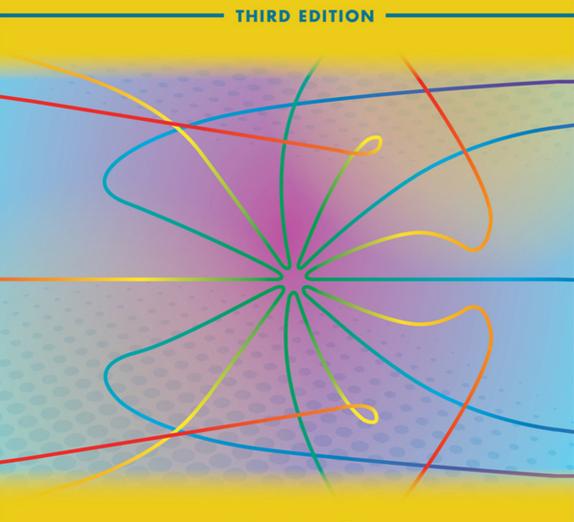
Numerical Methods for

Ordinary Differential Equations



J.C. Butcher

WILEY

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations

J. C. Butcher

WILEY

This edition first published 2016 © 2016, John Wiley & Sons, Ltd

First Edition published in 2003 Second Edition published in 2008

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication data applied for

ISBN: 9781119121503

A catalogue record for this book is available from the British Library.

Contents

Fo	Foreword				
Pr	efac	XV			
Pr	efac	xix			
Pr	efac	e to	the third edition	xxi	
1	Dif	ffere	ential and Difference Equations	1	
			ferential Equation Problems	1	
		100	Introduction to differential equations	1	
		101	The Kepler problem	4	
		102	A problem arising from the method of lines	7	
		103	The simple pendulum	11	
		104	A chemical kinetics problem	14	
		105	The Van der Pol equation and limit cycles	16	
		106	The Lotka–Volterra problem and periodic orbits	18	
		107	The Euler equations of rigid body rotation	20	
	11	Diff	ferential Equation Theory	22	
		110	Existence and uniqueness of solutions	22	
		111	Linear systems of differential equations	24	
		112	Stiff differential equations	26	
	12	Fur	ther Evolutionary Problems	28	
		120	Many-body gravitational problems	28	
		121	Delay problems and discontinuous solutions	30	
		122	Problems evolving on a sphere	33	
		123		35	
		124	Further differential-algebraic problems	36	
	13	Diff	ference Equation Problems	38	
		130	Introduction to difference equations	38	
		131	A linear problem	39	
		132	The Fibonacci difference equation	40	
		133	Three quadratic problems	40	
		134	Iterative solutions of a polynomial equation	41	
		135	The arithmetic-geometric mean	//3	

	14	Diff	ference Equation Theory	44
		140	Linear difference equations	44
		141	Constant coefficients	45
		142	Powers of matrices	46
	15	Loc	eation of Polynomial Zeros	50
		150	Introduction	50
		151	Left half-plane results	50
		152	Unit disc results	52
		Cor	ncluding remarks	53
2	Nu	ımer	rical Differential Equation Methods	55
	20	The	Euler Method	55
		200	Introduction to the Euler method	55
		201	Some numerical experiments	58
		202	Calculations with stepsize control	61
			Calculations with mildly stiff problems	65
		204	Calculations with the implicit Euler method	68
	21	Ana	alysis of the Euler Method	70
		210		70
		211	Local truncation error	71
		212	Global truncation error	72
		213	Convergence of the Euler method	73
		214	Order of convergence	74
			Asymptotic error formula	78
		216	Stability characteristics	79
		217	Local truncation error estimation	84
		218	Rounding error	85
	22	Ger	neralizations of the Euler Method	90
		220	Introduction	90
		221	More computations in a step	90
		222	Greater dependence on previous values	92
			Use of higher derivatives	92
		224	Multistep-multistage-multiderivative methods	94
		225		95
		226	Local error estimates	96
	23	Rui	nge-Kutta Methods	97
			Historical introduction	97
		231	Second order methods	98
		232	The coefficient tableau	98
		233	Third order methods	99
		234	Introduction to order conditions	100
		235	Fourth order methods	101
		236	Higher orders	103
		237	Implicit Runge–Kutta methods	103
		238	Stability characteristics	104
		239	Numerical examples	108

