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Preface to the Fourth Edition

It was said of the great statistician R. A. Fisher that whenever
he introduced a result with the words “it can easily be shown
that . . . ” one could be sure that two or three hours of hard
work would be in store for anyone wishing to verify it. As a
student I thought that many authors used this formula as a
way to avoid explaining things that they could not explain. I
hasten to add that in Fisher’s case I am sure there was no lack
of ability, though there may have been a lack of appreciation
of the difficulties that his readers had. When I was writing
the earliest version of this book, therefore, I resolved never to
claim that anything was easy unless I was quite sure that it
was. In the 35 years that have passed since then I believe I
have kept this resolution, though I have often had to revise
my views about what was simple enough to be left unex-
plained. Above all I have striven for clarity, being guided by
a slogan from Keith Laidler: “Correctness, cogency, clarity: K. J. Laidler (1998) To Light such

a Candle, Oxford University
Press, Oxford

these three, but the greatest of these is clarity”. Errors can be
corrected, weak arguments can be strengthened, but lack of
clarity leaves a fog that may take years to dispel.

The emphasis throughout is on understanding enzyme ki-
netics, not on covering every aspect of the subject in an ency-
clopedic style. So I have preferred to describe the principles
that will allow readers to proceed as far as they want in any
direction. In the words of Kuan-tzu (as quoted by Parzen): “If E. Parzen (1980) “Comment”

American Statistician 34, 78–79you give a man a fish, he will have a single meal; if you teach
him how to fish, he will eat all his life”.

I make no apology for continuing to illustrate concepts
with abundant graphs, including the straight-line graphs that
biochemists have used for three-quarters of a century, al-
though it is sometimes argued that the appearance of com-

Fundamentals of Enzyme Kinetics, Fourth Edition. A. Cornish-Bowden.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA.
Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.



xvi Preface

puters on every desk has made graphical methods obsolete.
Professional statisticians who really know and understand
data analysis think differently; for example, Chambers and
co-workers wrote

There is no statistical tool that is as powerful as
a well-chosen graph. Our eye–brain system isJ. M. Chambers, W. S. Cleve-

land, B. Klein and P. A. Tukey
(1983) Graphical Methods for Data
Analysis, Wadsworth, Belmont,
California

the most sophisticated information processor ever
developed, and through graphical displays we can
put this system to good use to obtain deep insight
into the structure of data.

There is little to “see” in a biochemical experiment and al-
most all our information comes at second hand from instru-
ments, so it is essential to convert it into something visible.
At the same time judicious use of the computer is equally
necessary—not just graphs, not just computation, but both,
in partnership—and in this spirit I have not only retained but
have expanded the final chapter of the book, which has been
a well received feature of the earlier editions.

Enzyme kinetics is not a topic that changes greatly from
year to year, so why is a new edition needed? The text has
of course been updated, with greater recognition of the im-
portance of enzyme kinetics for biotechnology and drug de-
velopment, and many recent literature references have been
added. The major and most obvious change, however, is in
the manner of presenting the information. There are more
than three times as many figures as there were in the third
edition, and the need for page-flipping has been virtually
eliminated: not only figures and tables, but also references
and notes, all appear as close as possible to the context in
which they are mentioned; any that cannot appear on the
same page opening where they are mentioned are never more
than a page away. Here it is a pleasure to acknowledge the
willingness of Wiley–VCH to allow the book to be laid out
exactly as I wanted.

The original ancestor of this book was called Principles of
Enzyme Kinetics, and appeared in 1976. Later I decided that
the treatment needed to be made more elementary, and in
1979 the first edition of Fundamentals of Enzyme Kinetics had
a new title to reflect the different emphasis. Over the years,
however, much of the text that was dropped in 1979 has been
put back, together with a significant amount of new material
that is not particularly elementary. A case could be made,
however, for reinstating the original title, or just calling it
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Enzyme Kinetics, but I have discarded this course in order not
to give the impression that it is more different than it is from
the third edition.

