Springer Geology

Jai Krishna

The IndianMesozoicMesozoicChronicleSequence Stratigraphic Approach

Springer Geology

More information about this series at http://www.springer.com/series/10172

Jai Krishna

The Indian Mesozoic Chronicle

Sequence Stratigraphic Approach

Jai Krishna Former Professor and Head Centre of Advanced Study in Geology Institute of Science Banaras Hindu University Varanasi, Uttar Pradesh India

ISSN 2197-9545 ISSN 2197-9553 (electronic) Springer Geology ISBN 978-981-10-2476-4 ISBN 978-981-10-2477-1 (eBook) DOI 10.1007/978-981-10-2477-1

Library of Congress Control Number: 2016952005

© Springer Science+Business Media Singapore 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #22-06/08 Gateway East, Singapore 189721, Singapore To the memory of my loving revered parents, Shyama and Parashuram, whose human values, upbringing, and guidance transformed me to what I am today at the youthful age of 71, and whatever little substance, endurance, and positivity I could realize in academics and personal life.

Foreword

No other era in the geological history of the earth was more significant and exciting than the Mesozoic. The Permian end witnessed the most pronounced extinction of life, when approximately 90–95 % of marine life and 70 % of terrestrial life perished. Thus in a way, life once again evolved almost from scratch during the Triassic, the oldest period of the Mesozoic. There was proliferation and rapid evolution of conodont animals and of ammonoids, appearance of dinosaurs and coral reefs. Initially, the Triassic sea is believed to have been shallow; it rapidly deepened in Early Triassic, followed by shallowing, particularly after the Carnian.

During the Jurassic, the conodont animals disappeared though preponderance of ammonoids continued. The first bird *Archaeopteryx* appeared, *Pterosaurs* ruled the sky, and other dinosaurs dominated the land, rise in sea level caused transgression in several parts of the peninsula, the sea level kept on fluctuating. There was lush growth of forests.

The Cretaceous marked breakup of the Gondwana land, rise in the sea level and incursion of sea in the peninsular and the Lesser Himalayan parts, major volcanic activity, and another event of extinction of life which included majestic dinosaurs. India, like a Noah's Ark, with its southern fauna and flora, embarked on its long northward journey.

Paleontologic, sedimentologic, paleogeographic, volcanic, basinal, and tectonic aspects of the Indian Mesozoic succession have been studied by various researchers in fairly great detail, but mostly in isolation. What has lacked is identification of mega-sequences and their further differentiation, integration of fauna within the ambit of sequence stratigraphy and erection of regional sequence stratigraphic framework by utilizing the ammonoids in précising the surfaces and correlating these with the regional surfaces and events. An assimilation of updated various geologic elements and their unbiased synthesis to seek whether the evolutionary changes, tectonics, sea level fluctuations, and evolving sedimentologic framework were independent or closely linked and formed part of one story. In other words, erecting the sequence and event stratigraphy based on detailed lithology and paleontology to reconstruct a holistic view of the geological history of the Indian Mesozoic. This exercise could be attempted only by someone who has an intimate knowledge of various aspects of the Mesozoic history, not only of India but also of the world, particularly the Gondwana Land.

There could be no person better than Prof. Jai Krishna to attempt this kind of synthesis. He has spent more than five decades meticulously studying the Jurassic sequences in India along with his dedicated team. He often educated me with his views regarding the regional evolution of basins inter-alia tectonics and evolution of life. Most impressive was his effort to correlate poorly fossiliferous/ unfossiliferous sequences on the basis of regional sequence stratigraphic context. I am glad that after relinquishing the sponsored teaching and research, Prof. Jai Krishna decided to synthesize various aspects of the Indian Mesozoic inclusive of comparison with other basins between Arabia and Australia. The book "The Indian Mesozoic Chronicle: Sequence Stratigraphic Approach" would be encyclopedic in nature and useful to the students, teachers, researchers, and petroleum geoscientists in the educational institutions and industries.

O.N. Bhargava

Preface

Time to time in the past two decades, my research collaborators in India and abroad, also others passionately involved in the progress of Indian geology, even students in India, particularly at BHU, desired of me a book on my comprehension of the Indian Mesozoic sequences. Near my formal retirement in 2010 came 'The Making of India', an immensely inspiring magnum opus on Indian Geology, written by my revered guru (teacher) Prof. K.S. Valdiya. This also kindled the fire in me to go for an exciting post-retirement innings. Once formally free from teaching and sponsored research in 2014, I began scribbling my comprehension of the Kachchh Mesozoic. As I continued mostly in early morning sessions in Varanasi, Gurgaon, and Bangalore, the canvas of the project went on assuming yet larger dimensions than originally contemplated to engulf the entire Gondwanian Tethyan Margin from Arabia to Australia.

The whole array of integrated progress in the Indian Mesozoic geology, realized since my initiation in the Indian Mesozoic in the mid-1960s, is interwoven with the innovative threadwork of sequence stratigraphy. The key to the study is development of ammonoid-based high-resolution zonal scales in the Indian Triassic and Jurassic comparable to the best of the world, while the Cretaceous is considerably reinforced with the composite records of ammonoids, foraminifers, dinocysts, and nannoplanktons.

Emphasis is placed primarily to high-quality lithostratigraphic differentiation along with meticulous recording of the sections, bed by bed ammonoid collection in the field, and the resultant ammonoid stratigraphic range charts based upon comprehensive taxonomic studies in the laboratory. The cardinal requisite of good stratigraphic refinement has been the differentiation of a large number of stratigraphically precise ammonoid bearing levels, in several fold larger number of beds in the sedimentary column, to ensure the development of near-optimum number of zones/subzones/horizons as the best measure of quality refinement. The ammonoid-based ~ 25 zone succession in the ~ 25 my long Bathonian–Tithonian scale of Kachchh is uniquely developed in a single superfamily—Perisphinctacaea, that too near exclusively in the Kachchh basin.

The author's attraction to sequence stratigraphy stemmed primarily from it being an effective powerful tool to unify the highly kaleidoscopic array of apparently disjunct geological facets strewn over large regions of the like of Indian subcontinent. His understanding of sequence stratigraphy has been an integrated refined chronostratigraphically controlled realistic comprehension of rock relationships of genetically related cyclic strata, units, events, and geological phenomena based on sedimentology, paleontology, eustatics, tectonism, magmatism, and many other such interrelated subdisciplines.

The eventful Mesozoic has been the game changer of the earth's Phanerozoic history, especially in the Indian context. Indian Mesozoic studies have been done mostly in isolation at basinal level, only occasionally extending to specific sectors. Compilations lack the very element of life and dynamism. The Cretaceous in Spiti is seldom related to Cauvery, or to that of Kachchh, or Triassic of Kashmir to that in Myanmar. It is this holistic subcontinental approach that has been endeavoured through the application of sequence surface timelines across the subcontinent and even beyond on the Gondwanian Tethyan margin.

