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Preface

The International Conference on Wearable Sensors and Robots (ICWSR 2015) held
during October 16–18, 2015 in Hangzhou, China. ICWSR 2015 was sponsored by
Zhejiang University, and co-sponsored by the National Natural Science Fund of
China (NSFC), and International Organisation for Standardisation’s working group
on personal care robot safety (ISO/TC184/SC2/WG7).

With rapid progress in mechatronics and robotics, wearable sensing and robotic
technologies have been widely studied for various applications including
exoskeleton robots for rehabilitation, exoskeleton robots for supporting the daily
lives of elderly people, wearable medical devices for monitoring vital signs, etc.
However, some key technology challenges need to be addressed for achieving
better research results, more effective application demonstrators and realistic
commercialization. The conference brought together academics, researchers, engi-
neers, and students worldwide to focus on and discuss the state of the art of the
technology and to present the latest results on the various aspects of wearable
sensors and robots.

The conference received 61 papers from experts and researchers in China and all
over the world. 46 papers were reviewed and accepted, including 20 invited papers
and 26 general papers. Meanwhile, the conference received 11 keynote speech
abstracts from international professors and researchers. The proceedings consist of
detailed papers on wearable sensors, design of sensors and actuators, advanced
control systems, wearable robots, visual recognition applications, clinical applica-
tions, rehabilitation robotics, biological signal based robotics, intelligent manu-
facturing and industry robots, and research progress from keynote speakers. In
addition, readers will obtain the latest information on medical device regulation and
international standardization, wearable robots for training and support of human
gait, design of exoskeleton for elderly persons, ergonomics design considerations
driving innovation in assistive robotics, and analysis of human–machine
interaction.
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It is our desire that the proceedings of the International Conference on Wearable
Sensors and Robots (ICWSR 2015) will provide an opportunity to share the per-
spectives of academic researchers and practical engineers on wearable sensors and
robot research and development.

Hangzhou, China Prof. Canjun Yang
Gävle, Sweden Prof. G.S. Virk
October 2015 Program Chair, General Chair of ICWSR 2015
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Part I
Wearable Sensors



The Design of E Glove Hand Function
Evaluation Device Based on Fusion
of Vision and Touch

Jing Guo, Cui-lian Zhao, Yu Li, Lin-hui Luo and Kun-feng Zhang

Abstract This paper presents an E glove hand function evaluation device based on
visual and haptic fusion, and uses the Principal Component Analysis (PCA)
algorithm to establish hand sensor distribution model. The PCA analysis chart
shows that three sensors distributed on the thumb, forefinger, and middle finger
could effectively estimate the grasp motions. Moreover, threshold values for all
category models can be selected by the way of adaptive pressure threshold inte-
grating visual aid. At last, five subjects dressed E glove judging the grasp motions
under different combinations of sensors. The results show that: the classification
accuracy rate depended on the pressure and visual sensor fusion method reached
94 %; the identification rate of the adaptive pressure threshold method to judge the
grasp motions can be increased 1.6–1.7 times than only using single camera vision
sensor or pressure sensor. Next step, the E glove hand function evaluation device
will be further improved such as function of active control to the collected data will
be added.

Keywords E glove � PCA � Pressure sensing � Visual and touch fusion

1 Introduction

Hands are primarily responsible for the sophisticated activities and work in motor
function, its degree of flexibility and movement accuracy are closely related to
human activities of daily living, quality of life, and social activities. In medical
rehabilitation, stroke patient hand is with motor dysfunction, and Parkinson’s dis-
ease patients with hand tremors and slow movement will lead to the hand motor

J. Guo (&) � C. Zhao � Y. Li � L. Luo � K. Zhang
Shanghai Key Laboratory of Intelligent Manufacturing and Robotics,
School of Mechatronic Engineering and Automation, Shanghai University,
Shanghai 200072, China
e-mail: andy_guojing421@163.com
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dysfunction. i; Hand dysfunction becomes a difficult problem in rehabilitation
training and medical evaluation at present (Gabriele et al. 2009).