In this edition I have added numerous brief biographies of
some of the scientists who created enzymology. Why? Will it
help students to be better biochemists if they know that Maud
Menten was a woman, that James Sumner was left-handed
but had lost the use of his left hand in a childhood accident,
or that Emil Fischer’s father considered him too stupid to
be a businessman? Obviously not, but it will help them to
understand that enzymology did not spring from nowhere,
but was developed by real people with the same difficulties
and hardships that people face today.

Acknowledgments
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Brocklehurst, Marilú Cárdenas, Gilles Curien, Roy Daniel,
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Jamin, Carsten Kettner, Ana Ponces, Valdur Saks, Marius
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Chapter 1

Basic Principles of Chemical
Kinetics

1.1 Symbols, terminology and abbreviations

This book follows as far as possible the recommendations
of the International Union of Biochemistry and Molecular
Biology. However, as these allow some latitude and in any International Union of Bio-

chemistry (1982) “Symbolism
and terminology in enzyme
kinetics” European Journal of
Biochemistry 128, 281–291

case do not cover all of the cases that we shall need, it is
useful to begin by noting some points that apply generally
in the book. First of all, it is important to recognize that
a chemical substance and its concentration are two different
entities and need to be represented by different symbols. The
recommendations allow square brackets around the chemical
name to be used without definition for its concentration, so
[glucose] is the concentration of glucose, [A] is the concen-
tration of a substance A, and so on. In this book I shall use
this convention for names that consist of more than a single
letter, but it has the disadvantage that the profusion of square
brackets can lead to forbiddingly complicated equations in
enzyme kinetics (see some of the equations in Chapter 8, Chapter 8, pages 189–226
for example, and imagine how they would look with square
brackets). Two simple alternatives are possible: one is just
to put the name in italics, so the concentration of A is A, for
example, and this accords well with the standard convention
that chemical names are written in roman (upright) type and
algebraic symbols are written in italics. However, experience

Fundamentals of Enzyme Kinetics, Fourth Edition. A. Cornish-Bowden.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA.
Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.



2 1. Basic principles of chemical kinetics

shows that many readers barely notice whether a particular
symbol is roman or italic, and so it discriminates less well
than one would hope between the two kinds of entity. For this
reason I shall use the lower-case italic letter that corresponds
to the symbol for the chemical entity, so a is the concentration
of A, for example. If the chemical symbol has any subscripts,
these apply unchanged to the concentration symbol, so a0 is
the concentration of A0, for example. Both of these systems
(and others) are permitted by the recommendations as long
as each symbol is defined when first used. This provision
is satisfied in this book, and it is good to follow it in gen-
eral, because almost nothing that authors consider obvious
is perceived as obvious by all their readers. In the problems
at the ends of the chapters, incidentally, the symbols may not
be the same as those used in the corresponding chapters: this
is intentional, because in the real world one cannot always
expect the questions that one has to answer to be presented in
familiar terms.

As we shall see, an enzyme-catalyzed reaction virtually
always consists of two or more steps, and as we shall need
symbols to refer to the different steps it is necessary to have
some convenient indexing system to show which symbol
refers to which step. The recommendations do not impose
any particular system, but, most important, they do require
the system in use to be stated. Because of the different ways
in which, for example, the symbol k2 has been used in the
biochemical literature one should never assume in the ab-
sence of a clear definition what is intended. In this book I use
the system preferred by the recommendations: for a reaction
of n steps, these are numbered 1, 2 ... n; lower-case italic k
with a positive subscript refers to the kinetic properties of the
forward step corresponding to the subscript, for example, k2
refers to the forward direction of the second step; the same
with a negative subscript refers to the corresponding reverse
reaction, for example, k−2 for the second step; a capital italic
K with a subscript refers to the thermodynamic (equilibrium)
properties of the whole step and is typically the ratio of the
two kinetic constants, for example, K2 = k2/k−2.