The Indian Late Precambrian–Neogene record is organized into five mega-sequences. The fourth among them—also the most important one—spans through the intra-Permian–intra-Paleocene interval from the origin to the closure of the Neotethys. It is further differentiated into three first-order sequences, 35 second-order sequences, and then several second-order sequences into third-, fourth-, and fifth-order ones. The first-order sequences are developed in Spiti Himalaya (intra-Permian to Pliensbachian), in Kachchh (Toarcian to Barremian), and compositely in Cauvery, Spiti, and Kachchh (Aptian–Paleocene), and subsequently extended on either side of India from Arabia to Australia.

The mega-sequence began with outpouring of the Panjal and coeval volcanics. The first-order sequences are found punctuated by major Gondwana dismemberment extensional tectonics and magmatism at the ~183 ma intra-Jurassic Karoo and coeval volcanism with principal manifestation in the west sector, intra-Cretaceous ~126 ma Rajmahal and coeval volcanism with cardinal expression in the east sector as the intervening first-order SBs. The first-order MFSs, respectively, signal the initiation of oceanization in the northwest spreading away of the Aargo block in northeast at the ~159 ma intra-Oxfordian MFS, and farther up the initiation of spreading between India and Madagascar at the ~92 ma intra-Turonian MFS. The mega-sequence formally closed soon after the termination of Deccan magmatic event, yet notional closure of the Neotethys stretched farther into Paleogene collision of India and Asia.

The validation of the developed first/second-order sequence framework in east and west of India on the Gondwanian Tethyan Margin is realized through comparison with Arabia, East Africa, Madagascar, Pakistan, High Himalaya, Indonesia, Papua New Guinea, Timor, West Irian, and NW Australia. The first- and second-order sequence surfaces are consequences of intra-basinal to inter-regional tectonics and geographically restricted to broad tectono-stratigraphically homogeneous regions of the Gondwanian Tethyan Margin in the present study. The resultant sequence surfaces are often found discordant to those of other such regions, for example, to the Eurasian Tethyan Margin framework. On the contrary, the third- and finer order sequences shorter than ~ 1.5 –2.0 my are governed by earth's orbital dynamics, and thus found globally isochronous.

Comparison of the Indian sequence framework also includes important hydrocarbon-producing regions and basins across the Indian divergent margins both in east and west; and based there upon, a highly positive scenario of the Indian Mesozoic hydrocarbon perspective of source/reservoir rocks is outlined in sequence stratigraphic backdrop as an edifice for elaborate evaluation in near future.

The Indian Mesozoic geological developments irrespective of location in east, north, south, or west sectors, whether in intra-cratonic or peri-cratonic rift basins, frontier or foreland basins, marine or non-marine, guide-fossil bearing or devoid, in carbonate or clastic facies, exposed, onshore, or offshore, deep or shallow, in Indian ocean or South Tibetan collision arena are considered genetically related resultants of the same regional tectonics, allowing correlation of units and chronicle of regional events through the all-pervading sequence surface timelines. So time corresponded the magnetic anomalies, origin, climax, and termination of igneous activities, eustatics, climatic and anoxic events, breakup, dispersal, and collision episodes, rifting, transform sliding, and spreading phases in an alternative innovative sequence stratigraphic context. The single all unifying sequence surface ages are found echoed through highly precise SHRIMP zircon, U/Pb, and Ar40/Ar39 radiometric ages, mega/micro faunal/floral records, and magnetic anomalies through the span of the mega-sequence almost equally strong from all the sectors and varied geological settings of the region as unanticipated strong support to interdisciplinary manifestations of a single spreading framework encircling and engulfing the Indian plate.

In the precision chronicle of the multifaceted happenings at sub-zonal resolution and multiples in east, west, north, and south, the plethora of litho-stratigraphic unit names has been largely done away with and rather made redundant. The large intra-Jurassic stratigraphic gap in Kachchh with increase in duration from margin to basin, has been précised in different sections, and its long held interpretation radically revised from subaerial to submarine all over the GTM from Arabia to Australia. Other major gaps of the Indian geological record are also differentiated as subaerial or submarine. All the formations and members throughout the basin have been precisely age ranged. Ammonoid heterochronic evolution, geography, expansion, and migration events back and forth Indian subcontinent during the Jurassic are also outlined in first- and second-order sequence stratigraphic context.

Ammonoids as guide fossils provide a singular advantage to its researchers. Even a single incomplete fragmented specimen when found, much like the aircraft black-box, starts unfolding the geological history like a time machine on the outcrop itself as if the specimen itself is in a narrative conversation with the discoverer. It is these conversations with ammonoids on the outcrops, and discourses on the ammonoid bearing and coeval Indian Mesozoic sequences in the classrooms, seminars, and conferences, that I, in the form of this book, present unto the learned Mesozoic geoscience and allied scholars, researchers, teachers, and professionals across the world.

Varanasi, India

Jai Krishna

Acknowledgements

In the backdrop of not so creativity-conducive Indian post-retirement scenario, the book quite unwillingly has been singly written, yet it incorporates and heavily dwells on the published and unpublished data of joint works with the former research scholars and other collaborators.

At the outset, I salute with immense gratitude all my teachers at the Department of Geology, University of Lucknow, where I learnt the alphabets of geology, in particular late Prof. S.N. Singh who sowed in me the first seeds of paleontology and stratigraphy. Professor Singh not only supervised my Ph.D. thesis but also provided me exemplary lessons to meet the challenges of the worldly sphere. I express my indebtedness to the Banaras Hindu University, my colleagues and students there, amidst whom I could progress in the academic arena. I offer my reverence to the land of Kachchh where I carried on my professional field studies, also my thankfulness to Mr. P.H. Bhatti and family of Bhuj for their diverse help over the decades during my numerous stays there.

I thank in particular Profs. Gerd Westermann, James Howard, Raymond Enay, Elie Cariou, Jacques Thierry, Eric Bueffteau, Guillermo Melendez, Indrabir Singh, and Surendra Kumar, Dr. Syed Jafar, Dr. K.P. Jain, Dr. Rahul Garg, Dr. M. Venkateshwarlu, and many others with whom I coauthored publications. I profusely thank my former research students, Dr. Deobrat Pathak, Dr. Bindhyachal Pandey, Dr. Jairam Ojha, and Dr. Nageshwar Dubey who immensely helped me in field and laboratory in our long yet continuing association. Innumerable colleagues in India and abroad are also thanked with whom I have had fruitful interaction during my umpteen sojourns across India, and outside.

During my travels, particularly, in those young impressionable years, I found myself singularly fortunate to have met and interacted with stalwarts of the world geological arena who may have made impressions and germinated seeds on my then young mind, and to whom, of the like of Profs. C. Roy, D.N. Wadia, W.D. West, M.R. Sahni, B.P. Radhakrishna, Rajnath, G.W. Chiplonkar, F.J. Pettijohn, G. Middleton, Tuzo Wilson, A. Gansser, Dennis Shaw, John Talent, T. Matsumato,

C. Egeler, Henry Tintant, B. Ziegler, A. Seilacher, and many others, I very pridefully remember at this juncture.

I am grateful to all the reviewers who in spite of their engaging schedules painstakingly perused the MS and provided valuable comments that helped me improve upon the content, organization, and the MS at large.