CONTENTS vii

	24	Line	ear Multistep Methods	111
		240	Historical introduction	111
		241	Adams methods	111
		242	General form of linear multistep methods	113
		243	Consistency, stability and convergence	113
		244	Predictor-corrector Adams methods	115
		245	The Milne device	117
		246	Starting methods	118
		247	Numerical examples	119
	25	Tay	lor Series Methods	120
		250	Introduction to Taylor series methods	120
		251	Manipulation of power series	121
		252	An example of a Taylor series solution	122
		253	Other methods using higher derivatives	123
		254	The use of f derivatives	126
		255	Further numerical examples	126
	26	Mul	ltivalue Mulitistage Methods	128
		260	Historical introduction	128
		261	Pseudo Runge-Kutta methods	128
		262	Two-step Runge-Kutta methods	129
		263	Generalized linear multistep methods	130
		264	General linear methods	131
		265	Numerical examples	133
	27	Intr	roduction to Implementation	135
		270	Choice of method	135
		271	Variable stepsize	136
		272	Interpolation	138
		273	Experiments with the Kepler problem	138
		274	Experiments with a discontinuous problem	139
		Cor	ncluding remarks	142
3	Ru	nge-	-Kutta Methods	143
	30	Pre	liminaries	143
		300	Trees and rooted trees	143
		301	Trees, forests and notations for trees	146
		302	Centrality and centres	147
			Enumeration of trees and unrooted trees	150
			Functions on trees	153
		305	Some combinatorial questions	155
			Labelled trees and directed graphs	156
			Differentiation	159
		308	Taylor's theorem	161

31	Ord	ler Conditions	163
	310	Elementary differentials	163
	311	The Taylor expansion of the exact solution	166
	312	Elementary weights	168
	313	The Taylor expansion of the approximate solution	171
	314	Independence of the elementary differentials	174
	315	Conditions for order	174
	316	Order conditions for scalar problems	175
	317	Independence of elementary weights	178
	318	Local truncation error	180
	319	Global truncation error	181
32	Low	v Order Explicit Methods	185
	320	Methods of orders less than 4	185
	321	Simplifying assumptions	186
	322	Methods of order 4	189
	323	New methods from old	195
	324	Order barriers	200
	325	Methods of order 5	204
	326	Methods of order 6	206
	327	Methods of order greater than 6	209
33	Run	nge–Kutta Methods with Error Estimates	211
	330	Introduction	211
	331	Richardson error estimates	211
	332	Methods with built-in estimates	214
	333	A class of error-estimating methods	215
	334	The methods of Fehlberg	221
	335	The methods of Verner	223
	336	The methods of Dormand and Prince	223
34	Imp	olicit Runge–Kutta Methods	226
	340	Introduction	226
	341	Solvability of implicit equations	227
	342	Methods based on Gaussian quadrature	228
	343	Reflected methods	233
	344	Methods based on Radau and Lobatto quadrature	236
35	Stal	oility of Implicit Runge–Kutta Methods	243
	350	A-stability, $A(\alpha)$ -stability and L-stability	243
	351	Criteria for A-stability	244
	352	Padé approximations to the exponential function	245
	353	A-stability of Gauss and related methods	252
	354	Order stars	253
	355	Order arrows and the Ehle barrier	256
	356	AN-stability	259
	357	Non-linear stability	262
	358	BN-stability of collocation methods	265
	359	The V and W transformations	267

CONTENTS ix

	36	Imp	olementable Implicit Runge–Kutta Methods	272
		360	Implementation of implicit Runge–Kutta methods	272
		361	Diagonally implicit Runge-Kutta methods	273
		362	The importance of high stage order	274
		363	Singly implicit methods	278
		364	Generalizations of singly implicit methods	283
		365	Effective order and DESIRE methods	285
	37	Imp	olementation Issues	288
		370	Introduction	288
		371	Optimal sequences	288
		372	Acceptance and rejection of steps	290
		373	Error per step versus error per unit step	291
		374	Control-theoretic considerations	292
		375	Solving the implicit equations	293
	38	Alge	ebraic Properties of Runge-Kutta Methods	296
		380	Motivation	296
		381	Equivalence classes of Runge-Kutta methods	297
		382	The group of Runge–Kutta tableaux	299
		383	The Runge–Kutta group	302
		384	A homomorphism between two groups	308
		385	A generalization of G_1	309
		386	Some special elements of G	311
		387	Some subgroups and quotient groups	314
		388	An algebraic interpretation of effective order	316
	39	Sym	nplectic Runge–Kutta Methods	323
		-	Maintaining quadratic invariants	323
		391	Hamiltonian mechanics and symplectic maps	324
		392	Applications to variational problems	325
			Examples of symplectic methods	326
			Order conditions	327
		395	Experiments with symplectic methods	328
		Con	ncluding remarks	331
4	Liı	1ear	Multistep Methods	333
-			liminaries	333
	••		Fundamentals	333
		401		334
			Convergence	335
		403		336
		404	Consistency	336
		405	Necessity of conditions for convergence	338
		406	Sufficiency of conditions for convergence	339
	41		e Order of Linear Multistep Methods	344
	41	410	Criteria for order	344
		411	Derivation of methods	346
		412	Backward difference methods	347
		T14	Dackwara afference memous	347

