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The objective of Dr. Franci’s thesis was the development and experimental
validation of a new particle-based computational method termed particle finite
element method (PFEM) for the solution of practical fluid—structure interaction
(FSI) problems.

The PFEM formulation proposed in the thesis represents an extremely powerful
numerical tool that can be used for a wide range of engineering problems. In
particular, the PFEM is very adequate to reproduce bulk forming processes, such as
the forging and extrusion of metal pieces, among others. The numerical modeling
of these industrial problems is useful for the optimization of the manufacturing
process and the reduction of the defects in the final products.
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with the proposed computational method. The numerical results showed in this
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The object of the project was to simulate two hypothetical scenarios during a
nuclear core melt situation, one of the most severe accident in a nuclear power
plant. This kind of analysis belongs to those problems that are difficult to solve with
traditional strategies or with laboratory tests and also their numerical simulation is
extremely complex. Despite that, with the methodology developed by Dr. Franci in
his thesis fine and accurate simulations of this phase-change problem were
obtained.
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Chapter 1
Introduction

The objective of this work is to develop a unified formulation for the solution of fluid
and solid mechanics, Fluid-Structure Interaction (FSI) and thermal coupled problems
and to prove its efficacy by solving both academic and industrial problems.

Due to their complexity, generally FSI problems cannot be solved with the tradi-
tional engineering methodology and numerical methods represent the best alternative
to the expansive laboratory tests and even, in same cases, the unique possibility to
face them.

FSI problems involve a large number of physical phenomena characterizing many
fields of engineering, technology and also biology. An example of problem of interest
in civil engineering is the safety study of civil constructions to water-induced hazards.
These constructions include: buildings, bridges, harbors, dams, dykes, breakwaters,
and similar infrastructures in water hazard scenarios such as flooding, large sea waves,
tsunamis and water spills due to the collapse of dams, dykes and reservoirs, among
others. Also industrial engineering is full of example of complex FSI problems. For
example, this is the case of many manufacturing processes in which complicated
thermo-coupled interactions occur between different materials at different phases.
This list could be further extended considering other branches of engineering, from
aeronautics to mechanical and naval engineering.

The numerical method developed in this work is designed for solving a big part
of the mentioned situations.

From the theoretical point of view, the aim is to analyze the continuum in a unified
manner trying to reduce at minimum the differences between the analysis of fluids
and solids. For this purpose the numerical model has been designed in order to meet
the specific requirements of solid and fluid mechanics and their approximation with
the FEM, but without limiting excessively the capability of the model. In fact the
computational method should be capable to deal with critical problems such as those
involving elastic-plastic solids, quasi-incompressible materials, free-surface fluids
and phase change.
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Following these considerations, the computational model has been designed ac-
cording to a stabilized Velocity—Pressure formulation. The numerical method has
been applied for solving hypoelasto-plastic, compressible and quasi-incompressible
solids and quasi-incompressible Newtonian fluids. The algorithm for the FSI prob-
lems has been inspired by the analogous unified strategy presented in [1]. For the
fluid phase, the Particle Finite Element Method (PFEM) [2] has been used, while for
the solid the classical Finite Element Method (FEM) [3] is adopted.

The Unified formulation is based on a stabilized Velocity—Pressure Lagrangian
procedure. Each time step increment is solved using a two-step Gauss—Seidel scheme:
first the linear momentum equations are solved for the velocity increments, next the
continuity equation is solved for the pressure in the updated configuration.

Linear shape functions are used for both the velocity and the pressure fields. In
order to deal with the incompressibility of the materials, the formulation has been
stabilized using an updated version of the Finite Calculus (FIC) method [4]. The
procedure has been derived for quasi-incompressible Newtonian fluids. In this work,
the FIC stabilization procedure has been extended also to the analysis of quasi-
incompressible hypoelastic solids [5].

Specific attention has been given to the study of free surface flow problems. In
particular, the mass preservation feature of the PFEM-FIC stabilized procedure has
been deeply studied with the help of several numerical examples. Furthermore, the
conditioning of the problem has been analyzed in detail describing the effect of the
bulk modulus on the numerical scheme. A strategy based on the use of a pseudo bulk
modulus for improving the conditioning of the linear system is also presented.

The Unified formulation has been validated by comparing its numerical results to
experimental tests and other numerical solutions for fluid and solid mechanics, and
FSI problems. The convergence of the scheme has been also analyzed for most of
the problems presented.

The Unified formulation has been coupled with the heat transfer problem using a
staggered scheme. A simple algorithm for simulating phase change problems is also
described. The numerical solution of several FSI problems involving the temperature
is given.