Besides being appreciative of the help from several colleagues for consulting them on specific points, or making available valuable reprints, I am pleased to record here with gratitude the exemplary support and multifarious help constantly over the past 3 years from two senior fellow geoscientists, Dr. O.N. Bhargava and Prof. N.C. Ghose. They earnestly desired to see the venture fructify, and I fail to find words in expressing my indebtedness to them.

I appreciate with thankfulness the role played by Mr. Aninda Bose, the first Springer executive that I had the privilege to meet. Only his coolness and endurance let me surge through the time-taking review process. I also appreciate the help received from a few other Springer personnel at different stages of the publication of the book.

I myself, not a computer suave to the desired level, always necessitated assistance of a computer graphic specialist. This work and my many other publications would not have been complete but for the constant support of my Corel graphic specialist Abhishek Jaiswal who has over the last 10 years drawn all the figures/tables of this book and of other publications.

All the Jaikrishnas now numbering ten inclusive of my grandsons and granddaughters have constantly encouraged me in spite of my cutting on the time normally spent with them. Words fail me in acknowledging my wife Neera's exemplary coolness, patience, endurance, positive energy, and servicefulness, and what not that singularly kept me marching forward, particularly in intervals of slow progress in this venture. Timely help by Neeharika, Mohini, and Vladimir in cross-checking the references is gratefully appreciated.

Jai Krishna

Contents

1	Intr	oductio	n and Paleogeographic Context, Previous Work,						
	Higl	High-Resolution Scale, Magnetochronologic Perspective,							
	Rad	Radiometric Scenario, Igneous Activities, Anoxic Events							
	and	Eustati	c Fluctuations	1					
	1.1	Introdu	action and Paleogeographic Context	1					
	1.2	Ration	ale of the Study	5					
	1.3	Previo	us Work	8					
	1.4	Develo	opment of a Scale	15					
	1.5	Magne	tostratigraphic Perspective	15					
	1.6	Radior	netric Scenario	21					
	1.7	Igneou	s Activities	21					
	1.8	Ocean	ic Anoxic Events.	22					
	1.9	Eustati	c Fluctuations	22					
	Refe	erences.		23					
2	Mesozoic Stratigraphic Framework in India with Focus								
_	on t	he Jura	ssic Geological Record in the Kachchh Basin	27					
	2.1	Origin	of the Kachchh Basin	27					
		2.1.1	Reactivation of the Precambrian Weak Zones	28					
		2.1.2	Infra-rift Sagging	29					
		2.1.3	Intra-Triassic Rift Initiation	29					
		2.1.4	Early Non-marine Phase Prior to the Neotethyan						
			Transgression	29					
	2.2	Salient	Features in Brief Prior to the Mesozoic	30					
		2.2.1	Intra-Devonian Origin of the Paleotethys	30					
		2.2.2	Major Widespread Gaps in India and Neighbourhood	20					
		2.2.2	Prior as also During the Late Permian–Farly Paleogene						
			Mega-Sequence	30					
		223	Widespread Basal Permian Extensional Tectonics	50					
		2.2.3	and Glaciation Followed up Further by Major						
			Transgrassive Event	27					
				52					

	2.2.4	Intra-Permian Origin of the Neotethys	32
	2.2.5	Wide Spread Early/Late Permian Change in Inland	
		Non-marine Gondwana Basins	
		at the Start of the Mega-Sequence.	33
	2.2.6	Early/Late Permian Change in Marine Basins	34
2.3	Triassic	•	36
	2.3.1	Triassic System—International and National Status	36
	2.3.2	Development of Triassic in India	36
	2.3.3	Triassic Succession in Spiti	36
	2.3.4	Intra-Triassic Interstage Boundaries.	37
	2.3.5	Paleogeographic Framework at the Start	
		of the Triassic Contextual to Kachchh	49
	2.3.6	Suspected Presence of the Late Triassic	-
		in the Non-marine Nirona Formation as Encountered	
		in Nirona and Banni Wells of Kachchh	50
	2.3.7	Broad Stratigraphic Correlation of the Non-marine	
		Nirona Formation to Non-marine Gondwana Units	
		as also to Spiti Marine Units	50
	2.3.8	Marine Triassic in Neighbourhood	50
2.4	Biostrat	igraphic Zonation in the Triassic	51
2	2.4.1	Ammonoid Zones in the Spiti Triassic	51
	2.4.2	Conodont Zones in the Triassic of Spiti	51
	2.4.3	Palynozones in the Non-marine Triassic	51
2.5	Salient]	Mid-Triassic Features	52
2.5	2 5 1	Biotic and Abiotic Changes Across the Mid-Triassic	52
	2.0.1	Anisian/Ladinian Boundary in Spiti	52
	252	Mid-Triassic Unconformity and Associated Changes in	02
	2.0.2	Inland Gondwana Non-marine Basins as also	
		in East and West Sector Coastal Basins	52
	253	Intra-Triassic Localized Rifting/Igneous Event	02
	2.0.0	in India	53
	254	Triassic Palyno-Record in the West Sector	53
2.6	Iurassic		53
2.0	2.6.1	Jurassic System—International and National Status	53
	2.6.2	Development in the Indian Subcontinent	54
	2.6.3	Outline of the Ammonoid Biogrographic Framework	54
	2.6.5	Marine Jurassic in Jaisalmer	57
	2.6.5	Marine Jurassic in High Himalaya with Focus	57
	2.0.5	in Spiti	57
	266	Brief Summary of the Marine Jurassic in the	51
	2.0.0	Neighbouring Pakistan	58
27	Iurassie	in Kachchh	66
2.1	271	Initiation of the Marine Transgression in Kachehh	66
	2.7.1	Improbability of the Transgression in Early	00
	2.1.2	Plienshachian During the Terminal Phase	
		of Fustatic Fall	66
			00