The policy regarding the use of abbreviations in this book
can be stated very simply: there are no abbreviations in this
book (other than in verbatim quotations and the index, which
needs to include the entries readers expect to find). Much of
the modern literature is rendered virtually unintelligible to
nonspecialist readers by a profusion of unnecessary abbrevi-
ations. They save little space, and little work (because with
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modern word-processing equipment it takes no more than a
few seconds to expand all of the abbreviations that one may
have found it convenient to use during preparation), but the
barrier to comprehension that they represent is formidable.
A few apparent exceptions (like “ATP”) are better regarded
as standardized symbols than as abbreviations, especially be-
cause they are more easily understood by most biochemists
than the words they stand for.

1.2 Order of a reaction

1.2.1 Order and molecularity

Chemical kinetics as a science began in the middle of the 19th L. F. Wilhelmy (1850) “Über das
Gesetz, nach welchem die
Einwirkung der Säuren auf
Rohrzucker stattfindet”
Poggendorff’s Annalen der Physik
und Chemie 81, 413–433, 499–526

P. Waage and C. M. Guldberg
(1864) “Studier over Affinite-
ten” Forhandlinger: Videnskabs-
Selskabet i Christiana, 35–40,
111-120. There is an English
translation by H. I. Abrash at
http://tinyurl.com/3levsgl

K. J. Laidler (1993) The World of
Physical Chemistry, pages 232–
289, Oxford University Press,
Oxford

century, when Wilhelmy was apparently the first to recognize
that the rate at which a chemical reaction proceeds follows
definite laws, but although his work paved the way for the
law of mass action of Waage and Guldberg, it attracted little
attention until it was taken up by Ostwald towards the end
of the century, as discussed by Laidler. Wilhelmy realized
that chemical rates depended on the concentrations of the
reactants, but before considering some examples we need to
examine how chemical reactions can be classified.

One way is according to the molecularity, which defines the
number of molecules that are altered in a reaction: a reaction
A→ P is unimolecular (sometimes called monomolecular), and a
reaction A + B→ P is bimolecular. One-step reactions of higher
molecularity are extremely rare, if they occur at all, but a
reaction A + B + C→ P would be trimolecular (or termolecular).
Alternatively one can classify a reaction according to its order,
a description of its kinetics that defines how many concentra-
tion terms must be multiplied together to get an expression
for the rate of reaction. Hence, in a first-order reaction the rate
is proportional to one concentration; in a second-order reaction
it is proportional to the product of two concentrations or to
the square of one concentration; and so on.

0

First order

Second order

v

0 a

Zero order

Figure 1.1. Order of reaction.
When a reaction is of first order
with respect to a reactant A the
rate is proportional to its con-
centration a. If it is of second
order the rate is proportional to
a2; if it is of zero order it does
not vary with a.

For a simple reaction that consists of a single step, or for
each step in a complex reaction, the order is usually the same
as the molecularity (though this may not be apparent if one
concentration, for example that of the solvent if it is also a
reactant, is so large that it is effectively constant). However,
many reactions consist of sequences of unimolecular and bi-
molecular steps, and the molecularity of the complete reaction
need not be the same as its order. Indeed, a complex reaction
often has no meaningful order, as the overall rate often cannot
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be expressed as a product of concentration terms. As we
shall see in later chapters, this is almost universal in enzyme
kinetics, where not even the simplest enzyme-catalyzed reac-
tions have simple orders. Nonetheless, the individual steps
in enzyme-catalyzed reactions nearly always do have simple
orders, usually first or second order, and the concept of order
is important for understanding enzyme kinetics. The binding
of a substrate molecule to an enzyme molecule is a typical
example of a second-order bimolecular reaction in enzyme
kinetics, whereas conversion of an enzyme–substrate com-
plex into products or into another intermediate is a typical
example of a first-order unimolecular reaction.

1.2.2 First-order kinetics

The rate v of a first-order reaction A→ P can be expressed as

v =
dp
dt

= −da
dt

= ka = k(a0 − p) (1.1)

in which a and p are the concentrations of A and P respec-
tively at any time t, k is a first-order rate constant and a0 is
a constant. As we shall see throughout this book, the idea
of a rate constant1 is fundamental in all varieties of chemical
kinetics. The first two equality signs in the equation represent
alternative definitions of the rate v: because every molecule
of A that is consumed becomes a molecule of P, it makes
no difference to the mathematics whether the rate is defined
in terms of the appearance of product or disappearance of
reactant. It may make a difference experimentally, however,
because experiments are not done with perfect accuracy, and
in the early stages of a reaction the relative changes in p are
much larger than those in a (Figure 1.2). For this reason it
will usually be more accurate to measure increases in p than
decreases in a.