	42	Erre	ors and Error Growth	348
		420	Introduction	348
		421	Further remarks on error growth	350
		422	The underlying one-step method	352
		423	Weakly stable methods	354
		424	Variable stepsize	355
	43	Stal	bility Characteristics	357
		430	Introduction	357
		431	Stability regions	359
		432	Examples of the boundary locus method	360
		433	An example of the Schur criterion	363
		434	Stability of predictor–corrector methods	364
	44	Ord	ler and Stability Barriers	367
		440	Survey of barrier results	367
		441	Maximum order for a convergent k-step method	368
		442	Order stars for linear multistep methods	371
		443	Order arrows for linear multistep methods	373
	45	One	e-leg Methods and G-stability	375
		450	The one-leg counterpart to a linear multistep method	375
		451	The concept of G-stability	376
		452	Transformations relating one-leg and linear multistep methods	379
		453	Effective order interpretation	380
		454	Concluding remarks on G-stability	380
	46	Imp	olementation Issues	381
		460	Survey of implementation considerations	381
		461	Representation of data	382
		462	Variable stepsize for Nordsieck methods	385
		463	Local error estimation	386
		Con	ncluding remarks	387
5	Ge	nera	al Linear Methods	389
	50	Rep	oresenting Methods in General Linear Form	389
		500	_	389
		501	Transformations of methods	391
		502	Runge-Kutta methods as general linear methods	392
		503	Linear multistep methods as general linear methods	393
		504		396
		505	Some recently discovered general linear methods	398
	51	Con	sistency, Stability and Convergence	400
		510	Definitions of consistency and stability	400
		511	Covariance of methods	401
		512	Definition of convergence	403
		513	The necessity of stability	404
		514	The necessity of consistency	404
		515	Stability and consistency imply convergence	406

CONTENTS xi

52	The	Stability of General Linear Methods	412
	520	Introduction	412
	521	Methods with maximal stability order	413
	522	Outline proof of the Butcher-Chipman conjecture	417
	523	Non-linear stability	419
	524	Reducible linear multistep methods and G-stability	422
53	The	Order of General Linear Methods	423
	530	Possible definitions of order	423
	531	Local and global truncation errors	425
	532	Algebraic analysis of order	426
	533	An example of the algebraic approach to order	428
	534	The underlying one-step method	429
54	Met	hods with Runge–Kutta stability	431
	540	Design criteria for general linear methods	431
	541	The types of DIMSIM methods	432
	542	Runge–Kutta stability	435
	543	Almost Runge–Kutta methods	438
	544	Third order, three-stage ARK methods	441
	545	Fourth order, four-stage ARK methods	443
	546	A fifth order, five-stage method	446
	547	ARK methods for stiff problems	446
55	Met	hods with Inherent Runge–Kutta Stability	448
	550	Doubly companion matrices	448
	551	Inherent Runge–Kutta stability	450
	552	Conditions for zero spectral radius	452
	553	Derivation of methods with IRK stability	454
	554	Methods with property F	457
	555	Some non-stiff methods	458
	556	Some stiff methods	459
	557	Scale and modify for stability	460
	558	Scale and modify for error estimation	462
56	G-sy	mplectic methods	464
	560	Introduction	464
	561	The control of parasitism	467
	562	Order conditions	471
	563	Two fourth order methods	474
	564	Starters and finishers for sample methods	476
	565	Simulations	480
	566	Cohesiveness	481
	567	The role of symmetry	487
	568	Efficient starting	492
	Con	cluding remarks	497
Ref	feren	res	499
-10			122

509

Index



Foreword

This book is devoted to a subject – the numerical solution of ordinary differential equations – where practical relevance meets mathematical beauty in a unique way. Its writing is masterly, as befits its author, someone whose past and current contributions to the field are second to none in history.

The numerical integration of differential equations plays a crucial role in all applications of mathematics. Virtually all the scientific laws that govern the physical world can be expressed as differential equations; therefore making explicit the implications and consequences of these laws requires finding the solutions to the equations. This necessity, coupled with the unfortunate fact that there is no general rule to solve analytically a given differential equation, has led over the years to the introduction by the best mathematical minds of a raft of techniques applicable only in particular equations or oriented to specific features of the solutions sought. While some of those efforts have significantly spurred the development of mathematics in the last 300 years (e.g. they have given us the theory of special functions, Lie groups and topology), numerical methods are the only master key for solving differential equations.

The subject matter of this volume is not only of exceptional relevance due to its importance in practical applications; it also constitutes a rich and elegant branch of mathematics with exceptionally distinguished roots. As is well known, the simplest numerical algorithm to solve (ordinary) differential equations was suggested by Euler in the mid 18th century. It is less well known that, for Euler, what we now call Euler's method was just a stepping stone in his insightful presentation of the Taylor series method of arbitrary order. Euler also carefully discussed the use of variable order and variable step lengths and implementation details. The next milestone of the subject, the introduction of multistep algorithms, was reached in the mid 19th century by Adams, the scientist best known for having co-discovered the existence of the planet Neptune using only mathematics. Another important class of numerical integrators was introduced by Runge and systematized by Kutta around the year 1900. Thus, 100 years ago, the sciences had a pressing need to solve differential equations, so the mathematicians put forward many useful algorithms to solve them ... and yet there was a big gap: carrying out the required computations was typically unfeasible when pencil and paper or mechanical machines were the only ways of performing arithmetic operations. It is no exaggeration to state that the need to implement in practice the integration algorithms of Adams, Runge and Kutta led to the conception and construction of (digital, electronic) computers; after all, one the

first computers was named ENIAC, (electronic numerical integrator and computer). Since then, computers have of course revolutionized not only the mathematical solution of differential equations but almost everything else.