		2.7.3	Oldest Jurassic Ammonoid Evidence	68
		2.7.4	Oldest Jurassic Nannoplankton Evidence.	68
		2.7.5	Regional Evidence of the Early Toarcian Marine	
			Transgression	68
		2.7.6	Jurassic Stratigraphic Record of Kachchh and	
			Neighbourhood	69
		2.7.7	Lithostratigraphic Framework in the Jurassic of the	
			Kachchh Basin	69
		2.7.8	Adoption of the Member Units of Biswas	
			and Others	72
		2.7.9	Fundamentals of Stratigraphic Refinement and	
		>	Ammonoid Zonation	76
		2.7.10	Lithostratigraphic Differentiation and Guide Fossil	
		20010	Collection in the Field Followed by Systematic	
			Bio- and Chrono-Stratigraphy in the Laboratory	76
	2.8	Ammor	noid Stratigraphic Refinement in Kachchh—Principal	70
	2.0	Results	at a Glance	79
		2.8.1	Hettangian–Pliensbachian Record (Non-marine)	80
		2.0.1	Toarcian_Aalenian Record (Largely Marine	00
		2.0.2	vet Ammonoid Devoid)	80
		283	Bajocian	81
		2.0.5 284	Bathonian	84
		2.0.4	Callovian	00
		2.8.5	Oxfordian	100
		2.8.0	Vimmeridgian	110
		2.8.7	Tithonian	120
		2.8.8	Intro Jurassia Interstage Roundaries	120
	20	Crotoco		120
	2.9	201	International Status	130
		2.9.1	Development in India	120
		2.9.2	On the Legal/Degional Stages in the Indian	150
		2.9.5	Cretegeous	120
		204	Integrated Indian Crategoous Ammonoid Zonal	150
		2.9.4	Succession	121
		205	Exposed Crategoous record in Keehobh and Joiselmer	122
		2.9.5	Exposed Cretaceous record in Rachenin and Jaisanner	124
		2.9.0	Subsultace and Olishole Recold	124
		2.9.7	Latry VIS-a-VIS Late Cretaceous III Kachchili	134
	Dafa	2.9.8	Interstage Cretaceous Boundaries	134
	Rele	erences		130
3	Out	crop-Bas	sed Sequence Stratigraphic Studies on GTM	
	with	Focus of	on the Kachchh Mesozoic	145
	3.1	Sequen	ce Stratigraphic Studies	145
		3.1.1	Brief History of Sequence Stratigraphic Studies	145
		3.1.2	Sequence Stratigraphic Studies on GTM	146
		3.1.3	Update on Sequence Stratigraphic Studies	
			by the Author	147

3.2	Elemen	ts of the Depositional Sequences	147
	3.2.1	Sequence Stratigraphic Surfaces, and Types of	
		Unconformities at Sequence Boundaries	151
	3.2.2	Shoreline Migration Processes	151
	3.2.3	Terminology and Definitions	151
	3.2.4	Parasequences as Building Blocks of the Sequences	153
	3.2.5	Parasequence Stacking Patterns	153
	3.2.6	Subaerial and Submarine Stratigraphic Gaps	153
	3.2.7	Bathymetric Changes in Shallow Marine Near	
		Coast Systems	154
	3.2.8	Sequence Surfaces Versus Spatiotemporal Distribution	
		of Ammonoids	156
	3.2.9	Asymmetric Sequences in Context of Thickness	156
	3.2.10	Bathymetric Changes and Ammonoid Heterochronic	
		Evolution	157
	3.2.11	Sediment Accumulation Rates, Facies and Their	
		Depositional Environemnts	158
	3.2.12	Biotic and Abiotic Parameters	159
	3.2.13	Refined Chronostratigraphy—An Essential Requisite	
		for Sequence Stratigraphic Studies	160
	3.2.14	Sequence Stratigraphy as Here Understood	161
	3.2.15	Rationale of Sequence Stratigraphic Studies	161
	3.2.16	Uniformity of Sequences in Broadly Homogeneous	
		Tectonostratigraphic Regions	162
	3.2.17	Temporally Changing Geographical Extent of the	
		Broadly Uniform Tectonostratigraphic Regions	162
	3.2.18	Sequence Stratigraphic Studies in the Indian Geological	
		Record	162
	3.2.19	Applicative Attributes of the Sequence Stratigraphic	
		Studies.	163
	3.2.20	Isochronous Surfaces of the T/R Sequences	163
3.3	The Me	ega Mesozoic Sequence and Its Three First-Order	
	Sequen	ces	164
	3.3.1	T-I. Basal Triassic to Intra-induan Frequens	
		Zone (Limestone + Shale Member) Second-Order	
		Sequence	168
	3.3.2	T-II. Basal Olenekian Rohilla Zone to Intra-olenekian	
		Flemingites-Euflemingites Zone Second-Order	
		Sequence	168
	3.3.3	T-III. Late Olenekian Meekoceras Zone–Early Ladinian	
		Fassinian Curionii Zone Second-Order Sequence	168
	3.3.4	T-IV. Intra-Ladinian Langobardian Gredlerensis	
		Zone–late Early Ladinian Maclerni Zone)	
		Second-Order Sequence	168

	3.3.5	T-V. late Early Ladinian Sutherlandi Zone–Early	
		Carnian Aon Zone (up to the Level BL 20)	
		Second-Order Sequence.	168
	3.3.6	T-VI. Mid to late Early Carnian Second-Order	
		Sequence	169
	3.3.7	T-VII. Latest Early to Late Carnian Second-Order	
		Sequence	169
	3.3.8	T-VIII. Early Norian Second-Order Sequence	169
	3.3.9	T-IX. Middle to Late Norian Second-Order Sequence	170
	3.3.10	T-X. Rhaetian Second-Order Sequence	170
3.4	Sequence	ce Stratigraphy in the Kachchh Jurassic	171
	3.4.1	Advantage of Relative Subtemperate High Latitude	
		Location of Kachchh for Greater Part of the	
		First-Order Toarcian-Barremian (~56.40 my	
		Long) Sequence.	172
	3.4.2	Domination of the Kachchh Ammonoid Fauna by a	
		Single Subfamily in Each Second-Order Sequence	173
	3.4.3	Auxiliary/Minor/Secondary Extraneous Elements	
		Crucial for GTM/ETM Correlation	173
	3.4.4	Strategic Significance of the Kachchh Mesozoic	173
	3.4.5	Ammonoid Heterochrony also Used in Relative	
		Chronometry	174
	3.4.6	Geological Dynamics Through Outcrop Based Sequence	
		Stratigraphic Studies in the Indian Mesozoic	174
	3.4.7	Geographically Restricted GTM Ammonoid Subfamilies	
		as Representative of Second-Order Sequences	174
	3.4.8	Second-Order and Bigger Sequences Controlled	
		by Regional Tectonics	175
	3.4.9	Third-Order and Smaller Sequences Governed by	
		Earth's Orbital Dynamics and so Global	175
	3.4.10	Origin of the Kachchh Basin and Principal Sequence	
		Surfaces Between the Precambrian and the Time of	
		Origin of the Kachchh Basin	175
	3.4.11	SB of the Mega Order Sequence	176
3.5	First- to	Third-Order Sequence Stratigraphy in the Kachchh	
	Jurassic		177
	3.5.1	J-I. Hettangian Second-Order ~ 2.0 my Long Sequence	
		with Middle Hettangian Liasicus	
		Zone MFS	179
	3.5.2	J-II. Hettangian–Sinemurian Boundary to Rauricostatum	
		Zone ~ 8.5 my Second-Order Sequence with Oxynotum	4.9.5
	252	Zone MFS.	180
	3.5.3	J-III. Latest Sinemurian to End Pliensbachian $\sim 8 \text{ my}$	104
		Long Second-Order Sequence with Ibex Zone MFS	181