So far, there is no unified standard for motor dysfunction in international
evaluation; each method owns its emphasis, and there have not yet been a more
perfect and accurate evaluation method (Meng et al. 2013; Zampieri et al. 2011).
Action Research Arm Test (ARAT) is one of the commonly used test evaluation
methods of hand movement function (Lyle et al. 1981). Compared with other
commonly used evaluation methods, ARAT pays more attention to comprehensive
hand function in daily life, and classify and quantify the type and size of grasping
object. In recent years, domestic and foreign scholars have verified the reliability
and validity of ARAT by using clinical case (Weng et al. 2007; Yozbatiran et al.
2008). In view of the complex hand diverse sports demand, a lot of researches have
been committed to design better wearable devices and data processing methods at
home and abroad. Nathan et al. (2009) designed a wearable data glove applied in
auxiliary rehabilitation training in patients; angle sensors associated with the hand
acquire grasp-aperture prediction model to calculate the distance between thumb
and forefinger point, then the hand grasping state was defined with the distance;
although the data glove device has high accuracy and stability, the data glove
device must be equipped with the Activities of Daily Living Exercise Robot
(ADLER) system which is huge and thus with great limitations. Jakel et al. (2010a,
b, 2012) and Palm et al. (2010, 2014) and Skoglund et al. (2010) designed a
wearable data glove applied in controlling mechanical arm, which utilizes pressure
data of the pressure sensors, position, velocity, and acceleration data of marks on
the glove to define the hand grasping state, and then control manipulator grasping;
while the data glove device can reach a high level in stability and accuracy and
real-time performance, 5–6 sensors and 6–8 sets of marks or even more on glove
device make information processing complex and data glove with mechanical
auxiliary device reduces the flexibility and practicability; besides, sole grasp
pressure threshold cannot adapt to grasp kinds of project. Liang et al. (2013) and
Han et al. (2012) designed an electronic nose detection device, by acquiring rea-
sonable information through reasonably designing the number and distribution of
sensors to reduce the information redundancy; but there are many sensors, and it
need to reduce the number of sensors. E glove in this paper is a glove mounted with
three sensors and cloth glove without mechanism. Differences from traditional data
glove used to acquire sensing information, E glove can implement active control
function through dealing with the data collected in the future.

Wearable data glove device applied in hand function evaluation possesses
complex structure and low flexibility and practicability, aiming at motivating
patients’ active movement function, wearable pressure sensing data glove device
based on fusion of vision data and touch data is developed in this paper. Pressure
data from sensors and marks data from the glove are acquired for evaluating the
hand grasping state. Combined with the actual grasp function, sensors, and marks
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on this wearable pressure sensing data glove device can accomplish tracking and
evaluation at the cost of lesser sensors and marks; moreover, visual feedback
technology is applied to distinguish pressure threshold of various grasping models,
hence it is adaptive to grasp different projects; finally, the tracking accuracy of the
different sensors combination are compared.

2 Glove Pressure Sensors Distribution Design Based
on Principal Component Analysis

2.1 ARAT Grasping Motion Hand Partition Experiment

The distribution of the pressure sensors is associated with the contact region
between hand and object model. In this paper, grasping motion is based on the
theory of ARAT. ARAT consists of four subtests: grasp, grip, pinch, and gross
motor and grasping objects of ARAT all are geometric objects with standard size.
Grasping motion is one of the basic movements of hand, according to different
functions grasps are divided into power grasps and precision grasps (Cutkosky et al.
1989), the two parts include all dimensions of grasping objects involved in ARAT
and their corresponding grasping movements in Fig. 1.

The hand area can be divided into 0–18 areas in Fig. 2.
According to grasping motion similarity, grasp motion is divided into five

classifications numbered as No. 1–No. 5. Beforehand, ARAT models are painted
with blue pigment and five subjects without any illness or injury are selected and
familiar with the experiment process. Let each participant grasps color model as
ARAT method introduced, recording contact area number of hand after each object
grasped. Table 1 shows one participant’s full ARAT test contact area. Count the
contact frequency for each numbered 0–18 contact area, result shows in Fig. 3.