Concentration 
(arbitrary units)

a

p

9

Time

During the time in which a 
decreases from 9 to 7 (–22%), p 
increases from 1 to 3 (+200%)

7

3

1

Figure 1.2. Relative changes in
concentration. For a stoichio-
metric reaction A→ P, any
change in a is matched by an
opposite change in p. However,
in the early stages of a reaction
the relative increases in p are
much larger than the relative
changes in a.

§ 10.4.3, pages 264–265

The third equality sign in the equation is the one that
specifies that this is a first-order reaction, because it states
that the rate is proportional to the concentration of reactant A.

1Some authors, especially those with a strong background in physics,
object to the term “rate constant” (preferring “rate coefficient”) for quantities
like k in equation 1.1 and for many similar quantities that will occur in this
book, on the perfectly valid grounds that they are not constant, because they
vary with temperature and with many other conditions. However, the use of
the word “constant” to refer to quantities that are constant only under highly
restricted conditions is virtually universal in biochemical kinetics (and far
from unknown in chemical kinetics), and it is hardly practical to abandon
this usage in this book. See also the discussion at the end of Section 10.4.3.
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Finally, if the time zero is defined in such a way that a = a0
and p = 0 when t = 0, the stoichiometry allows the values
of a and p at any time to be related according to the equation
a + p = a0, thereby allowing the last equality in the equation.

Equation 1.1 can readily be integrated by separating the
two variables p and t, bringing all terms in p to the left-hand
side and all terms in t to the right-hand side:

∫ dp
a0 − p

=
∫

k dt

therefore
− ln(a0 − p) = kt + α

in which α, the constant of integration, can be evaluated by
noting that there is no product at the start of the reaction, so
p = 0 when t = 0. Then α = − ln(a0), and so

ln
(

a0 − p
a0

)
= −kt (1.2)

Taking exponentials of both sides we have

a0 − p
a0

= e−kt

which can be rearranged to give

p = a0(1− e−kt) (1.3)

Notice that the constant of integration α was included in this
derivation, evaluated and found to be nonzero. Constants
of integration must always be included and evaluated when
integrating kinetic equations; they are rarely found to be zero.

0

a/a

0
Time

0.5t 0.52t 0.53t

1

0.5

0.25

p/a0

0.54t

0

Figure 1.3. First-order decay.
The half-time t0.5 is the time
taken for the reactant concen-
tration to decrease by half from
any starting point. For a first-
order reaction, but not for other
orders of reaction, it remains
constant as the reaction
proceeds.

Inserting p = 0.5a0 into equation 1.3 at a time t = t0.5
known as the half-time allows us to calculate kt0.5 = ln 2 =
0.693, so t0.5 = 0.693/k. This value is independent of the
value of a0, so the time required for the concentration of
reactant to decrease by half is a constant, for a first-order
process, as illustrated in Figure 1.3. The half-time is not a
constant for other orders of reaction.

1.2.3 Second-order kinetics

The commonest type of bimolecular reaction is one of the
form A + B→ P + Q, in which two different kinds of molecule
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A and B react to give products. In this example the rate is
likely to be given by a second-order expression of the form

v =
dp
dt

= kab = k(a0 − p)(b0 − p)

in which k is now a second-order rate constant.2 Again, inte-
gration is readily achieved by separating the two variables p
and t: ∫ dp

(a0 − p)(b0 − p)
=
∫

k dt

For readers with limited mathematical experience, the sim-
plest and most reliable method for integrating the left-hand
side of this equation is to look it up in a standard table of
integrals.3 It may also be done by multiplying both sides