It was only natural that when the use of computers became widespread, mathematicians asked themselves whether the venerable integrators introduced by Adams, Runge and Kutta were the best conceivable. As it turned out, in the multistep field, the beautiful mathematics of Dahlquist showed that for nonstiff problems it is not really feasible to do much better than Adams had suggested. By the addition of extra free parameters, it is possible to concoct more sophisticated integrators, but these are doomed to be unstable. In the Runge-Kutta realm the situation is just the opposite: the many degrees of freedom in the world of Runge-Kutta integrators have shown themselves capable of providing a good integrator for each situation.

The construction and analysis of specific Runge-Kutta schemes is a daunting job if one approaches it as Runge and Kutta did; these schemes are highly nonlinear with a remarkable Matrioshka doll structure, where the vector field has to be evaluated at an expression that involves the vector field evaluated at an expression that involves the vector field ... Mathematics owes much to the author of this book for a simple and elegant, alternative, general methodology based on the use of trees and other algebraic ideas. It is thanks to J. C. Butcher's techniques that many authors have been able in the last decades to develop Runge-Kutta methods tailored to different needs and to implement them in useful software. Many such techniques have found uses away from numerical mathematics in fields such as quantum field theory and noncommutative geometry. Connes (Field medallist 1982) and Kreimer, writing on renormalization theories, state: 'We regard Butcher's work on the classification of numerical integration methods as an impressive example that concrete problemoriented work can lead to far-reaching conceptual results.'

The author wrote an earlier text restricted to Runge-Kutta and general linear methods. In the case of the present more comprehensive volume, this is the third, significantly updated, edition; I am sure it will be as well received as the two preceding editions.

JM Sanz-Serna Universidad Carlos III de Madrid

Preface to the first edition

Introductory remarks

This book represents an attempt to modernize and expand my previous volume, *The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods*. It is more modern in that it considers several topics that had not yet emerged as important research areas when the former book was written. It is expanded in that it contains a comprehensive treatment of linear multistep methods. This achieves a better balance than the earlier volume which made a special feature of Runge–Kutta methods.

In order to accommodate the additional topics, some sacrifices have been made. The background work which introduced the earlier book is here reduced to an introductory chapter dealing only with differential and difference equations. Several topics that seem to be still necessary as background reading are now introduced in survey form where they are actually needed. Some of the theoretical ideas are now explained in a less formal manner. It is hoped that mathematical rigour has not been seriously jeopardized by the use of this more relaxed style; if so, then there should be a corresponding gain in accessibility. It is believed that no theoretical detail has been glossed over to the extent that an interested reader would have any serious difficulty in filling in the gaps.

It is hoped that lowering the level of difficulty in the exposition will widen the range of readers who might be able to find this book interesting and useful. With the same idea in mind, exercises have been introduced at the end of each section.

Following the chapter on differential and difference equations, Chapter 2 is presented as a study of the Euler method. However, it aims for much more than this in that it also reviews many other methods and classes of methods as generalizations of the Euler method. This chapter can be used as a broad-ranging introduction to the entire subject of numerical methods for ordinary differential equations.

Chapter 3 contains a detailed analysis of Runge–Kutta methods. It includes studies of the order, stability and convergence of Runge–Kutta methods and also considers in detail the design of efficient explicit methods for non-stiff problems. For implicit methods for stiff problems, inexpensive implementation costs must be added to accuracy and stability as a basic requirement. Recent work on each of these questions is surveyed and discussed.

Linear multistep methods, including the combination of two methods as predictor–corrector pairs, are considered in Chapter 4. The theory interrelating stability, consistency and convergence is presented together with an analysis of order conditions. This leads to a proof of the (first) 'Dahliquist barrier'. The methods in this class which are generally considered to be the most important for the practical solution of non-stiff problems are the Adams–Bashforth and Adams–Moulton formulae. These are discussed in detail, including their combined use as predictor–corrector pairs. The application of linear multistep methods to stiff problems is also of great practical importance and the treatment will include an analysis of the backward difference formulae.

In Chapter 5 the wider class of general linear methods is introduced and analysed. Questions analogous to those arising in the classical Runge–Kutta and linear multistep methods – that is, questions of consistency, stability, convergence and order – are considered and explored. Several sub-families of methods, that have a potential practical usefulness, are examined in detail. This includes the so-called DIMSIM methods and a new type of method exhibiting what is known as inherent Runge–Kutta stability.

The remarks in the following paragraphs are intended to be read following Chapter 5.

Concluding remarks

Any account of this rapidly evolving subject is bound to be incomplete. Complete books are all alike; every incomplete book is incomplete in its own way.