3.5.4	J-IV. Second-Order Early Toarcian–End Aalenian Second-Order Sequence of ~ 12.5 my Duration	
	with MFS in the Nitiscens Zone	183
3.5.5	J-V. Basal Bajocian–Mid-Late Bajocian ~ 1.7 my Long	
	Second-Order Sequence with MFS in Early Bajocian	
	Propinquans Zone	195
3.5.6	J-VI. Late Bajocian Garantiana Zone–Mid. Middle	
	Bathonian Morrisi Zone ~ 1.5 my Long Second-Order	
	Sequence with Early Bathonian Macrescens Subzone	
	MFS	200
3.5.7	J-VII. Second-Order Late Middle Bathonian	
	Mantataranus Zone / Bremeri Zone–O-I Horizon of Late	
	Middle Callovian Obtusicosta Zone Obtusicosta	
	Subzone Sequence of ~ 2.40 my Duration with MFS	
	Above the Diadematus Subzone of Chrysoolithicus	
	Zone	207
3.5.8	J-VIII. Late Middle Callovian O-II Horizon Obtusicosta	
	Subzone Obtusicosta Zone-early Early Oxfordian	
	Second-Order Sequence of ~ 2.1 my duration with MFS	
	in A-II Horizon Depressum Subzone Athleta Zone	
	of early Late Callovian Age	225
3.5.9	J-IX. Second-Order Obliqueplicatum Zone–Subevolutus	
	Sequence with MFS Above the Late Middle Oxfordian	
	Schilli Subzone of Orientalis	
	Zone of ~ 4.8 my Duration	231
3.5.10	J-X. Second-Order early Early Kimmeridgian	
	Kachchhensis Zone–Mid. Early Kimmeridgian	
	Giganticus Subzone Sequence of ~ 2.0 my Duration	
	with MFS Above the Kachchhensis Zone	239
3.5.11	J-XI. Second-Order late Early Kimmeridgian	
	Alterneplicatus Zone–late Late Kimmeridgian	
	Katrolensis Zone of ~ 4.0 my Duration Sequence with	
	MFS Above the Bathyplocus Zone	241
3.5.12	J-XII. Second-Order early Early Tithonian Pottingeri	
	Zone–Virgatosphinctoides Zone Sequence of ~ 2.8 my	
	Duration with MFS in Rajnathi Subzone of	
	Virgatosphinctoides Zone	243
3.5.13	J-XIII. Second-Order Natricoides Zone–Densiplicatus	
	Zone Sequence of \sim 3.6 my Duration with MFS Above	
	the Natricoides Zone	245
3.5.14	J-XIV. Terminal Part of Densiplicatus Zone	
	Third-Order TST Of \sim 400 ky with MFS/MFI	
	in Bed 19 A-B	247

Contents

3.6	Cretace	eous	248
	3.6.1	C-I. Early to Middle Berriasian Second-Order	
		Sequence	250
	3.6.2	C-II. Late Berriasian Second-Order Sequence	251
	3.6.3	C-III. Valanginian Second-Order Sequence	
		(beds 5–9 of the Ghuneri Member)	
		in the Ghuneri–Amarsar Section	251
	3.6.4	C-IV Hauterivian Second-Order Sequence	
		(Beds 10–12 of the Ghuneri Member)	
		in the Ghuneri–Amarsar Section	251
	3.6.5	C-V Barremian Second-Order Sequence	
		(Beds 13–14 of the Ghuneri Member)	
		in the Ghuneri–Amarsar Section	252
	3.6.6	C-VI. Early Aptian Deshayesites Zone–late Aptian	
		Furcata Zone Second-Order Sequence of the Early part	
		of the Ukra Member (Beds 15 and 16)	253
	3.6.7	C-VII. Early to Middle Albian Second-Order Sequence	
		(Bed 17 of the Ukra Member and Bed 18 of the Upper	
		Member)	256
	3.6.8	C-VIII. Late Albian–Middle Cenomanian	
		Second-Order Sequence of Beds 19-22 of the	
		Upper Member of Umia Formation	256
	3.6.9	C-IX Late Cenomanian–Late Turonian Second-Order	
		Sequence of the Upper Part of the Karai Formation/	
		Sattapadi Shale in the Wells and the Overlying	
		Bhuvanagiri Formation	256
	3.6.10	C-X. Coniacian-Santonian Second-Order Sequence	
		with Intra-Coniacian MFS	256
	3.6.11	C-XI. Late Campanian Second-Order Sequence with	
		MFS Above the ?Early Campanian Delawarensis	
		Zone	256
	3.6.12	C-XII. Maestrichtian duration Second-Order Sequence	
		with MFS Above the Early Maestrichtian Tridens	
		Zone	257
3.7	Salient	Features of the Indian Cretaceous Record	257
	3.7.1	Intra- and Terminal Cretaceous Events Contextual	
		to India	257
	3.7.2	Application of Sequence Stratigraphy	257
	3.7.3	Recent Independent Sequence Formulations in Different	
		Indian Basins Vis-a-Vis Regional to Global	
		Correlatibility of the Sequence Surfaces	258
	3.7.4	Regional Uniformity of the Sequences	258
	3.7.5	Differences of Ages Among Recent Sequence	
		Formulations	259

		3.7.6	Sequence Framework in the Indian Cretaceous	259
		3.7.7	Foraminifer Evidence of yet Otherwise Unsubstantiated	
			Presence of Late Cretaceous Stages in Kachchh	259
		3.7.8	Speculation on Second-Order Late Albian–Early	
			Cenomanian Sequence	259
		3.7.9	Intra-Cretaceous First-Order SB with or Without Gap	260
		3.7.10	Significant Difference in Ages of the Said Gaps	260
		3.7.11	Creation of Indian Stages in Jurassic	
			and Cretaceous—An Uncalled for Exercise	260
		3.7.12	Summary	261
	3.8	Scales	of Cyclicity in the Kachchh Jurassic Geological Record	265
		3.8.1	Rationale of the Preliminary Exercise	265
		3.8.2	Asymmetric and Highly Uneven Duration of the	
			Sequences and Stages	265
		3.8.3	Relatively Shorter Duration of the First-Order TSTs	
			to Corresponding RSTs	266
		3.8.4	Sequences, Periodicity and Durations	269
	Refe	erences.		271
4	Inte	gration	of the Micro/Macro Faunal/Floral Data into	
	Ami	nonoid	Stratigraphic Framework in the Indian Mesozoics	277
	4.1	Indian	Lithobiostratigraphic Refinement, Correlation	
		and Int	egration	278
		4.1.1	The Indian Sedimentary Basins with Geological Record	
			of the Mega-Sequence	278
		4.1.2	On the Utilization of the Ammonoid Data.	278
		4.1.3	The Indian Mesozoic Lithostratigraphy Scenario	278
		4.1.4	Biostratigraphic Range Charts	279
		4.1.5	Integration of the Non-ammonoid Zonal	
			Schemes to Ammonoid Schemes	279
		4.1.6	Enlargement of the Stage Level Stratigraphic	
			Record in the Mega-Sequence	280
		4.1.7	Relative Degree of Stratigraphic Refinement	
			Among the Three Mesozoic Systems in India	280
		4.1.8	On the Benthic/Planktic Foram-Based Basinal/Regional	
			Indian Stages	281
	4.2	Microf	ossil-Based Zonations in the Indian Mesozoic	282
		4.2.1	Integration of the Diverse Indian Biostratigraphic	
			Record Vis-à-Vis Sequence Surfaces	283
		4.2.2	Naming of Bio/Chronostratigraphic Zones Exclusively	
			Through Their Basal Boundaries	284
	4.3	On the	Earlier Assigned Guide Fossil-Based Ages and	_
		Correla	tions in the Indian Mesozoic Successions	284
		4.3.1	Bivalves	284
		4.3.2	Conodonts	286