Table 1.1. Standard integrals
∫

adx = ax
∫

a · f (x)dx =

a
∫

f (x)dx
∫

xdx = 1
2 x2

∫
x2dx = 1

3 x3

∫
xndx =

xn+1

n + 1
for n 6= −1

∫ 1
x

dx = ln x
∫

exdx = ex

∫ dx
a + bx

=
1
b

ln(a + bx)
∫ xdx

a + bx
=

a + bx− a ln(a + bx)
b2

1. In all examples, x is variable;
a, b and n are constants and
f (x) is a function of x.

2. Standard tables usually omit
the constant of integration
(assuming that users know that
it must be added).

3. Tables intended primarily for
the use of mathematicians often
write log x where a biochemist
would expect ln x.

Chapter 7, pages 169–188

of the equation by (b0 − a0) and separating the left-hand side
into two simple integrals:

∫ dp
a0 − p

−
∫ dp

b0 − p
=
∫
(b0 − a0)k dt

Hence

− ln(a0 − p) + ln(b0 − p) = (b0 − a0)kt + α

Putting p = 0 when t = 0 we find α = ln(b0/a0), and so

ln
[

a0(b0 − p)
b0(a0 − p)

]
= (b0 − a0)kt

or
a0(b0 − p)
b0(a0 − p)

= e(b0−a0)kt (1.4)

A special case of this result is important: if a0 is negligible
compared with b0, then (b0 − a0) ≈ b0; p can never exceed
a0, on account of the stoichiometry of the reaction, and so
(b0 − p) ≈ b0. Introducing both approximations, equation 1.4
can be simplified as follows:

a0��b0

��b0(a0 − p)
= ekb0t

2Conventional symbolism does not indicate the order of a rate constant.
For example, it is common practice to illustrate simple enzyme kinetics with
a mechanism in which k1 is a second-order rate constant and k2 is a first-
order rate constant: there is no way to know this from the symbols alone, it is
important to define each rate constant when it is first used.

3The integrals listed in Table 1.1 are sufficient for the purposes of this
chapter (and the last one will not be needed until Chapter 7).
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and, remembering that 1/ekb0t ≡ e−kb0t, this can be rear-
ranged to read

p = a0(1− e−kb0t)

which has exactly the same form as equation 1.3, the equation
for a first-order reaction. This type of reaction is known as
a pseudo-first-order reaction, and kb0 is a pseudo-first-order rate
constant. Pseudo-first-order conditions occur naturally when
one of the reactants is the solvent, as in most hydrolysis reac-
tions, but it is also advantageous to create them deliberately,
to simplify evaluation of the rate constant (Section 1.5). § 1.5, pages 11–13

1.2.4 Third-order kinetics

A trimolecular reaction, such as A + B + C → P + ..., does
not normally consist of a single trimolecular step involving
a three-body collision, which would be inherently unlikely;
consequently it is not usually third-order. Instead it is likely
to consist of two or more elementary steps, such as A + B

 X followed by X + C → P. In some reactions the kinetic
behavior as a whole is largely determined by the rate constant
of the step with the smaller rate constant, accordingly known
as the rate-limiting step (or, more objectionably, as the rate-
determining step).4 When there is no clearly defined rate-

A + B X

C
K

a b Kabfast

k′

slow

Figure 1.4. Third-order kinetics.
A reaction can be third-order
overall without requiring any
third-order step in the mechan-
ism, if a rapid equilibrium
maintains an intermediate X at
a concentration Kab and this
reacts slowly with the third
reactant C in a second-order
reaction with rate constant k′.

limiting step the rate equation is typically complex, with no
integral order. Some trimolecular reactions do display third-
order kinetics, however, with v = kabc, where k is now a third-
order rate constant, but it is not necessary to assume a three-
body collision to account for third-order kinetics. Instead, we
can assume a two-step mechanism, as before but with the first
step rapidly reversible, so that the concentration of X is given
by x = Kab, where K is the equilibrium constant for binding
of A to B, the association constant of X (Figure 1.4). The rate
of reaction is then the rate of the slow second step:

v = k′xc = k′Kabc

where k′ is the second-order rate constant for the second step.
Hence the observed third-order rate constant is actually the
product of a second-order rate constant and an equilibrium
constant.