It has not been possible to deal adequately with implementation questions. Numerical software for evolutionary problems entered its modern phase with the DIFSUB code of Gear (1971b). 'Modern' in this sense means that most of the ingredients of subsequent codes were present. Both stiff and non-stiff problems are catered for, provision is made for Jacobian calculation either by subroutine call or by difference approximation; the choice is up to the user. Most important, automatic selection of stepsize and order is made dynamically as the solution develops. Compared with this early implementation of linear multistep methods, the Radau code (Hairer and Wanner 1996) uses implicit Runge–Kutta methods for the solution of stiff problems.

In recent years, the emphasis in numerical methods for evolutionary problems has moved beyond the traditional areas of non-stiff and stiff problems. In particular, differential algebraic equations have become the subject of intense analysis as well as the development of reliable and efficient algorithms for problems of variable difficulty, as measured for example by the indices of the problems. Some basic references in this vibrant area are Brenan, Campbell and Petzold (1996) and Hairer, Lubich and Roche (1989). In particular, many codes are now designed for applications to stiff ordinary differential equations in which algebraic constraints also play a role. On the Runge–Kutta side, Radau is an example of this multipurpose approach. On the linear multistep side, Petzold's DASSL code is closely related

to Gear's DIFSUB code but has the capability of solving differential algebraic equations, at least of low index.

Many problems derived from mechanical systems can be cast in a Hamiltonian formulation. To faithfully model the behaviour of such problems it is necessary to respect the symplectic structure. Early work on this by the late Feng Kang has led to worldwide activity in the study of this type of question. A basic reference on Hamiltonian problems is Sanz-Serna and Calvo (1994)

The emphasis on the preservation of qualitative features of a numerical solution has now grown well beyond the Hamiltonian situation and has become a mathematical discipline in its own right. We mention just two key references in this emerging subject of 'geometric integration'. They are Iserles et al. (2000) and Hairer, Lubich and Wanner (2006).

Internet commentary

Undoubtedly there will be comments and suggestions raised by readers of this volume. A web resource has been developed to form a commentary and information exchange for issues as they arise in the future. The entry point is

http://www.math.auckland.ac.nz/~butcher/book

Acknowledgements

I acknowledge with gratitude the support and assistance of many people in the preparation of this volume. The editorial and production staff at Wiley have encouraged and guided me through the publishing process. My wife, children, grandchildren and stepchildren have treated me gently and sympathetically.

During part of the time I have been working on this book, I have received a grant from the Marsden Fund. I am very grateful for this assistance both as an expression of confidence from my scientific colleagues in New Zealand and as practical support.

The weekly workshop in numerical analysis at The University of Auckland has been an important activity in the lives of many students, colleagues and myself. We sometimes refer to this workshop as the 'Runge–Kutta Club'. Over the past five or more years especially, my participation in this workshop has greatly added to my understanding of numerical analysis through collaboration and vigorous discussions. As this book started to take shape they have provided a sounding board for many ideas, some of which were worked on and improved and some of which were ultimately discarded. Many individual colleagues, both in Auckland and overseas, have read and worked through drafts of the book at various stages of its development. Their comments have been invaluable to me and I express my heartfelt thanks.

Amongst my many supportive colleagues, I particularly want to name Christian Brouder, Robert Chan, Tina Chan, David Chen, Allison Heard, Shirley Huang, Arieh Iserles, Zdzisław Jackiewicz, Pierre Leone, Taketomo (Tom) Mitsui, Nicolette Moir, Steffen Schulz, Anjana Singh, Angela Tsai, Priscilla Tse and Will Wright.

Preface to the second edition

Reintroductory remarks

The incremental changes incorporated into this edition are an acknowledgement of progress in several directions. The emphasis on structure-preserving algorithms has driven much of this recent progress, but not all of it. The classical linear multistep and Runge–Kutta methods have always been special cases of the large family of general linear methods, but this observation is of no consequence unless some good comes of it. In my opinion, there are only two good things that might be worth achieving. The first is that exceptionally good methods might come to light which would not have been found in any other way. The second is that a clearer insight and perhaps new overarching theoretical results might be expressed in the general linear setting. I believe that both these aims have been achieved, but other people might not agree. However, I hope it can be accepted that some of the new methods which arise naturally as general linear methods have at least some potential in practical computation. I hope also that looking at properties of traditional methods from within the general linear framework will provide additional insight into their computational properties.

How to read this book

Of the five chapters of this book, the first two are the most introductory in nature. Chapter 1 is a review of differential and difference equations with a systematic study of their basic properties balanced against an emphasis on interesting and prototypical problems. Chapter 2 provides a broad introduction to numerical methods for ordinary differential equations. This is motivated by the simplicity of the Euler method and a view that other standard methods are systematic generalizations of this basic method. If Runge–Kutta and linear multistep methods are generalizations of Euler then so are general linear methods, and it is natural to introduce a wide range of multivalue—multistage methods at this elementary level.

A reading of this book should start with these two introductory chapters. For a reader less experienced in this subject this is an obvious entry point but they also have a role for a reader who is ready to go straight into the later chapters. For such readers, they will not take very long but they do set the scene for an entry into the most technical parts of the book.

