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Adhesion describes the joining of the same or different materials using 
a usually foreign substance. Joining techniques such as welding, braz-
ing, riveting and screwing are used by industry all over the world on a 
daily basis. A further method of joining has also proven to be highly suc-
cessful: adhesive bonding. Adhesive bonding technology has an extreme-
ly broad range of applications. And it is diffi cult to imagine a product 
– in the home, in industry, in transportation, or anywhere else for that 
matter – that does not use adhesives or sealants in some manner.
 The book focuses on the methodology used for fabricating and test-
ing adhesive specimens. The text covers the entire range of test meth-
ods that are used in the fi eld of adhesives, providing vital information 
for dealing with the range of adhesive viscosities and properties that are 
of interest to the adhesive community. The entire breadth of industrial 
laboratory examples, utilising different techniques are discussed. The 
core concept of the book is to provide essential information vital for 
producing and characterizing adhesives
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Preface

The solution to many theoretical and practical problems is closely connected to
the methods applied, and to the mathematical tools which are used. In the mathe-
matical description of mechanical and physical phenomena, and in the solution of
the corresponding boundary value and limit problems, difficulties may appear ow-
ing to additional conditions. Sometimes, these conditions result from the limited
range of applicability of the mathematical tool which is involved; in general, such
conditions may be neither necessary nor connected to the mechanical or physical
phenomenon considered.

The methods of classical mathematical analysis are usually employed, but their
applicability is often limited. Thus, the fact that not all continuous functions have
derivatives is a severe restriction imposed on the mathematical tool; it affects the
unity and the generality of the results. For example, it may lead to the conclusion
of the nonexistence of the velocity of a particle at any moment during the motion,
a conclusion which obviously is not true.

On the other hand, the development of mechanics, of theoretical physics and
particularly of modern quantum mechanics, the study of various phenomena of
electromagnetism, optics, wave propagation and the solution of certain boundary
value problems have all brought about the introduction of new concepts and com-
putations, which cannot be justified within the frame of classical mathematical
analysis.

In this way, in 1926 Dirac introduced the delta function (denoted by δ), which
from a physical point of view, represents the density of a load equal to unity located
at one point. A formalism has been worked out for the function, and its use justi-
fies and simplifies various results. Except for a small number of incipient investi-
gations, it was only during the 1960s that the theory of distributions was included
as a new chapter of functional analysis. This theory represents a mathematical tool
applicable to a large class of problems, which cannot be solved with the aid of clas-
sical analysis. The theory of distributions thus eliminates the restrictions which are
not imposed by the physical phenomenon and justifies procedure and results, e.g.,
those corresponding to the continuous and discontinuous phenomena, which can
thus be stated in a unitary and general form.

This monograph presents elements of the theory of distributions, as well as the-
orems with possibility of application. While respecting the mathematical rigor, a
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large number of applications of the theory of distributions to problems of general
Newtonian mechanics, as well as to problems pertaining to the mechanics of de-
formable solids, are presented in a systematic manner; special stress is laid upon
the introduction of corresponding mathematical models.

Some notions and theorems of Newtonian mechanics are stated in a generalized
form; the effect of discontinuities on the motion of a particle and its mechanical
interpretation is thus emphasized.

Particular stress is laid upon the mathematical representation of concentrated
and distributed loads; in this way, the solution of the problems encountered in the
mechanics of deformable solids may be obtained in a unitary form.

Newton’s fundamental equation, the equations of equilibrium and of motion of
the theory of elasticity are presented in a modified form, which includes the bound-
ary and the initial conditions. In this case, the Fourier and the Laplace transforms
may be easily applied to obtain the fundamental solutions of the corresponding
differential equations; the use of the convolution product allows the expression of
the boundary-value problem solutions for an arbitrary load.

Concerning the mechanics of deformable solids, not only have classical elastic
bodies been taken into consideration, but also viscoelastic ones, that is, stress is
put into dynamical problems: vibrations and propagation of waves.

Applications in physics have been described (acoustics, optics and electrostatics),
as well as in electrotechnics.

The aim of the book is to draw attention to the possibility of applying modern
mathematical methods to the study of mechanical and physical phenomena and
to be useful to mathematicians, physicists, engineers and researchers, which use
mathematical methods in their field of interest.