As seen in Fig. 3, the contact area corresponding to former five highest contact
frequency descending order is 12, 0, 3, 6, 9.

Fig. 1 Grasp classification
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2.2 Sensor Layout Design Based on Principal Component
Analysis

A. Principal Component Analysis

Principal Component Analysis (PCA) is a kind of data compression and feature
information extraction technology and it converts a set of possibly correlated
variables into a set of values of linearly uncorrelated variables thus reduced data

Fig. 2 Hand partition (Meng et al. 2010)

Table 1 Contact area

Grasp number No. 1 No. 2 No. 3 No. 4 No. 5

Before grasp

After grasp

Fig. 3 Contact frequency and contact area
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redundancy; so, the data is processed in a low-dimensional feature space and
meanwhile keep most of the original data information (Li et al. 2011).

Assume a set of p data which composes a vector X: X1, X2,…, XP, for each Xj

(i = 1, 2,…, p) corresponding to a coefficient a variable. Reassembled a new set of
unrelated number denoted as composite indicator Fm replaces original indicators.
The principal component model is expression in Eq. (1)

F1 ¼ a11X1 þ a12X2 þ . . .þ a1pXp

F2 ¼ a21X1 þ a22X2 þ . . .þ a2pXp

. . .. . .
Fm ¼ am1X1 þ am2X2 þ . . .þ ampXp

8
>><

>>:

ð1Þ

(1) is denoted as F = AX
Where Fi is the ith principal component, i = 1, 2, ^, m; Coefficient matrix Aij row

vectors as unit eigenvector corresponding m eigenvalues k1, k2,…, km.

B. Determine the number of sensors

It is known from experiment of Sect. 2.1 part that the contact area number with
descending contact frequency is 12, 0, 3, 6, 9. Put the five-dimension pressure data
in formula (1), PCA is used to reduce data dimension. Figure 4 illustrates five
sensor data of grasping motion. Calculate five eigenvalues from five sensors data
according to PCA algorithm model. The results are shown in Table 2.

In Table 2, principal components numbered 1–5 are the thumb, index finger,
middle finger, ring finger, and little finger in turn. Table 2 demonstrates that the first
three principal component’s total contribution rates are 99.775 %, almost repre-
senting all the variable information. In Fig. 5, when the number of factor exceeds 3,
the decrease extent of eigenvalue is very little, thus it is enough to reflect the
original variable information, which implies that close last two sensors does not
affect the recognition effect of grasping judgment, so the number of sensors is three,
distributing in the thumb, forefinger, and middle finger fingertip position.

Fig. 4 Grasping action pressure distribution
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3 Adaptive Pressure Threshold Acquirement
Method Based on Visual Feedback

3.1 Object Detection Based on Camshift
Feedback Codebook

In this paper, moving target detection algorithm-based Camshift feedback codebook
model is used in visual tracking. Camshift algorithm transforms the input image
into a probability distribution by target color histogram, and then calculates the
moments of the target area in the transformed probability distribution. In order to
achieve continuous tracking, the continuous iterative method is utilized to calculate
the target rectangular window position and size, and regards the expanded rectangle
window as an image processing area for the next frame. Camshift target tracking
steps are as follows:

1. Initialize track objects rectangular area;
2. Extract H component images from HSV color space of each frame, and calculate

the gravity position of the window;
3. Move the center of the rectangular window to the gravity position and update

the rectangular window;
4. Return the rectangular window position and size of targets.

Table 2 The contribution of each component of principal component analysis

Principal component number Eigenvalue Contribution rate (%)

1 3.9041 77.7523

2 1.0211 20.3368

3 0.0847 1.6868

4 0.0106 0.2111

5 0.0007 0.0139

Fig. 5 Eigenvalue factor
graph
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If the moving distance is greater than the convergent minimum moving distance
or the number of iterations is less than the maximum number of iterations, repeat
the third and fourth step until it astringes.

Camshift algorithm is mainly for tracking and recognition by identifying the
color of HSV. HSV color model is a model for the user perception, focusing on
color representation, including color, depth, light and shade, which can be trans-
formed from the RGB values. In the RGB values table, the best colors can be
identified are red, green, and blue. So, ARAT models are blue and marks on the
wearable pressure sensor data glove are red and green. To enhance the tracking
performance, marks are designed as toroidal, and red and green marks are dis-
tributed at the thumb and index fingertips.