	4.3.3	Foraminifers	287
	4.3.4	Pollen–Spores and Dinocysts	292
	4.3.5	Nannoplanktons	295
4.4	Sequen	ce Stratigraphic and Microfossil Zonal Integration	
	in the V	West Indian Basins.	301
	4.4.1	Full Second-Order TST Substantiated Only	
		Through the Ammonoid Record in Jaisalmer	302
	4.4.2	Interpretation of the Saurashtra and Narmada Cretaceous	
		Successions in Sequence Stratigraphic Context	302
	4.4.3	Stratigraphic Framework in the Narmada Basin	303
	4.4.4	West Indian Basins of Jaisalmer, Barmer, Cambay,	
		Kachchh, Saurashtra, Narmada, Mumbai Offshore, and	
		Kerala–Konkan	305
	4.4.5	Lumping of Several Morphologically Close Species	
		of the Bagh Succession Under <i>Placenticeras mintoi</i>	307
	4.4.6	Post-Nimar Intra-Turonian Guide Fossil Records	
		and Not Intra-Nimar	308
	4.4.7	Late Cenomanian–Early Turonian Condensed to Starved	
		Interval at Site 258 Leg 26 of the Indian Ocean	308
	4.4.8	Evidence of Volcanism in the West Sector of the Indian	
		Ocean	308
	4.4.9	Demarcation of Important Cretaceous Sequence	
		Surfaces in Kachchh and Elsewhere	309
4.5	Sequen	ce Stratigraphy-Based Interpretations in the Bengal	
	and Oth	her East Sector Basins	309
	4.5.1	The Important But Enigmatic Non-Marine	
		Dubrajpur Formation in Bengal Basin Wells	309
	4.5.2	Discrepancies About the Definition, Age and	
		Geographical Expanse of the Dubrajpur Formation	311
	4.5.3	Volcanism in the Bengal Basin	311
	4.5.4	Volcanic Intervals in the Bengal Basin Boreholes	312
	4.5.5	Bengal Basin Palynozones.	312
	4.5.6	Age Revision to the Bengal Basin Units and	
		Palynozones Through Sequence Surfaces	313
	4.5.7	Suggestive Ages to the Six Volcanic Intervals	
		in the Bengal Basin Borehole DPD 6	313
	4.5.8	On the Palynology-Based Sequence Stratigraphic	
		Surfaces in the Indian East Coast Wells	315
4.6	Ranges	of the Palynozones Through Sequence Surfaces	
	(Fig. 2.	42)	317
	4.6.1	Pollen-Spore-Based Palynozones	317
	4.6.2	Dinocysts	317
4.7	Applica	ation of Sequence Surfaces in Precision Dating of the	
	Cretace	ous Units in the East Sector	319
	4.7.1	Cauvery Basin	319

		4.7.2	K-G Basin	321
		4.7.3	Other Indian East Coast Mahanadi, Purnea, Bengal,	
			Assam and Andaman Basins	321
		4.7.4	The Intra-Albian and Intra-Turonian MFSs in the Indian	
			Basins	322
		4.7.5	Demarcation of the First-Order Intra-Cretaceous MFS	324
		4.7.6	Correlations Among Cauvery, Spiti, and Kachchh	
			Successions	324
		4.7.7	Second-Order Surfaces in Between the Mid-Middle	
			Albian MFS and the Above Interpreted First-Order MFS	
			in Spiti and Kachchh	326
	4.8	Salient	Other Aspects of the Indian Mesozoic	327
		4.8.1	Evaluation of the Lithobiostratigraphic Data	
			of Jaisalmer and Barmer Basins	327
		4.8.2	Comparative Evaluation of the Jurassic Member	
			Units of Kachchh and Jaisalmer	328
		4.8.3	Need of Formal Indian Working Groups for Each	
			International Stage	330
		4.8.4	Sequence Stratigraphy-Based Revised Ages to	
			Formations and Members of the Kachchh Jurassic	330
		4.8.5	On the Intra-Oxfordian Uplift and Emergence	
			of Mainland	341
	4.9	Intraba	sinal Correlations with Temporal and Spatial Extent	
		of the	Kachchh Mesozoic Formations and Members	343
		4.9.1	Patcham Formation	344
		4.9.2	Chari Formation	351
		4.9.3	Katrol Formation	354
		4.9.4	Umia Formation	355
		4.9.5	Cretaceous	356
		4.9.6	Mundhra Formation	357
		4.9.7	Kori and Naliya Units	357
		4.9.8	Recent Progress in the Age Assignments of the Oldest	
			and Youngest Sediments in Different Parts of the	
			Kachchh Basin	357
	Refe	erences.		360
5	App	licabilit	v of the Sequence Framework in IEAP and GTM,	
	with	Brief (Comments on the Hydrocarbon Prospects	
	in tł	ne India	n Basins	367
	5.1	Compa	rison with the Earlier Indian Frameworks	368
		5.1.1	Initiation of Sequence Differentiation in India	368
		5.1.2	Ammonoid-Based Sequence Stratigraphic Studies	
			in the Indian Mesozoics	368
		5.1.3	Sequences Without Précised SBs and MFSs	369
		5.1.4	ONGC Sequence Framework	370
		5.1.5	On the Efforts in the Kachchh Basin	372

5.2	Validat	ion of the Present Sequence Framework in India, IEAP	
	and GT	ΓΜ	372
	5.2.1	Broad Correspondence of the	
		Indian and Arabian MFSs	373
	5.2.2	Basal Intra-Permian SB on IEAP and GTM	373
5.3	Compa	rison of the Indian Triassic, Jurassic, and Cretaceous	
	Sequen	ce Surfaces	375
	5.3.1	Comparison with Wombat Plateau ODP Well Sequence	
		Framework off the NW Australian	
		Margin Sites 759, 760, 761 and 764 East of IEAP	375
	5.3.2	Comparison with ETM Second-Order Sequence	
		Framework	378
	5.3.3	Intra-Jurassic First-Order early Early Toarcian SB	379
	5.3.4	Intra-Jurassic First-Order late Middle Oxfordian Schilli	
		Subzone MFS	379
	5.3.5	First-Order Intra-Cretaceous Barremian/Aptian	
		Boundary SB	380
	5.3.6	Intra-Cretaceous early Middle Turonian Turoniense	
		Zone MFS	380
	5.3.7	Early Bajocian Laeviuscula Zone MFS	381
	5.3.8	Early Bathonian Macrescens Subzone MFS	381
	5.3.9	Mid/late Middle Bathonian Basal Bremeri Zone SB	382
	5.3.10	Mid/late Early Callovian MFS	382
	5.3.11	On the Younger Jurassic Sequences in Jaisalmer	
		and Spiti	382
5.4	Validat	ion in Detail of the Indian Jurassic-Cretaceous Sequence	
	Stratigr	aphic Framework on GTM West of India	384
	5.4.1	Comparison with Composite East Africa	384
	5.4.2	Comparison with the Morondova Basin	
		of Madagascar	387
	5.4.3	Comparison of the Kachchh and Arabian Plate Sequence	
		Stratigraphic Frameworks	403
5.5	Validat	ion of the Kachchh First- and Second-Order	
	Sequen	ce Framework on GTM East of India	413
	5.5.1	Comparison with Wombat-Exmouth Plateaus	
		and Dampier Basin Well Sections	413
	5.5.2	Iriyan Jaya	417
	5.5.3	Timor Gap	424
	5.5.4	Timor	425
	5.5.5	Sula	425
5.6	Sequen	ce Stratigraphic Comparison of the Gondwanian Tethyan	
	(GTM)	and Eurasian Tethyan (ETM) Margins	426
	5.6.1	Basal SB of the Mega-Sequence	430
	5.6.2	Terminal SB of the Mega-Sequence	430