§ 14.1.3, pages 383–385

4These terms are widespread in chemistry, but they involve some con-
ceptual confusion, as discussed in Section 14.1.3, and as far as possible are
best avoided.



8 1. Basic principles of chemical kinetics

1.2.5 Zero-order kinetics

Some reactions are observed to be of zero order, with a con-
stant rate, independent of the concentration of reactant. If a
reaction is zero order with respect to only one reactant, this
may simply mean that the reactant enters the reaction after the
rate-limiting step. However, some reactions are zero-order
overall, which means that they are independent of all reactant
concentrations. These are invariably catalyzed reactions and
occur if every reactant is present in such large excess that the
full potential of the catalyst is realized. Enzyme-catalyzed re-
actions commonly approach zero-order kinetics at very high
reactant concentrations.

1.2.6 Determination of the order of a reaction

The simplest means of determining the order of a reaction
is to measure the rate v at different concentrations a of the
reactants. A plot of ln v against ln a is then a straight line

Slope = 2

ln a

ln v

0.4

0.2

0.0
0.0 0.2 0.4

Second order 
in A

Figure 1.5. Determination of the
order of reaction. The line is
drawn for a reaction that is
second-order in a reactant A
(and first-order in another react-
ant B, but this is not evident
from the plot) so the slope of
the line is 2. The appearance of
the plot (though not the num-
erical values) would be the
same if logarithms to base 10 or
any other base were used in-
stead of natural logarithms,
provided that the same changes
were made in both coordinates.

with slope equal to the order. As well as the overall order it is
useful to know the order with respect to each reactant, which
can be found by altering the concentration of each reactant
separately, keeping the other concentrations constant. The
slope of the line is then equal to the order with respect to the
variable reactant. For example, if the reaction is second-order
in A and first-order in B,

v = ka2b

then
ln v = ln k + 2 ln a + ln b

Hence a plot of ln v against ln a (with b held constant) has a
slope of 2 (Figure 1.5), and a plot of ln v against ln b (with a
held constant) has a slope of 1 (Figure 1.6). If the plots are
drawn with the slopes measured from the progress curve (a
plot of concentration against time), the concentrations of all
the reactants change with time. Therefore, if valid results are
to be obtained, either the initial concentrations of the reactants
must be in stoichiometric ratio, in which event the overall
order is found, or (more usually) the “constant” reactants

Slope = 1

ln b

ln v

0.4

0.2

0.0
0.0 0.2 0.4

First order in B

Figure 1.6. Determination of the
order of reaction for a reaction
that is first-order in a reactant B.
The slope of the line is 1.

must be in large excess at the start of the reaction, so that
the changes in their concentrations are insignificant. If neither
of these alternatives is possible or convenient, the rates must
be obtained from a set of measurements of the slope at zero
time, that is to say measurements of initial rates. This method
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is usually preferable for kinetic measurements of enzyme-
catalyzed reactions, because the progress curves of enzyme-
catalyzed reactions often do not rigorously obey simple rate
equations for extended periods of time. The progress curve
of an enzyme-catalyzed reaction (Section 2.9) often requires § 2.9, pages 63–71
a more complicated equation than the integrated form of
the rate equation derived for the initial rate, because of pro-
gressive loss of enzyme activity, inhibition by accumulating
products and other effects.

1.3 Dimensions of rate constants

Dimensional analysis provides a quick and versatile tech-
nique for detecting algebraic mistakes and checking results.
It depends on the existence of a few simple rules governing
the permissible ways of combining quantities of different di-
mensions, and on the frequency with which algebraic errors
result in dimensionally inconsistent expressions. Concen-
trations can be expressed in M (or mol · l−1), and reaction
rates in M · s−1. In an equation that expresses a rate v in
terms of a concentration a as v = ka, therefore, the rate
constant k must be expressed in s−1 if the left- and right-
hand sides of the equation are to have the same dimen-
sions. All first-order rate constants have the dimensions of
time−1, and by a similar argument second-order rate con-
stants have the dimensions of concentration−1 × time−1 (Fig-
ure 1.7), third-order rate constants have the dimensions of
concentration−2× time−1, and zero-order rate constants have
the dimensions of concentration× time−1.

v = kab

M · s−1

M−1 · s−1

M

M

therefore k must be

Figure 1.7. Units of rate
constants. If a rate v = kab is
measured in M · s−1 and the
two concentrations a and b are
measured in M, then the left-
and right-hand sides of the
equation can only have the
same units if the second-order
rate constant k is measured in
M−1 · s−1.