The rectangle upper-left vertex coordinates width wa1 and height ha1 can be
obtained by Camshift algorithm. The minimum of wa1 and ha1 labeled L is taken as
the model of classification recognition. The computational formula is

L ¼ minðwa1; ha1Þ ð2Þ

3.2 Adaptive Pressure Threshold Acquirement

The mass of ARAT models and grasp way will affect the contact pressure threshold,
so the models will be divided into three categories on the basis of model mass. Test
the contact pressure threshold value for each type ARAT model. The categories are
shown in Table 3 and the pressure value test is shown in Fig. 6.

The model mass has a direct relationship with the grasp pressure. The greater the
mass of the model is, the larger the grasp pressure threshold. The type I grasp
pressure threshold test experiments are shown in Fig. 6. A weighted fusion algo-
rithm (Song et al. 2013) is used to normalize three fingers the pressure values. The
results show that the type I contact pressure threshold is f1 = 0.8. According to this
algorithm, the type II contact pressure threshold is f2 = 0.5, and the type III contact
pressure threshold is f3 = 0.1.

Table 3 ARAT object
classification

TypeID Shape 3D size (mm)

Type I Cube 97 � 97 � 97

Type II Cube 74 � 74 � 74

Sphere 70 (diameter)

Type III Cube 50 � 50 � 50

Cube 25 � 25 � 25

Cuboid 100 � 25 � 10

Cylinder 200 (high) � 20 (diameter)

Cylinder 200 (high) � 10 (diameter)

Disk 5 (high) � 35 (diameter)

Sphere 10 (diameter)
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The three-dimensional size of the models is directly related to the tracking
rectangle. Before grasp, the model is in stationary state. According to the model
rectangle achieved by target detection and the formula (2), the model belongs to
which category it can be estimated. From Table 3, the rectangle threshold of the
type I model is L = 97 ± 2, and the type II model is L = 70 ± 2. The rest of L is
for the type III model. In practical application, the unit should be changed into
pixel, and the value L is related to the camera installation height. Adaptive
threshold for pressure calculation are as follows:

I. Camshift(wa1, ha1);
CvRect(0, 0, image.cols, image.rows)
wa1 = image.cols
ha1 = image.rows
II. L = min(wa1, ha1)
III. if(L � L1) then f = f1

if(L � L2) then f = f2

f = f3

4 Design and Testing of Wearable Sensor Data Glove

4.1 Design of Wearable Sensor Data Glove

Wearable pressure sensor data glove is shown in Fig. 7. It includes the data
acquisition part and control module encapsulated within the back side of the glove
and marks encapsulated fingertip position of external part of glove and pressure

Fig. 6 Grasp pressure threshold test
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sensors encapsulated in the palm side of inside the glove. Pressure sensor locates in
the point where hand contacts with grasping object when hand is grasping an object.

4.2 The Analysis of the Combination of Different Sensors
for Grasp Accuracy

In order to analyze the influence of the combination of different sensors for grasp
accuracy, create three devices such as: single camera device, single sensors device,
and combination of single camera device and single sensors device. Five subjects
(No. 1–No. 5) use the above three devices to grasp the same objects. The developed
software will record the visual data and the pressure data separately based on the
above devices.

As shown in Fig. 8 are the grasp experiments on the condition of vision and
touch fusion. Before grasp, minimum length of object rectangular is obtained
through the camera, and judging object gripping pressure threshold according to
rectangular threshold of object. Before the subject’s hand touches object, grasp
pressure is less than the grasping threshold, grasp count is 0. After grasp, hand
touches object and when grasp pressure is more than the grasping threshold, at

Fig. 7 Layout chart of wearable pressure sensing data glove (a), positive of wearable pressure
sensing data glove (b), and back of wearable pressure sensing data glove (c)

Fig. 8 Judgment number of grasp, before grasp (a), after grasp (b)
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present grasp successful count is 1. Grasp successful counts of 5 subjects on the
condition of three situations are shown in Table 4.