	5.6.3	MFS of the Mega Sequence	431
	5.6.4	First-Order Intra-Triassic MFS	431
	5.6.5	First-Order Intra-Jurassic MFS	432
	5.6.6	First-Order Intra-Jurassic SB	432
	5.6.7	First-Order Intra-Cretaceous SB	432
	5.6.8	Broad Comparison of the Sequence Fameworks	
		of Kachchh on GTM with ETM Frameworks	
		of Haq et al. (1987), Graciansky et al. (1993, 1998)	433
	5.6.9	Long-Term TST on ETM and GTM	433
	5.6.10	Second-Order MFSs of Haq et al., Jacquin et al.,	
		and Granciansky et al	434
	5.6.11	Diachrony and Differences in Second-Order MFSs	
		Between ETM and GTM	434
	5.6.12	Diachrony and Differences in Second-Order SBs	
		of ETM and GTM	435
	5.6.13	Intra-Bathonian Second-Order MFS	435
	5.6.14	Intra-Bathonian Second-Order SB	435
	5.6.15	Intra-Callovian MFS	436
	5.6.16	Intra-Callovian SB	436
	5.6.17	Intra-Oxfordian MFS	436
	5.6.18	Intra-Oxfordian SB	436
	5.6.19	Intra-Kimmeridgian MFS	437
	5.6.20	Intra-Kimmeridgian SB	437
	5.6.21	Intra-Tithonian MFS	437
	5.6.22	Intra-Tithonian SB	437
	5.6.23	Comparison of Principal Ammonoid Lineages	438
	5.6.24	Summary of Comparison of Sequence Frameworks	
		of GTM and ETM	438
	5.6.25	Comparison of Third-Order Sequences	439
5.7	Hydroc	arbon Prospects in the Mega-Sequence Geological	
	Record	in India in Sequence Stratigraphic Context	
	with Fo	ocus on the Kachchh Basin	439
	5.7.1	Conceptual Remarks in Sequence Stratigraphic	
		Context	439
	5.7.2	Tectono-Stratigraphic Framework	440
	5.7.3	Paleogeographic Perspective	442
	5.7.4	Differentiation of Marine and Non-marine Regimes	
		Within the Mega-Sequence in India	442
	5.7.5	Temporal Organization into Syn-Rift, and Rift/Drift	
		Intervals.	443
	5.7.6	Regional Igneous Events Among the Required Heat	
		Sources in the Hydrocarbon Source Sediment Kitchen	443
	5.7.7	Availablility of Restricted Depositional Environments	444
	5.7.8	Context of Oceanic Anoxism Through	
		the Mega-Sequence	444

		5.7.9	Global and East Arabian / Northwest			
			Australian Context.	446		
	5.8	Summa	arized Evaluation of the Indian Hydrocarbon Prospects			
		in the	Mega-Sequence	446		
		5.8.1	On the Successive Second-Order Intervals			
			of the Mega-Sequence	447		
		5.8.2	Late Permian–Anisian First-Order TST Interval	448		
		5.8.3	Ladinian–Pliensbachian First-Order RST Interval	449		
		5.8.4	Toarcian-late Middle Oxfordian TST Interval	449		
		5.8.5	Terminal Middle Oxfordian-Barremian First-Order			
			RST Interval	452		
		5.8.6	Early Aptian–Mid-Middle Albian TST Interval	452		
		5.8.7	Cenomanian.	453		
		5.8.8	Late Cenomanian–early-Middle Turonian			
			TST Interval	453		
		5.8.9	Late Turonian–Intra-Paleocene First-Order			
			RST Interval	453		
	5.9	Conclu	Iding Remarks	454		
	Refe	erences.	-	455		
6	Cm	oiol I in	ks Among Evolution Extensional Tectonics			
U	Am	uai Lili monoid	Provincialism and Sequence Surfaces	461		
	6 1	4 Eassil Eusl/Energy Desources Vis à Vis Sequence				
	0.1	Stratio	raphic Surfaces	462		
		611	Permian and Paleogene Coal	462		
		612	Hydrocarbon Source/Reservoir Sediments	464		
	62	Cenhal	lopod and Ammonoid Evolutionary Events	464		
	0.2	6 2 1	Global Distribution of Higher Grade Cenhalonod/	101		
		0.2.1	Ammonoid Taxa Vis-a-Vis Geographically Restricted			
			Regional Spread of Ammonoids	465		
		622	Simultaneous Mass Extinctions Across the World	105		
		0.2.2	and Diachronous Regional Extinctions	465		
		623	Five Major/Mass Extinctions	465		
		624	Mass Extinctions and Evolution of Cenhalopods	105		
		0.2.1	Particularly Ammonoids	466		
		625	Origin of the Nectic Cephalopods Near the First-Order			
		0.2.0	Intra-Cambrian Sequence Surface	466		
		626	Cenhalonod Evolution and Extinctions at Sequence	100		
		0.2.0	Surfaces	467		
		627	Pre-Jurassic Ammonoid Evolution and Sequence	107		
		0.2.7	Surfaces	467		
	63	Origin	Extinction of Subfamilies at Second-Order Sequence	.07		
	0.5	Surface	es	468		
		6.3.1	Early Jurassic Psiloceratidae and Others	468		
		6.3.2	Middle Jurassic Macrocephalitinae and Others	469		
			rr			