P.P. Teodorescu, W.W. Kecs, A. Toma Bucharest, 22 August 2012
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1
Introduction to the Distribution Theory

1.1
Short History

The theory of distributions, or of generalized functions, constitutes a chapter of
functional analysis that arose from the need to substantiate, in terms of mathemat-
ical concepts, formulae and rules of calculation used in physics, quantum mechan-
ics and operational calculus that could not be justified by classical analysis. Thus,
for example, in 1926 the English physicist P.A.M. Dirac [1] introduced in quantum
mechanics the symbol δ(x ), called the Dirac delta function, by the formulae

δ(x ) D
(

0 , x ¤ 0

1 , x D 0
,

1Z
�1

δ(x )dx D 1 . (1.1)

By this symbol, Dirac mathematically described a material point of mass density
equal to the unit, placed at the origin of the coordinate axis.

We notice immediately that δ(x ), called the impulse function, is a function not
in the sense of mathematical analysis, as being zero everywhere except the origin,
but that its integral is null and not equal to unity.

Also, the relations x δ(x ) D 0, dH(x )/dx D δ(x ) do not make sense in classical
mathematical analysis, where

H(x ) D
(

0 , x < 0

1 , x � 0

is the Heaviside function, introduced in 1898 by the English engineer Oliver Heav-
iside.

The created formalism regarding the use of the function δ and others, although
it was in contradiction with the concepts of mathematical analysis, allowed for the
study of discontinuous phenomena and led to correct results from a physical point
of view.

All these elements constituted the source of the theory of distributions or of the
generalized functions, a theory designed to justify the formalism of calculation
used in various fields of physics, mechanics and related techniques.

Distribution Theory, First Edition. Petre P. Teodorescu, Wilhelm W. Kecs, and Antonela Toma
© 2013 WILEY-VCH Verlag GmbH & Co. KGaA. Published 2013 by WILEY-VCH Verlag GmbH & Co. KGaA.
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In 1936, S.L. Sobolev introduced distributions (generalized functions) in an ex-
plicit form, in connection with the study of the Cauchy problem for partial differ-
ential equations of hyperbolic type.

The next major event took place in 1950–1951, when L. Schwartz published a
treatise in two volumes entitled “Théory des distributions” [2]. This book provided a
unified and systematic presentation of the theory of distributions, including all pre-
vious approaches, thus justifying mathematically the calculation formalisms used
in physics, mechanics and other fields.

Schwartz’s monograph, which was based on linear functionals and on the theory
of locally convex topological vector spaces, motivated further development of many
chapters of mathematics: the theory of differential equations, operational calculus
(Fourier and Laplace transforms), the theory of Fourier series and others.

Properties in the sense of distributions, such as the existence of the derivative
of any order of a distribution and in particular of the continuous functions, the
convergence of Fourier series and the possibility of term by term derivation of the
convergent series of distributions, led to important technical applications of the
theory of distributions, thus removing some restrictions of classical analysis.

The distribution theory had a significant further development as a result of
the works developed by J. Mikusiński and R. Sikorski [3], M.I. Guelfand and
G.E. Chilov [4, 5], L. Hörmander [6, 7], A. H. Zemanian [8], and so on.

Unlike the linear and continuous functionals method used by Schwartz to define
distributions, J. Mikusiński and R. Sikorski introduced the concept of distribution
by means of fundamental sequences of continuous functions.

This method corresponds to the spirit of classical analysis and thus it appears
clearly that the concept of distribution is a generalization of the notion of function,
which justifies the term generalized function, mainly used by the Russian school.

Other mathematicians, such as H. König, J. Korevaar, Sebastiano e Silva, and
I. Halperin have defined the notion of distribution by various means (axiomatic,
derivatives method, and so on).

Today the notion of distribution is generalized to the concept of a hyperfunc-
tion, introduced by M. Sato, [9, 10], in 1958. The hyperdistributions theory con-
tains as special cases the extensions of the notion of distribution approached by
C. Roumieu, H. Komatsu, J.F. Colombeu and others.