Chapter 3 is intended as a comprehensive study of Runge–Kutta methods. A full theory of order and stability is presented and at least the early parts of this chapter are prerequisites for Chapter 5 and to a lesser extent for Chapter 4. The use of B-series, or the coefficients that appear in these series, is becoming more and more a standard tool for a full understanding of modern developments in this subject.

Chapter 4 is a full study of linear multistep methods. It is based on Dahlquist's classic work on consistency, stability and order and includes analysis of linear and nonlinear stability. In both Chapters 3 and 4 the use of order stars to resolve order and stability questions is complemented by the introduction of order arrows. It is probably a good idea to read through most of Chapter 4 before embarking on Chapter 5. This is not because general linear methods are intrinsically inaccessible, but because an appreciation of their overarching nature hinges on an appreciation of the special cases they include.

General linear methods, the subject of Chapter 5, treat well-known methods in a unified way, but it is hoped that they do more than this. There really seem to be new and useful methods buried amongst them which cannot be easily motivated in any other way. Thus, while this chapter needs to be put aside to be read as a culmination, it should not be put off too long. There is so much nice mathematics already associated with these methods, and the promise of more to come provides attraction enough. It is general linear methods, and the stability functions associated with them, that really put order arrows in their rightful place.

Internet support pages

For additional information and supporting material see

http://www.math.auckland.ac.nz/~butcher/ODE-book-2008

Reacknowledgements

I have many people to thank and to rethank in my efforts to produce an improved edition. My understanding of the stability and related properties of general linear methods has been sharpened by working with Adrian Hill and Laura Hewitt. Helmut Podhaisky has given me considerable help and advice, especially on aspects of general linear method implementation. My special thanks to Jane Lee for assistance with the final form of the manuscript. A number of people have made comments and provided corrections on the first edition or made constructive suggestions on early drafts of this new version. In addition to people acknowledged in some other way, I would like to mention the names of Ian Gladwell, Dawoomi Kim, Yoshio Komori, René Lamour, Dione O'Neale, Christian Perret, Higinio Ramos, Dave Simpson, Steve Stalos, Caren Tischendorf, Daniel Weiß, Frank Wrona and Jinsen Zhuang.

Preface to the third edition

A new edition

'Numerical methods for ordinary differential equations' is a mature and stable subject, and new ideas and techniques should not be expected too frequently. While this new edition is a consolidation of the early editions, it does attempt to take the subject further in some directions. Most notably, Section 56, dealing with Gsymplectic methods, records some major advances in what is now known about these methods. At the time of the appearance of the second edition the author, and people with whom he was collaborating, did not fully appreciate the disastrous role that parasitism could play in extended time integrations. This shortcoming has now been overcome. In Butcher, Habib, Hill and Norton (2014), parasitism has been analysed and largely dealt with as a source of numerical difficulty. A recent result (Butcher 2015) has gone some way towards explaining why G-symplectic methods work as well as they do. However, D'Ambrosio and Hairer (2014) show that the suppression of unstable behaviour caused by parasitism cannot be relied on forever. This third edition attempts to present this new work in a manner that underlines the potential of G-symplectic methods as practical integrators for Hamiltonian and other problems. Although known G-symplectic methods are generally restricted to order 4, a new result (Butcher, Imran and Podhaisky 2016) shows how order 6 methods can be constructed. Limited numerical testing confirms the order and conservation properties of this new method and one of these tests is quoted as Figure 568(ii).

Chapter 3 played a central role in the previous editions and does so again. The aspects of this subject, dealing with the composition group, will be difficult for some readers and this edition attempts to explain this in a fresh way. But the importance of algebraic analysis, or anything else of a theoretical nature, must, to a large extent, be in the applications. This theory is not merely a mathematical device; it leads to the construction of useful numerical methods and gives insight to the nature of these methods.

Attributions and personal names

Many results in numerical analysis began as conjectures and were eventually proved, but not always by the individuals who formulated the conjectures. For example, the Ehle (Ehle 1973) and Daniel Moore (Daniel and Moore 1970) conjectures were not

settled until the invention of order stars (Wanner, Hairer and Nørsett 1978). In this volume I have tried to use the convention of naming these results using the names of the first people to formulate them because I believe this avoids confusion about which result is being referred to.

Some authors refer to the commonly used tableaux of coefficients in a specific Runge–Kutta methods as 'Butcher tableaux'. In this third edition I sometimes follow this terminology but the single word 'tableau' is usually enough to make it clear what is being referred to in any particular case. There are many different products associated with rooted trees, the most important being used for the constructing of forests as the product of trees. However, in this book, extensive use is made of the product $t_1 \circ t_2$ formed by adjoining the two roots and defining the root of the product as the same vertex as the root of t_1 . This is sometimes referred to as the 'Butcher product' and this name will be used in this edition.

The late Germund Dahlquist once told me why he used the name 'A-stability' for this fundament linear stability definition. It was simply to follow the lead of David M. Young who used 'property A' as the name of a fundamental condition in an entirely different area of numerical analysis. When Germund introduced the nonlinear definition 'G-stability', he was referring to the matrix G which appears in the formulation of the concept. Shortly afterwards I needed a name for nonlinear stability in the case of Runge–Kutta methods, and I chose B because it next follows A. The fact that B is one of my initials is no more significant than the fact that G is one of the initials of Germund Dahlquist.