	•	٠	٠
XXV	1	1	1
	-	•	•

	6.3.3	Late Jurassic Katroliceratinae and Others	472
	6.3.4	Appearance/Disappearance of Superfamilies Linked to	
		Bathymetry	472
	6.3.5	Globally Concordant Third-Order Sequences.	473
	6.3.6	Replacement of Lineages at the First/Second-Order	
		Sequence Surfaces	473
	6.3.7	Subfamilial Origin/Extinctions in the Subboreal	
		Region.	475
6.4	Genetic Link Between the Origin/Extinction of Ammonoid		
	Taxa ar	nd Extensional Tectonics	475
	6.4.1	Origin/Extinction of Multiple Subfamilies	
		and Superfamilies Triggered by Rift-Tectonism and	
		Volcanism at First/Second-Order Sequence Surfaces	476
	6.4.2	Tilt of the Median High at the Second-Order	
		Intra-Callovian MFS	477
	6.4.3	Rift Abortion Related Inversion of Bathymetry,	
		and Change of Paleoslope	478
6.5	Crude S	Suggestion of Relative Depths Based upon	
	Spatio-	Temporal Distribution of Ammonoid Sub/Superfamilies	
	in the E	Basin	478
	6.5.1	Maximum Bathymetry Based on the Suborder	
		Level Distribution	478
	6.5.2	Depth Estimates Based on the Distribution of	
		Superfamilies	479
	6.5.3	Estimates Based Even at the Subclass Ammonoidea	
		Level	479
6.6	Heteroc	hronic Evolutionary Framework of the Dominant IEAP	
	Ammor	noid Subfamiles	482
	6.6.1	Approach/Methodology to the Heterochronic	
		Evolutionary Framework	482
	6.6.2	Macrocephalitinae and Its Chrysoolithicus Lineage	483
	6.6.3	Evolutionary Inversion of Macrocephalitinae	
		at the 2nd Order MFS	484
	6.6.4	Eucycloceratinae	485
	6.6.5	Kinkeliniceratinae	485
	6.6.6	Mayaitinae	486
	6.6.7	Katroliceratinae	487
	6.6.8	Virgatosphinctinae	487
	6.6.9	Examples of Paedomorphic and Peramorphic	
		Heterochronic Evolution	488
	6.6.10	Suggestive Genetic Link Between Heterochronic	20
	5.0.10	Evolutionary Changes and Sequence Stratigraphic	
		Framework (Fig. 6.5)	491

	6.7	Ammo	noid Distribution, Provincialism and Migration	
		to and	Fro IEAP	492
		6.7.1	Salient Ammonoid Distribution Features During the	
			Toarcian-Barremian 1st Order Sequence Interval	
			with Focus on 2nd Order Sequences	493
		6.7.2	Toarcian–Mid-Middle Bathonian	496
		6.7.3	Late Middle Bathonian–Early Middle Callovian	496
		6.7.4	Late Middle Callovian–Late Early Oxfordian	496
		6.7.5	Late Early to Latest Late Oxfordian	496
		6.7.6	Basal to Mid-Early Kimmeridgian	497
		6.7.7	Late Early to Latest Kimmeridgian	497
		6.7.8	Early Early to Mid-Early Tithonian	497
		6.7.9	Late Early to late Late Tithonian	497
6.8 Speculative Linkage of Prime Evolutionary Landmarks to I		ative Linkage of Prime Evolutionary Landmarks to Major		
		Region	al/Global Geological Events and Their Precision Dating	
		Throug	gh Sequence Surfaces	498
		6.8.1	Intra-Permian Basal SB of the Mega-Sequence	498
		6.8.2	Intra-Triassic First-Order MFS	500
		6.8.3	Suggestive Origin of the Planktonic Forams	
			at the First-Order Intra-Jurassic SB	501
		6.8.4	The Origin of Birds—The Flying Dinosaurs Near the	
			First-Order Intra-Jurassic MFS	501
		6.8.5	Barremian/Aptian Boundary First-Order SB	
			Evolutionary Marks	502
	Refe	erences.		502
7	Hio	h-Resoli	ution Intrabasinal to Inter-regional Geodynamic	
,	Chr	onicle F	During the Snan of the Intra-Permian–Intra-Paleogene	
	Meg	va-Seque	ence in and Around India on the GTM	505
	7.1	Backdı	rop to the Geodynamic Chronicle	506
	,,,,	7.1.1	Transformation from the Origin to the Closure of the	200
		,	Late Permian–Farly Paleogene Mega-Sequence	506
		712	Sequence Surfaces as Regional Eventful Additional	200
		/.1.2	Timelines to Date Events of One Sector in Some Other	
			Distant Sector	511
		7.1.3	Predictable Spatio-Temporal Distribution of Biotic	011
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and Abiotic Parameters Across the Sequence Surfaces	
			as also from Proximal Margin to Distal Basin	
			on the Individual Surfaces.	517
		7.1.4	Chronicle of the Events at the Subzonal Resolution	211
			of ~ 400 ky or its Multiples	518
				010

	7.1.5	Unified Integrative Geodynamic History of the Indian	
		and the Deleted Occorre Included in the Tell Tele	500
	716	Constraints and Influence of the Inherent Dresembrien	525
	/.1.0	Constraints and influence of the innerent Precambrian	
		Structural Trends in and Around India, and Progressive	~
	a	Refinement of the Size of Greater India	544
7.2	Sequen	ce Stratigraphy Based Geodynamic Chronicle	545
	7.2.1	Brief Outline	546
	7.2.2	Basal to Intra-Permian Infra-Rift Sagging to Syn-rift	
		Transition Event in the East	547
	7.2.3	Early Permian–Middle Triassic Igneous Event	
		$(\sim 289 \text{ to } \sim 243 \text{ ma})$ with Climax at the Second-Order	
		Sakmarian/Artinskian MFS of the Intra-Devonian–Early	
		Permian First-Order Sequence	549
	7.2.4	Possible Earlier Origin of the Neotethys	550
7.3	The Sp	itiian First-Order Sequence	552
	7.3.1	Early/Late Permian (~ 272 ma) Basal Mega SB	
		Geological Event	553
	7.3.2	Anoxic Events Vis-à-Vis Sequence Stratigraphic	
		Surfaces	554
	7.3.3	Mega-Sequence Surfaces and the Indian Energy	
		Resources (Fig. 7.5)	554
	7.3.4	The End-Permian Mass Extinction at the Second-Order	
		SB, and Its Varied Causes	555
	7.3.5	Major Organic Evolution Events Suggestively Linked to	
		the First-Order Sequence Surfaces	556
	7.3.6	Example of Quantum Evolutionary Steps in	
		Cephalopods/Ammonoids	556
	7.3.7	Major Evolutionary Leaps of Higher Grade Taxa	
		in the Animals and Plants	557
7.4	First-O	rder Intra-Triassic Late Anisian Hollandite	007
<i></i>	Zone-K	Kellnerites Zone MFS Rifting Event	558
	741	Early Triassic Bathymetric Increase in Spiti Vis-à-Vis	220
	/.1.1	Fustatic Changes During the Intra-Olenekian-Intra-	
		Carnian Interval	561
	742	Application of Sequence Stratigraphic Concepts and	501
	7.1.2	Sequence Surfaces in Correlation of Marine	
		and Non marine Units	562
	7 1 3	Pagional Build up of Sands in the Ensuing First Order	502
	7.4.5	DST	567
75	The Ve	Ababbian First Order Sequence	562
1.5	751	The Multifaceted Widespread First Order Intro Instruction	505
	1.3.1	SP. Caslagical Event	560
		SD Geological Event	303