Knowledge of the dimensions of rate constants allows the
correctness of derived equations to be checked easily: the left-
and right-hand sides of any equation (or inequality) must
have the same dimensions, and all terms in a summation
must have the same dimensions. For example, if (1 + t)
occurs in an equation, where t has the dimensions of time,
then the equation is incorrect, even if the “1” is intended to
represent a time that happens to have the numerical value
of 1. Rather than mixing dimensioned constants and variables
in an expression in this way it is better to write the unit after
the number, (1 s + t) for example, or to give the constant a
symbol, (t0 + t) for example, with a note in the text defining
t0 as 1 s. Although both alternatives appear more clumsy
than just writing (1 + t) they avoid confusion. Section 9.6.1 § 9.6.1, pages 242–244
contains an example, equation 9.12, where clarity requires
inclusion of units inside an equation.
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Quantities of different dimensions can be multiplied ork1H
k2H

= e4.8 kJ mol−1/RT

To include the value of a dimen-
sioned quantity in an equation
(4.8 kJ/mol in this example,
which is simplified from equa-
tion 9.12 on page 243) one must
include the units explicitly in
the equation, or else introduce
an algebraic symbol defined as
having the value concerned.

divided, but must not be added or subtracted. Thus, if k1 is a
first-order rate constant and k2 is a second-order rate constant,
a statement such as k1 � k2 is meaningless, just as 5 g� 25 ◦C
is meaningless. However, a pseudo-first-order rate constant
such as k2a has the dimensions of concentration−1× time−1×
concentration, which simplifies to time−1; it therefore has the
dimensions of a first-order rate constant, and can be compared
with other first-order rate constants.

Another major principle of dimensional analysis is that
one must not use a dimensioned quantity as an exponent
or take its logarithm. For example, e−kt is permissible, if k
is a first-order rate constant, but e−t is not. An apparent
exception is that it is often convenient to take the logarithm
of what appears to be a concentration, for example when pH
is defined as − log[H+]. The explanation is that the definition
is not strictly accurate and to be dimensionally correct one
should define pH as − log [H+]/[H+]0, where [H+]0 is the
value of [H+] in the standard state, corresponding to pH = 0.
As [H+]0 has a numerical value of 1 it is usually omitted
from the definition. Whenever one takes the logarithm of a

Intercept (value of 
y when x = 0): 

dimensions of y

Slope = ∆y/∆x: 
dimensions of y/x

∆y
∆x

y

x

Intercept: 
dimensions 

of x

Figure 1.8. Application of di-
mensional analysis to graphs.
The intercept on the ordinate is
the value of y when x = 0, and
has the same dimensions as y;
The intercept on the abscissa is
the value of x when y = 0, and
has the same dimensions as x.
The slope is an increment in y
divided by the corresponding
increment in x, and has the
dimensions of y/x.

dimensioned quantity in this way, a standard state is implied
whether stated explicitly or not.

Dimensional analysis is particularly useful as an aid to
remembering the slopes and intercepts of commonly used
plots, and the rules are simple: any intercept must have the
same dimensions as whatever variable is plotted along the
corresponding axis, and a slope must have the dimensions
of the ordinate (y) divided by those of the abscissa (x). These
rules are illustrated in Figure 1.8.

1.4 Reversible reactions

All chemical reactions are reversible in principle, and for
many the reverse reaction is readily observable in practice as
well, and must be allowed for in the rate equation:

-�A
a0 − p

P
p

k1

k−1

(1.5)

In this case,

v =
dp
dt

= k1(a0 − p)− k−1 p = k1a0 − (k1 + k−1)p