Algorithms

The purpose of including formal algorithms in this book is to illuminate the numerical processes they represent. Hence, they should not be interpreted as computer codes. Nevertheless, with little or no change, they can be used as scripts or functions in a variety of languages including MATLAB®, Octave and Scilab.

Notice concerning MATLAB® in this book

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.

Acknowledgements

I am grateful to Ernst Hairer for correspondence which led to an appreciation of the nature of parasitism. For the method **P**, introduced in Subsection 560, applied to the simple pendulum, it is observed that, for small amplitudes, very little goes wrong but,

for amplitudes greater than $\pi/2$, parasitism eventually produces disastrous effects. Ernst kindly sent me his own analysis of this phenomenon.

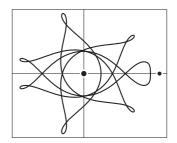
Many colleagues throughout the world have discussed interesting questions with me, and I am grateful for these stimulating interactions. There are too many to name individually but I do want to make a special mention of the colleagues and former students who have collaborated with me and learnt with me about G-symplectic and other types of general linear methods: Saghir Ahmad, Yousaf Habib, Adrian Hill, Gulshad Imran, Terrence Norton and Helmut Podhaisky.

Over the years, including the period when I worked on this new edition, I have received generous support from the Marsden Fund and this has given me opportunities I would not otherwise have had.

I have enjoyed the support of children, stepchildren and grandchildren in all aspects of my life. I express my special appreciation for the nest Jennifer has provided for me: a bower 'full of sweet dreams, and health, and quiet breathing'.



1



Differential and Difference Equations

10 Differential Equation Problems

100 Introduction to differential equations

As essential tools in scientific modelling, differential equations are familiar to every educated person. In this introductory discussion we do not attempt to restate what is already known, but rather to express commonly understood ideas in the style that will be used for the rest of this book.

The aim will always be to understand, as much as possible, what we expect to happen to a quantity that satisfies a differential equation. At the most obvious level, this means predicting the value this quantity will have at some future time. However, we are also interested in more general questions such as the adherence to possible conservation laws or perhaps stability of the long-term solution. Since we emphasize numerical methods, we often discuss problems with known solutions mainly to illustrate qualitative and numerical behaviour.

Even though we sometimes refer to 'time' as the independent variable, that is, as the variable on which the value of the 'solution' depends, there is no reason for insisting on this interpretation. However, we generally use x to denote the 'independent' or 'time' variable and y to denote the 'dependent variable'. Hence, differential equations will typically be written in the form

$$y'(x) = f(x, y(x)),$$
 (100a)

where

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x}.$$

Sometimes, for convenience, we omit the x in y(x).

The terminology used in (100a) is misleadingly simple, because y could be a vector-valued function. Thus, if we are working in \mathbb{R}^N , and x is permitted to take on any real value, then the domain and range of the function f which defines a differential equation and the solution to this equation are given by

$$f: \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N,$$
$$y: \mathbb{R} \to \mathbb{R}^N.$$

Since we might be interested in time values that lie only in some interval [a,b], we sometimes consider problems in which $y:[a,b]\to\mathbb{R}^N$, and $f:[a,b]\times\mathbb{R}^N\to\mathbb{R}^N$. When dealing with specific problems, it is often convenient to focus, not on the vector-valued functions f and g, but on individual components. Thus, instead of writing a differential equation system in the form of (100a), we can write coupled equations for the individual components:

$$y'_{1}(x) = f_{1}(x, y_{1}, y_{2}, \dots, y_{N}),$$

$$y'_{2}(x) = f_{2}(x, y_{1}, y_{2}, \dots, y_{N}),$$

$$\vdots \qquad \vdots$$

$$y'_{N}(x) = f_{N}(x, y_{1}, y_{2}, \dots, y_{N}).$$
(100b)

Autonomous differential equations

A differential equation for which f is a function not of x, but of y only, is said to be 'autonomous'. Some equations arising in physical modelling are more naturally expressed in one form or the other, but we emphasize that it is always possible to write a non-autonomous equation in an equivalent autonomous form. All we need to do to change the formulation is to introduce an additional component y_{N+1} into the y vector, and ensure that this can always maintain the same value as x, by associating it with the differential equation $y'_{N+1} = 1$. Thus, the modified system is

$$y'_{1}(x) = f_{1}(y_{N+1}, y_{1}, y_{2}, \dots, y_{N}),$$

$$y'_{2}(x) = f_{2}(y_{N+1}, y_{1}, y_{2}, \dots, y_{N}),$$

$$\vdots \qquad \vdots \qquad (100c)$$

$$y'_{N}(x) = f_{N}(y_{N+1}, y_{1}, y_{2}, \dots, y_{N}),$$

$$y'_{N+1}(x) = 1.$$

A system of differential equations alone does not generally define a unique solution, and it is necessary to add to the formulation of the problem a number of additional conditions. These are either 'boundary conditions', if further information is given at two or more values of x, or 'initial conditions', if all components of y are specified at a single value of x.