1.2
Fundamental Concepts and Formulae

For the purpose of distribution theory and its applications in various fields, we
consider some function spaces endowed with a convergence structure, called fun-
damental spaces or spaces of test functions.
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1.2.1
Normed Vector Spaces: Metric Spaces

We denote by Γ either the body R of real numbers or the body C of com-
plex numbers and by RC, RC, N0 the sets RC D [0, 1), RC D (0, 1), N0 D
f0, 1, 2, . . . , n, . . .g.

Let E , F be sets of abstract objects. We denote by E � F the direct product (Carte-
sian) of those two sets; where the symbol “�” represents the direct or Cartesian
product.

Definition 1.1 The set E is called a vector space with respect to Γ , and is denoted by
(E , Γ ), if the following two operations are defined: the sum, a mapping (x , y ) !
x C y from E � F into E, and the product with scalars from Γ , the mapping
(λ, x ) ! λx from Γ � E into E, having the following properties:

1. 8x , y 2 E , x C y D y C x I
2. 8x , y , z 2 E , (x C y ) C z D x C (y C z) I
3. 9 0 2 E , 8x 2 E , x C 0 D x , (0 is the null element) ;
4. 8x 2 E , 9x 0 D �x 2 E , x C (�x ) D 0 I
5. 8x 2 E , 1 � x D x I
6. 8λ, μ 2 Γ , 8x 2 E , λ(μx ) D (λμ)x I
7. 8λ, μ 2 Γ , 8x 2 E , (λ C μ)x D λx C μx I
8. 8λ 2 Γ , 8x , y 2 E , λ(x C y ) D λx C λy .

The vector space (E , Γ ) is real if Γ D R and it is complex if Γ D C. The elements
of (E , Γ ) are called points or vectors.

Let X be an upper bounded set of real numbers, hence there is M 2 R such that
for all x 2 X we have x � M . Then there exists a unique number M� D sup X ,
which is called the lowest upper bound of X, such that

1. 8x 2 X , x � M� I
2. 8a 2 R , a < M� , 9x 2 X such that x 2 (a, M�] .

Similarly, if Y is a lower bounded set of real numbers, that is, if there is m 2 R such
that for all x 2 Y we have x � m, then there exists a unique number m� D inf X ,
which is called the greatest lower bound of Y, such that

1. 8x 2 Y , x � m� I
2. 8b 2 R , b > m� , 9x 2 Y such that x 2 [m�, b) .

Example 1.1 The vector spaces Rn , Cn, n � 2 Let us consider the n-dimensional
space Rn D R � � � � � R (n times). Two elements x , y 2 Rn , x D (x1, . . . , xn), y D
(y1, . . . , yn), are said to be equal, x D y , if xi D y i , i D 1, n.

Denote x C y D (x1C y1, x2 C y2, . . . , xn C yn), αx D (αx1, αx2, . . . , αxn), α 2 R,
then Rn is a real vector space, also called n-dimensional real arithmetic space.
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The n-dimensional complex space Cn may be defined in a similar manner. The
elements of this space are ordered systems of n complex numbers. The sum and
product operations performed on complex numbers are defined similarly with
those in Rn .

Definition 1.2 Let (X , Γ ) be a real or complex vector space. A norm on (X , Γ ) is a
function k � k W X ! [0, 1) satisfying the following three axioms:

1. 8x 2 X , kxk > 0 for x ¤ 0, k0k D 0 I
2. 8λ 2 Γ , 8x 2 X , kλxk D jλjkxk I
3. 8x , y 2 X , kx C yk � kxk C kyk .

The vector space (X , Γ ) endowed with the norm k � k will be called a normed vector
space and will be denoted as (X , Γ , k � k).

The following properties result from the definition of the norm:

kxk � 0 , 8x 2 X ,

jkx1k � kx2kj � kx1 � x2k , 8x1, x2 2 X ,

8α i 2 Γ , 8xi 2 X , kα1x1 C � � � C αn xnk � jα1jkx1k C � � � C jαnjkxnk .