From the experimental result, we can know that occlusion issue is very serious
on the condition of single camera device, so the success rate is lowest at 55 %; it
cannot automatically adjust grasp pressure threshold without vision data when
using only one grasp pressure threshold to judge all objects, so success rate is 57 %;
Finally, pressure threshold cooperate with vision data to judge grasp, it can auto-
matically adjust grasp, with a high success rate of 94 %.

5 Conclusion

An E glove hand function evaluation device based on vision and touch integration
was presented in this paper, and hand sensor distribution model was established
through the principal component analysis algorithm. The PCA analysis chart shows
that three sensors distributed on the thumb, forefinger, and middle finger can
effectively estimate the grasp motion. Moreover, it can accurately select the grasp
threshold values for each category model by the adaptive pressure threshold
method. Finally, five subjects dressed E glove sensors judge the grasp motion under
the condition of homogeneous and heterogeneous sensors, and the highest accuracy
rate of classification depended on heterogeneous sensors fusion reaches 94 %. The
results show that: the identification rate of using the adaptive pressure threshold as
well as vision fusion method of this simple device to judge the grasp process is
better. Since the E glove hand function evaluation device is still in the laboratory
stage, there are many issues worthy of further study.
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An Emotion Recognition System Based
on Physiological Signals Obtained
by Wearable Sensors

Cheng He, Yun-jin Yao and Xue-song Ye

Abstract Automatic emotion recognition is a major topic in the area of human–
robot interaction. This paper presents an emotion recognition system based on
physiological signals. Emotion induction experiments which induced joy, sadness,
anger, and pleasure were conducted on 11 subjects. The subjects’ electrocardiogram
(ECG) and respiration (RSP) signals were recorded simultaneously by a physio-
logical monitoring device based on wearable sensors. Compared to the
non-wearable physiological monitoring devices often used in other emotion
recognition systems, the wearable physiological monitoring device does not restrict
the subjects’ movement. From the acquired physiological signals, one hundred and
forty-five signal features were extracted. A feature selection method based on ge-
netic algorithm was developed to minimize errors resulting from useless signal
features as well as reduce computation complexity. To recognize emotions from the
selected physiological signal features, a support vector machine (SVM) method was
applied, which achieved a recognition accuracy of 81.82, 63.64, 54.55, and
30.00 % for joy, sadness, anger, and pleasure, respectively. The results showed that
it is feasible to recognize emotions from physiological signals.

Keywords Emotion recognition � Physiological signals � Wearable sensors �
Genetic algorithm � Support vector machine

1 Introduction

Automatic emotion recognition is a major topic in the area of human–robot inter-
action. People express emotions through facial expressions, tone of voice, body
postures, and gestures which are accompanied with physiological changes. Facial
expressions, tone of voice, body postures, and gestures are controlled by the
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somatic nervous system while physiological signals, such as electroencephalogram
(EEG), heart rate (HR), electrocardiogram (ECG), respiration (RSP), blood pressure
(BP), electromyogram (EMG), skin conductance (SC), blood volume pulse (BVP),
and skin temperature (ST) are mainly controlled by the autonomous nervous sys-
tem. That means facial expressions, tone of voice, body postures, and gestures can
be suppressed or masked intentionally while physiological signals can hardly be
masked. Using physiological signals to recognize emotions is also helpful to those
people who suffer from physical or mental illness thus exhibit problems with facial
expressions, tone of voice, body postures or gestures.

Researches have shown a strong correlation between emotions and physiological
signals. However, whether it is reliable to recognize emotions from physiological
signals is still problematic. Numerous researches were investigating the problem
(Picard et al. 2001; Lisetti and Nasoz 2004; Kim and André 2008; Rattanyu et al.
2010; Verma and Tiwary 2014).