Initial value problems

If the value of $y(x_0) = y_0$ is given, then the pair of equations

$$y'(x) = f(x, y(x)), y(x_0) = y_0,$$

is known as an 'initial value problem'. Our main interest in this book is with exactly this problem, where the aim is to obtain approximate values of y(x) for specific values of x, usually with $x > x_0$, corresponding to the prediction of the future states of a differential equation system.

Note that for an N-dimensional system, the individual components of an initial value vector need to be given specific values. Thus, we might write

$$y_0 = [\eta_1 \quad \eta_2 \quad \cdots \quad \eta_N]^\mathsf{T}.$$

When the problem is formally converted to autonomous form (100c), the value of η_{N+1} must be identical to x_0 , otherwise the requirement that $y_{N+1}(x)$ should always equal x would not be satisfied.

For many naturally occurring phenomena, the most appropriate form in which to express a differential equation is as a high order system. For example, an equation might be of the form

$$y^{(n)} = \phi(x, y, y', y'', \dots, y^{(n-1)}),$$

with initial values given for $y(x_0), y'(x_0), y''(x_0), \dots, y^{(n-1)}(x_0)$. Especially important in the modelling of the motion of physical systems subject to forces are equation systems of the form

$$y_1''(x) = f_1(y_1, y_2, \dots, y_N),$$

$$y_2''(x) = f_2(y_1, y_2, \dots, y_N),$$

$$\vdots \qquad \vdots$$

$$y_N''(x) = f_N(y_1, y_2, \dots, y_N),$$
(100d)

where the equations, though second order, do have the advantages of being autonomous and without y'_1, y'_2, \ldots, y'_N occurring amongst the arguments of f_1, f_2, \ldots, f_N .

To write (100d) in what will become our standard first order system form, we can introduce additional components $y_{N+1}, y_{N+2}, \dots, y_{2N}$. The differential equation system (100d) can now be written as the first order system

$$y'_{1}(x) = y_{N+1},$$

$$y'_{2}(x) = y_{N+2},$$

$$\vdots \qquad \vdots$$

$$y'_{N}(x) = y_{2N},$$

$$y'_{N+1}(x) = f_{1}(y_{1}, y_{2}, \dots, y_{N}),$$

$$y'_{N+2}(x) = f_{2}(y_{1}, y_{2}, \dots, y_{N}),$$

$$\vdots \qquad \vdots$$

$$y'_{2N}(x) = f_{N}(y_{1}, y_{2}, \dots, y_{N}).$$

101 The Kepler problem

The problems discussed in this section are selected from the enormous range of possible scientific applications. The first example problem describes the motion of a single planet about a heavy sun. By this we mean that, although the sun exerts a gravitational attraction on the planet, we regard the corresponding attraction of the planet on the sun as negligible, and that the sun will be treated as being stationary. This approximation to the physical system can be interpreted in another way: even though both bodies are in motion about their centre of mass, the motion of the planet relative to the sun can be modelled using the simplification we have described. We also make a further assumption, that the motion of the planet is confined to a plane.

Let $y_1(x)$ and $y_2(x)$ denote rectangular coordinates centred at the sun, specifying at time x the position of the planet. Also let $y_3(x)$ and $y_4(x)$ denote the components of velocity in the y_1 and y_2 directions, respectively. If M denotes the mass of the sun, γ the gravitational constant and m the mass of the planet, then the attractive force on the planet will have magnitude

$$\frac{\gamma Mm}{y_1^2 + y_2^2}.$$

Resolving this force in the coordinate directions, we find that the components of acceleration of the planet, due to this attraction, are $-\gamma My_1(y_1^2+y_2^2)^{-3/2}$ and $-\gamma My_2(y_1^2+y_2^2)^{-3/2}$, where the negative sign denotes the inward direction of the acceleration.

We can now write the equations of motion:

$$\frac{dy_1}{dx} = y_3,
\frac{dy_2}{dx} = y_4,
\frac{dy_3}{dx} = -\frac{\gamma M y_1}{(y_1^2 + y_2^2)^{3/2}},
\frac{dy_4}{dx} = -\frac{\gamma M y_2}{(y_1^2 + y_2^2)^{3/2}}.$$

By adjusting the scales of the variables, the factor γM can be removed from the formulation, and we arrive at the equations

$$\frac{\mathrm{d}y_1}{\mathrm{d}x} = y_3,\tag{101a}$$

$$\frac{\mathrm{d}y_2}{\mathrm{d}x} = y_4,\tag{101b}$$

$$\frac{\mathrm{d}y_3}{\mathrm{d}x} = -\frac{y_1}{(y_1^2 + y_2^2)^{3/2}},\tag{101c}$$

$$\frac{\mathrm{d}y_4}{\mathrm{d}x} = -\frac{y_2}{(y_1^2 + y_2^2)^{3/2}}.$$
 (101d)