The thermal coupled scheme has been used successfully for the solution of an
industrial problem. The objective of study was to analyze the damage of a nuclear
power plant pressure vessel induced by a high viscous fluid at high temperature,
the corium. The numerical study of this industrial problem has been included in the
thesis.

The whole formulation has been implemented in a C++ code.

1.1 State of the Art

In this section, an overview of the numerical methods used for simulating a free
surface fluid flow interacting with deformable solids is given. For the sake of clar-
ity, the section is divided in three parts representing the main topics raised by this



1.1 State of the Art 3

work. First the Eulerian and Lagrangian approaches for free surface fluid dynamics
problems are presented. Then an overview of the stabilization for incompressible, or
quasi-incompressible, material is given. Finally, the principal algorithms for solving
FSI problems are described.

1.1.1 Eulerian and Lagrangian Approaches for Free Surface
Flow Analysis

Consider the description of the motion of a general continuum represented in Fig. 1.1.
The domain €2 represents the body at the initial state at time ¢ = 7y while the domain
Q represents the same body at time t = ¢, after deformation. The domain €2 is called
initial configuration, whereas 2 is the current, or deformed, configuration. In order to
describe the kinematics and the deformation of the body, the reference configuration
has to be defined because the motion is defined with respect to this configuration.

In solid mechanics, the stresses generally depend on the history of deformation
and the undeformed configuration must be specified in order to define the strains. Due
to the history dependence, Lagrangian descriptions are prevalent in solid mechanics.
In Newtonian fluids however, the stresses do not depend on the history and it is often
unnecessary to describe the motion with respect to a reference configuration. For this
reason an Eulerian description represents the most reasonable choice. Furthermore, in
problems where the fluid contours are fixed, Eulerian meshes are generally preferred
to the Lagrangian ones. This is because Eulerian grids are fixed and they do not
deform according to the fluid motion, as shown in Fig. 1.2.

Conversely, in the Lagrangian description, the mesh nodes coincide with the fluid
particles and the discretization moves and deforms as the fluid flow (Fig. 1.3).

Current configuration
Initial configuration

X Lagrangian coordinates

X Eulerian coordinates

Fig. 1.1 Description of the motion of a general continuum body
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Fig. 1.2 Motion description using an Eulerian mesh
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Fig. 1.3 Motion description using a Lagrangian mesh

Consequently, on the one hand the non-linear convective term disappears from the
problem and on the other hand the mesh undergoes large distortions and it requires
to be regenerated.

In the analysis of free surface flows, the detection of free surface contours rep-
resents a crucial task. Its position is unknown a priori and it has to be determined
at each time increment in order to solve properly the boundary value problem. For
these problems, the Lagrangian description may be preferred to the Eulerian one. In
fact, with a Lagrangian approach the free surface is automatically detected by the
position of the mesh nodes, while an Eulerian approach requires the implementation
of a specific technology for this task.

Several strategies have been developed and presented in the literature for tracking
the free surface in an Eulerian framework. One of the earliest contributions was given
by the so called marker and cell method [6]. In this approach a set of marker particles
that move according the flow are used to detect which regions are occupied by the
fluid and which not. An evolution of this technique is the volume of fluid method [7].
In this case the free surface boundary is detected using a scalar function that assumes
the unit value in the fluid cells and the value zero in those ones with no fluid. The
cells with an intermedium value are the ones that contain the free surface. Another
possibility is the level set method [8]. This technique is used in various fields, not
only in continuum mechanics, and it allows for detecting shapes or surfaces on a fixed
grid without making any parametrization of them. For this reason, this procedure has
been also used for matching the free surface contour on an Eulerian mesh [9]. A
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similar idea was used in [10] where the position of the free surface is detected using
a cloud of Lagrangian particles moving over an Eulerian mesh.

The free surface flows can be solved also using an hybrid Eulerian-Lagrangian
technique. This is the so termed Arbitrary Lagrangian-Eulerian (ALE) approach
[11]. The aim of this method is to exploit the best features of the Eulerian and
the Lagrangian procedures and to combine them. The mesh nodes can arbitrary be
fixed or can move with the fluid [12]. Generally, far from the moving boundaries a
fixed Eulerian grid is used, while near to the interface the mesh moves according
to the motion of the boundary [13]. However if the boundary motion is large or
unpredictable, also in the ALE methods the grid may suffer large distortions and
may require a proper remeshing procedure [14].