This paper presents an emotion recognition system based on physiological
signals obtained by wearable sensors. Some common emotion models and emotion
induction methods are described briefly. The data collection procedure during
which a physiological monitoring device based on wearable sensors was used is
introduced. The strategy for feature extraction from the acquired physiological
signals and the feature selection method based on genetic algorithm are illustrated.
The support vector machine (SVM) method which was used to classify the
physiological features into four kinds of emotions is demonstrated. The experiment
implementation procedure is presented as well. Finally, the results of the experi-
ments are discussed, which contribute to a conclusion.

2 Method

2.1 Emotion

In discrete emotion theory, all humans are thought to have an innate set of basic
emotions that are cross-culturally recognizable (Ekman and Friesen 1971). In
dimensional emotion theory, however, emotions are defined according to multiple
dimensions (Schlosberg 1954). Although it is problematic which emotions are basic
in discrete emotion theory (Gendron and Barrett 2009) and in which dimensions
emotions should be defined in dimensional theory (Rubin and Talarico 2009), it’s
no doubt that joy, sadness, anger, and pleasure are four different common emotions
in humans. Those four emotions were chosen as the classification categories in our
study.

To obtain the physiological signals associated with the specific emotions, an
effective emotion induction procedure is of significance. Numerous emotion or
mood induction procedures (MIPs) have been reported including presenting sub-
jects with emotional stimuli (pictures, film clips, etc.), and letting subjects play
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games (van’t Wout et al. 2010) or interact with human confederate (Kučera and
Haviger 2012). Several picture, audio, or video databases for emotion induction
have also been created (Biehl et al. 1997; Bai et al. 2005; Bradley and Lang 2008).

In our study, we did not use the emotion induction materials from those data-
bases above because those materials did not induce the expected emotions effec-
tively in our experiments. Instead, we selected several contagious video clips which
performed better in our emotion induction experiments.

2.2 Physiological Signals Processing

2.2.1 Data Collection

Several kinds of physiological signals including ECG and RSP signals have been
revealed to be correlated with emotions. To collect ECG and RSP signals, a
physiological monitoring device based on wearable sensors which monitors mul-
tiple physiological signals simultaneously in real time (Zhou et al. 2015) was used.
The ECG signals were sampled at 250 Hz and the RSP signals were sampled at
10 Hz. The schematic representation of a normal ECG waveform is shown in Fig. 1
and the ECG and RSP waveforms obtained by the physiological monitoring device
are shown in Figs. 2 and 3, respectively.
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lta

ge
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T WaveP Wave QRS 
Complex

Fig. 1 Schematic representation of a normal electrocardiogram (ECG) waveform. An ECG
waveform consists of a P wave, a QRS complex and a T wave. The QRS complex usually has
much larger amplitude than the P wave and the T wave. P is the peak of a P wave. Q is the start of
a QRS complex. R is the peak of a QRS complex. S is the end of a QRS complex. T is the peak of
a T wave
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2.2.2 Feature Extraction

After the P-waves, the QRS complexes, and the T waves of the ECG signals were
determined, a total of 78 ECG signal features were extracted as follows:

1. The mean value, median value, standard variance, minimum value, maximum
value, and value range of R–R, P–P, Q–Q, S–S, T–T, P–Q, Q–S, and S–T time
intervals;

2. The mean value, median value, standard variance, minimum value, maximum
value, and value range of the amplitudes of P waves, QRS complexes, and T
waves divided by the mean value of the corresponding ECG waveforms;

3. The mean value, median value, standard variance, minimum value, maximum
value, and value range of HRD (the histogram distribution of R-R time
intervals);

4. HR50 (the number of pairs of adjacent R-R time intervals differing by more than
50 ms divided by the total number of R-R time intervals);

5. HRDV (sum of HRD divided by the maximum value of HRD)
6. Each spectrum power of ECG signals in four frequency band (0–0.2 Hz, 0.2–

0.4 Hz, 0.4–0.6 Hz, and 0.6–0.8 Hz).

Time
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ECG-aVR
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Fig. 2 Electrocardiogram (ECG) signals obtained by the physiological monitoring device. ECG-I
is the voltage between the left arm electrode and right arm electrode. ECG-III is the voltage
between the left leg electrode and the right leg electrode. ECG-aVR is the voltage between the
right arm electrode and the combination of the left arm electrode and the left leg electrode
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Fig. 3 Respiration
(RSP) signals obtained by the
physiological monitoring
device
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Before RSP features were extracted, a low-pass filter was applied to the raw RSP
signals. After that, a total of 67 RSP signal features were extracted as follows:

1. The mean value, median value, standard variance, minimum value, maximum
value, value range, and peak ratio (the number of peaks divided by the length of
data) of the following signals:

(a) RSP waves, RSP peak–peak intervals, and RSP peak amplitudes;
(b) The first difference of RSP waves, RSP peak-peak intervals, and RSP peak

amplitudes
(c) The second difference of RSP waves, RSP peak-peak intervals, and RSP

peak amplitudes

2. Each spectrum power of RSP signals in four frequency band (0–0.1 Hz, 0.1–
0.2 Hz, 0.3–0.3 Hz, and 0.3–0.4 Hz).

Considering the seventy-eight ECG signal features and the sixty-seven RSP
signal features, a total of one hundred and forty-five features were extracted.

2.2.3 Feature Selection

More features usually provide more information about the original signals, but also
lead to an increase in computational complexity. Besides, the random noise in those
signal features which make little contribution to identify different emotions might
leads to overfitting in supervised machine learning such as SVM. Therefore, an
effective feature selection method to select only a key subset of measured features
to create a classification model is needed. Emotion recognition can be looked as a
pattern recognition issue. For a pattern recognition issue, the selection criterion
usually involves the minimization of a specific measure of predictive error for
models which fit to different subsets. A common method is sequential feature
selection (SFS) (Cover and Van Campenhout 1977), which adds features from a
candidate subset while evaluating the criterion. Another novel method is using
genetic algorithm (Deb et al. 2002) to select features, which will be described here.

The genetic algorithm (GA) is a method based on natural selection which drives
biological evolution. The GA repeatedly modifies a population of individual
solutions. At each step, the GA selects individuals at random from the current
population to be parents and uses them to produce the children for the next gen-
eration. There are some rules like crossover at each step to create the next gener-
ation from the current population. At each step, the individual selection is random,
but the survival opportunity of each individual is not equal. The individuals who
have higher survival opportunity are more likely to be selected and keep evolving
till the optimization goal is reached. In our study, the survival opportunity was
evaluated by the emotion recognition error.

Through the GA algorithm described above, fourteen features were selected
from the original one hundred and forty-five features.
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2.3 Emotion Recognition

To recognize emotions from the key features selected by GA, a modified support
vector machine (SVM) method was used. An SVM classifies data by finding the
optimal hyperplane that separates all data points of one class from those of another
class (Cortes and Vapnik 1995). The optimal hyperplane for an SVM means the one
with the maximum margin between the two classes. A margin is the maximal width
of two slabs parallel to the hyperplane that have no interior data points. A larger
margin assures the hyperplane is more likely to classify new data correctly. The
data points that are on the boundary of the slab are called support vectors. The
complexity of the classifier is characterized by the number of support vectors rather
than the dimensionality of the transformed hyperspace. An example of SVM is
shown in Fig. 4.

Sometimes the data might not allow for a separating hyperplane. As shown in
Fig. 5, the outliers caused by error such as artifact during data collection make it
difficult to find a proper separating hyperplane. Even if a separating hyperplane is
found, the margin is small. In that case, a soft margin method is proposed which
chooses a hyperplane that splits the examples as cleanly as possible while still
maximizing the distance to the nearest cleanly split (Cortes and Vapnik 1995).

Some binary classification problems do not have an effective linear separating
hyperplane, so-called nonlinear classification, as shown in Fig. 6a. In this case, the
initial hyperspace S is transformed to a higher dimensional hyperspace S’, as shown
in Fig. 6b. In the higher dimensional hyperspace S’, there is a linear hyperplane to
successfully separate the two classes. Usually, the analysis formula of the

x1

x2
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mal linear hyperplane
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Margin

Class 1
Class 2
Support vector
Support vector

Fig. 4 Linear Support vector
machine. The optimal linear
hyperplane separates all
samples into two classes with
a maximum margin

20 C. He et al.


