

∑
j
′sj with the

average hi + J
∑

j
′mj where mi is the average of si. The local average of mi is in turn

obtained through the self-consistency condition
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mi =
∑

si
si exp

[
(hi + J

∑
j
′mj)si

]
∑

si
exp

[
(hi + J

∑
j
′mj)si

] = tanh(hi + J
∑
j

′
mj) (7.3)

For spatially uniform system, mi = m, and the above equation simplifies to:

m = tanh(h + Jzm) (7.4)

where z is the lattice coordination number. This is the well-known mean-field equa-
tion of state relating the magnetization per spin to the external field. From Eq.7.4,
we find the familiar mean-field critical point at hc = 0 and Jcz = 1

We now derive the mean-field solution using a variational approach. We make
the reference Hamiltonian an effective non-interacting one, with spins in an effective
one-body field hi,R

HR = −
∑
i

hi,Rsi (7.5)

The partition function for HR can be trivially worked out to be

ZR = 2N
∏
i

cosh
(
hi,R

)
(7.6)

from which we obtain the free energy of the reference system

FR = −
∑
i

ln cosh
(
hi,R

) − N ln 2 (7.7)

〈H〉R and 〈HR〉R can be straightforwardly evaluated to be

〈H〉R = −1

2
J
∑
i,j

′
mimj −

∑
i

himi (7.8)

and
〈HR〉R = −

∑
i

hi,Rmi (7.9)

where mi is given by

mi = 〈si〉R = − ∂FR

∂hi,R
= tanh

(
hi,R

)
(7.10)

The variational free energy F[hi,R] is obtained by combining Eqs. 7.7–7.9, and the
effective field hi,R is obtained from
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∂F

∂hi,R
= 0 (7.11)

which, along with Eq.7.10, gives

hi,R = hi + J
∑
j

′
mj (7.12)

Substituting this back in Eq.7.10, we obtain the self-consistent Eq.7.3.
Althoughmi is defined throughEq.7.10, it can be shown thatwithin the variational

free energy framework, it is just the average of the spin variable at i. To demonstrate
this, we start with

〈si〉 = − ∂F

∂hi
(7.13)

Byconstruction, the only placewherehi enters directly in the variational free energy is
through 〈H〉R. Furthermore, the dependence of hi,R on hi does not contribute because
of the variational condition Eq.7.11. We thus have

〈si〉 = −∂〈H〉R
∂hi

= mi ≡ 〈si〉R (7.14)

This conclusion that the ensemble average is equal to the average in the reference
system is a general one within the variational approximation.

The variational condition Eq.7.11 can alternatively be cast in a different form
by directly using the local magnetization mi. Since Eq.7.10 establishes a one-to-
one monotonic relationship between the variational parameter hi,R and mi, we may
use mi itself as the variational parameter. Because the reference system consists of
uncoupled spins, each having two states, its entropy is simply

SR = −
∑
i

[
p(si = 1) ln p(si = 1) + p(si = −1) ln p(si = −1)

]
(7.15)

Noting thatmi = p(si = 1) − p(si = −1) = 2p(si = 1) − 1, the above equation can
be written as

SR = −
∑
i

[
1 + mi

2
ln

1 + mi

2
+ 1 − mi

2
ln

1 − mi

2

]

= N ln 2 − 1

2

∑
i

[(1 + mi) ln(1 + mi) + (1 − mi) ln(1 − mi)] (7.16)

whereN is the total number of spins.N ln 2 in the second line is simply the entropy of
a completely unbiased system of N independent spins, whereas the remaining terms
account for the decrease in entropy due to ordering.
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With Eq.7.16, the variational free energy is

Fvar = −1

2
J
∑
i,j

′
mimj −

∑
i

himi

+ 1

2

∑
i

[(1 + mi) ln(1 + mi) + (1 − mi) ln(1 − mi)] − N ln 2 (7.17)

The minimized free energy is obtained from the variational condition

∂Fvar

∂mi
= 0 (7.18)

which yields the mean-field equation of state, Eq. 7.10.
The variational free energy can be more systematically obtained using a combina-

tion of the identity transformation and the saddle-point method. To this end, we insert
the identity

∫
dmiδ (mi − si) for each spin, to write the Boltzmann weight exp(−H)

as

exp [−H({si})] =
∫ ∏

i

dmiδ (mi − si) exp [−H({mi})]

= 1

(2π)N

∫ ∏
i

dmidλi exp

[
−H({mi}) + i

∑
i

λi (mi − si)

]
(7.19)

where the second line follows from making use of the Fourier representation of the
delta function:

δ (mi − si) = 1

2π

∫
dλi exp [iλi (mi − si)] (7.20)

The identify transformation has turned the problem of interacting spins into one
of independent spins in fluctuating “external” field iλ. The summation over the spin
variable si can now be performed trivially to yield the partition function

Z = 1

(2π)N

∫ ∏
i

dmidλi exp

[
−H({mi}) + i

∑
i

λimi +
∑
i

ln cosh (iλi)

]
(7.21)

We now make the saddle-point approximation on this multidimensional integral, by
taking the stationary point of the exponent with respect to mi and λi; this yields,

iλi = ∂H

∂mi
= −J

∑
j

′
mj − hi (7.22)

and
imi = −i tanh (iλi) (7.23)
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respectively. Clearly from Eq.7.22, the saddle point lies on the imaginary axis of λ,
so we denote the saddle-point value of λ as λ∗ = iη, and the above equations become

ηi = J
∑
j

mj + hi (7.24)

and
mi = tanh ηi (7.25)

which are the same as Eqs. 7.10 and 7.12, with the identification ηi = hi,R
A closer examination of Eq.7.21 reveals that the three terms in the exponent

correspond respectively to the 〈H〉R, 〈HR〉R and FR terms in the GBF variational
approach.This is no accident, because the identity transformation essentially turns the
problem of interacting spins into one of independent spins in an effective fluctuating
field, and the saddle-point condition is the condition for finding the optimal value
for the effective field.

8 The Poisson-Boltzmann Equation

The Poisson-Boltzmann equation is a mean-field equation for the mean-electrostatic
potential generated by somefixed external charge distribution in the presence of small
mobile ions. The mobile ions are treated as point particles whose spatial distribution
is given by the Boltzmann weight with the energy being the electrostatic energy of
an ion in the mean electrostatic potential. To simplify notation, we scale the energy
by kT , charge by the elementary charge e, and define a dimensionless permittivity
ε = εrε0kT/e2, where ε0 is the vacuum permittivity and εr the dielectric constant
(allowed to be spatially dependent). For simplicity, we consider the electrolyte to be
a monovalent 1:1 salt. The mean electrostatic potential ψ in the presence of a fixed
external charge distribution ρex is then described by

− ∇ · (ε∇ψ) = ρex − 2cb sinhψ (8.1)

where cb is the bulk salt concentration and the electrostatic potential is defined such
that ψ = 0 in the bulk far away from the fixed charge.

While the Poisson-Boltzmann equation can be constructed quite intuitively by
combining the Poisson equation for electrostatics with the Boltzmann distribution
for the small mobile ions, which are treated as ideal gas particles in the electrostatic
potential, here we derive it using variational approaches. The systematic derivation
is necessary for calculating the free energy of the system. We first provide a simple,
thermodynamic derivation and then a more systematic one using field theoretical
techniques.