In purely Lagrangian approaches, the mesh needs to be regenerated whenever a
threshold limit for the distortion is exceeded. This is the basis of a particular class
of Lagrangian finite element formulation called the Particle Finite Element Method
(PFEM). The method was initially developed by the group of professors Idelsohn and
Onate [15, 16]. The PFEM treats the mesh nodes of the domain as particles which
can freely move and even separate from the rest of the fluid domain representing,
for instance, the effect of water drops. A mesh connects the nodes discretizing the
domain where the governing equations are solved using a classical finite element
method. These features make the PFEM the ideal numerical procedure to model and
simulate free surface flows. In the last years, many scientific publications have shown
the efficacy of the PFEM for solving free surface flow problems, see among others
[17-19]. The PFEM has also successfully been tested in other kind of problems, such
as fluid mechanics including thermal convection-diffusion [20-22], multi-fluids [23,
24], granular materials [25], bed erosion [26], FSI [27, 28] and excavation [29].

Meshfree methods are other class of Lagrangian techniques. In this strategy the
remeshing is not required because the governing equations are solved over a set of
nodes without referring to a mesh. One of the first meshfree techniques is the Smooth
Farticle Hydrodynamics (SPH) method. This method was introduced independently
by Gingold and Monaghan [30] and Lucy [31] for the simulation of astrophysical
problems such as fission of stars. SPH is a particle-based Lagrangian technique where
discrete smoothed particles are used to compute approximate values of needed physi-
cal quantities and their spatial derivatives. The particles have assigned a characteristic
distance, called ‘smoothing length’, over which their properties are “smoothed” by a
kernel function. A typical drawback of the SPH method is that it is hard to reproduce
accurately the incompressibility of the materials. The SPH technique has been used
successfully for solving fluid-structure interaction problems [32].

1.1.2  Stabilization Techniques

A FEM-based procedure may require to be stabilized when incompressible, or quasi-
incompressible, materials are analyzed. In the FEM solution of the Navier Stokes
problem numerical instabilities may arise from two sources. The first one is due to
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the presence of the convective term in the linear momentum equations. This term
introduces a non-linearity in the equations and it needs a proper stabilization for
solving high Reynolds number flows with the FEM [12]. Furthermore, the orders of
interpolation of pressure and velocity fields cannot be chosen freely but they have
to satisfy the so called Ladyzenskaya—Babuzka—Brezzi (LBB), or inf-sup, condition
[33]. If the orders of interpolation of the unknown fields do not satisfy this restriction,
a stabilization technique is required in order to avoid numerical instabilities, as the
spurious oscillations of the pressure field.

It is well known that the weak form generated by Galerkin approximation leads
to a less diffusive solution than the strong problem. So the main idea of many sta-
bilization techniques consists of adding an artificial diffusion to the problem. The
first attempt was made by Von Neumann and Richtmyer [34]. Their solution adds
an artificial diffusion to the strong form of the problem. However, this technique
introduces an excessive dissipation to the problem because the diffusivity is added in
every direction. An important evolution of this approach was the Streamline Upwind
Petrov Galerkin (SUPG) [35]. In this approach, the artificial diffusion is added by
means of the test functions and only on the direction of the streamlines. Furthermore,
this is performed in a consistent way: the stabilization terms vanish when the solu-
tion is reached. An extension of the SUPG method is the Galerking Least-Squares
(GLS) method [36]. In the GLS method the stabilization terms are applied not only
to the convective term but to all the terms of the equation. The Variational Multi-
Scale (VMS) methods [37] split the problem variables in a large-scale and a subscale
terms. The large-scale terms represent the part of the solution that can be captured by
the finite element mesh, while the subscale part consists of an approximate solution
that has to be added to the large-scale term in order to obtain the correct solution.
This idea represents the basis of other stabilization methods. Among these, the most
largely used are the Algebraic Subgrid Scale Formulation (ASGS) and the Orthogo-
nal Subscales (OSS) methods, respectively introduced in [38, 39]. Another efficient
stabilization technique is the Finite Calculus (also termed Finite Increment Calculus)
(FIC) approach (see among others [40—43]). This method has some analogies with
the SUPG technique (for a comparison between these methods see [44]). The FIC
approach is based on expressing the equations of balance of mass and momentum
in a space-time domain of finite size and retaining higher order terms in the Taylor
series expansion typically used for expressing the change in the transported variables
within the balance domain. In addition to the standard terms of infinitesimal theory,
the FIC form of the momentum and mass balance equations contains derivatives
of the classical differential equations in mechanics multiplied by characteristic dis-
tances in space and time. In this work an updated version of the FIC method has been
derived and tested.

In solid mechanics a stabilization procedure may be required for the solution of
problems involving incompressible, or quasi-incompressible solids. Situations of this
type are common in forming processes or in the analysis of rubber-type materials.
Many of the mentioned stabilization procedures for fluid dynamics have been also
used also for solid dynamics. For example, the VMS method has been applied in
quasi-incompressible solid mechanics in [45, 46], the OSS in [47]. In [48, 49] a
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stabilized multi-field Petrov—Galerkin procedure is used. Finally, the application of
the FIC in solid mechanics is reported [50, 51].

1.1.3 Algorithms for FSI Problems

Many approaches have been developed for solving FSI problems. Typically the com-
putational techniques for FSI are distinguished in monolithic and staggered, or parti-
tioned, approaches. In a monolithic approach fluid and solid domains are solved in a
single system of equations (see among others [52], or [53]). In this technique the flow
of information between the solid and the fluid parts is implicitly performed by the
procedure. On the contrary, in staggered schemes the fluid and the solid dynamics are
solved separately and boundary conditions are transferred from a domain to the other
at the interface. From the algebraic point of view, the solution is achieved by solving
two different linear systems which are coupled by means of the boundary conditions
defined along the interface. Within partitioned schemes, a further classification can
be done depending on the level of coupling between the fluid and the solid dynamics.
In weakly coupled segregated methods the transfer of information at the interface is
performed only once for each time step, (for example see [54]), whereas in strongly
coupled schemes this operation is performed within a convergence iterative loop (as
a reference see [55]). Clearly, a weakly coupled scheme has a lower computational
cost but it can be used only when the interaction between the solid and the fluid
domains is not strong or complex. Otherwise the algorithm may not find the correct
numerical solution of the problem.

Partitioned methods allow the reutilization of existing solvers. Furthermore, the
solid and the fluid solvers can be updated independently. Staggered schemes lead to
smaller and better conditioned linear systems than the ones obtained with monolithic
approaches. On the other hand, monolithic strategies are generally more stable than
staggered schemes, and they lead to a more accurate solution of FSI problems,
because a stronger coupling is ensured.

Another general classification of the FSI algorithms is based upon the treatment
of meshes. In conforming mesh methods, the fluid and the solid meshes must have in
common the nodes along the interface in order to allow the transfer of information.
Consequently, if the position of the interface nodes changes in a material domain, also
the other domain must modify its grid in order to guarantee the conformity of the two
meshes along the interface. On the contrary, in non-conforming mesh methods the
interface and the related conditions are treated as constraints imposed on the model
equations so that the fluid and solid equations can be solved independently from
each other with their respective grids [56]. This represents an important advantage
because, typically, the mesh used for the fluid has an average size lower than the one
used for the solid and so it is not necessary to refine the solid finite element grid
near to the interface. However, non-conforming mesh algorithms are more complex
to implement and it is not trivial to guarantee their robustness.
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In the so-called Immersed Boundary Method (IBM), the fluid is solved using
an Eulerian grid and the solids are immersed on top of this mesh [57, 58]. The
interaction is ensured by penalizing the Navier—Stokes equations with the momen-
tum forcing sources of the immersed structures. An evolution of the IBM is the
Immersed Structural Potential Method (ISPM) where the structure is modeled as a
potential energy functional solved over a cloud of integration points that move within
the fixed fluid mesh [58, 59]. Also in the Immersed Finite Element Method (IFEM)
[60, 61] the structure acts as a momentum forcing source for the fluid governing
equations, but in this case a Lagrangian mesh is employed for the solid domains.

1.2 Numerical Model

The aim of this work is to derive a finite element formulation capable to solve,
through a unique set of equations and unknown variables, the mechanics of a gen-
eral continuum. The term ‘general continuum’ refers to a domain that may include
compressible and quasi-incompressible solids, fluids or both interacting together.
For this reason, the formulation is termed Unified. The Unified formulation is based
on a mixed Velocity—Pressure Stabilized procedure and it has been implemented in
a sequential C++ code.

1.2.1 Reasons

There are many reasons for undertaking the above objective.

The first advantage of the Unified formulation is that it allows for solving fluid
and solid dynamics problems by implementing and using a single calculation code.

Furthermore, if solids and fluids are solved via the same scheme, it is simpler to
implement the solver for FSI problems because it is not required neither changing
the variables, neither implementing the transfer of transmission conditions through
the interface. With this formulation solids and fluids represent regions of the same
continuum and they differ only by the specific values of the material parameters. As
a consequence, the FSI solver requires a small computational effort and it can be
implemented by introducing just a few specific functions. This will be explained in
detail in the section dedicated to FSI problems.

Additionally, with the Unified formulation the most natural approach for solving
FSI problem is the monolithic one. This brings in the further advantage that the
coupling is ensured strongly and an iteration loop is not required, as for staggered
procedures.

Finally, using the same set of unknowns for the fluid and the solid domains reduces
the ill-conditioning of the FSI solver, because the solution system does not include
variables of different units of measure.