Definition 1.3 Let (X , Γ ) be a vector space. We call an inner product on (X , Γ ) a
mapping h�, �i W E ! Γ that satisfies the following properties:

1. Conjugate symmetry: 8x 2 X , hx , yi D hy , xi;
2. Homogeneity: 8α 2 Γ , 8x , y 2 E , hαx , yi D αhy , xi;
3. Additivity: 8x , y , z 2 X , hx C y , zi D hx , zi C hy , zi;
4. Positive-definiteness: 8x 2 X , hx , xi � 0 and hx , xi D 0 , x D 0.

An inner product space (X , h�, �i) is a space containing a vector space (X , Γ ) and an
inner product h�, �i.

Conjugate symmetry and linearity in the first variable gives

hx , ayi D hay , xi D ahy , xi D ahx , yi ,

hx , y C zi D hy C z, xi D hy , xi C hz, xi D hx , yi C hx , zi ,

so an inner product is a sesquilinear form. Conjugate symmetry is also called Her-
mitian symmetry.

In the case of Γ D R, conjugate-symmetric reduces to symmetric, and sesquilin-
ear reduces to bilinear. Thus, an inner product on a real vector space is a positive-
definite symmetric bilinear form.

Proposition 1.1 In any inner product space (X , h�, �i) the Cauchy–Schwarz inequal-
ity holds:

jhx , yij �
p

hx , xi �phy , yi , 8x , y 2 X , (1.2)

with equality if and only if x and y are linearly dependent.
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This is also known in the Russian mathematical literature as the Cauchy–Bunya-
kowski–Schwarz inequality.

Lemma 1.1 The inner product is antilinear in the second variable, that is hx , y C zi
D hx , yi C hx , zi for all x , y , z 2 Γ and hx , ayi D ahx , yi.

Note that the convention in physics is often different. There, the second variable is
linear, whereas the first variable is antilinear.

Definition 1.4 Let X be a nonempty set. We shall call metric (distance) on X any
function d W X � X ! R, which satisfies the properties:

D1 d(x , x ) D 0, 8x 2 X I d(x , y ) > 0, 8x , y 2 X , x ¤ y ,
D2 8x , y 2 X , d(x , y ) D d(y , x ),
D3 8x , y , z 2 X , d(x , z) � d(x , y ) C d(y , z).

The real number d(x , y ) � 0 represents the distance between x and y, and the
ordered pair (X , d) a metric space (whose elements are called points).

Let (X , d) be a metric space. We shall call an open ball in X a ball of radius r > 0
centered at the point x0 2 X , usually denoted Br(x0) or B(x0I r), the set

Br (x0) D fx 2 X j d(x , x0) < rg . (1.3)

The closed ball, which will be denoted by B r(x0) is defined by

B r (x0) D fx 2 X j d(x , x0) � rg . (1.4)

Note, in particular, that a ball (open or closed) always includes x0 itself, since the
definition requires r > 0. We shall call a sphere of radius r > 0 centered at the
point x0 2 X , usually denoted Sr (x0), the set

Sr (x0) D fx 2 X j d(x , x0) D rg . (1.5)

Proposition 1.2 Any normed vector space is a metric space by defining the distance
by the formula

d(x , y ) D kx � yk , 8x , y 2 X . (1.6)

Proposition 1.3 Any inner product space (X , h�, �i) is a normed vector space if we
define the norm by

kxk D
p

hx , xi , 8x 2 X . (1.7)

An inner product space is also called a pre-Hilbert space, since its completion with
respect to the metric induced by its inner product, is a Hilbert space.

The real vector space Rn endowed with the inner product

hx , yi D
nX

iD1

xi y i , x D (x1, . . . , xn) , y D (y1, . . . , yn) 2 Rn (1.8)

is called the n-dimensional Euclidean real space.
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The norm in Rn is called the Euclidean norm and is defined as

kxk D hx , xi1/2 D
 

nX
iD1

x2
i

!1/2

, (1.9)

whereas the metric associated to this norm is given by

d(x , y ) D kx � yk D
 

nX
iD1

(xi � y i)2

!1/2

. (1.10)

1.2.2
Spaces of Test Functions

Let x D (x1, . . . , xn) 2 Rn be a generic point in the n-dimensional Euclidean real
space and let α D (α1, . . . , αn) 2 Nn

0 be a multiindex of order n; we denote by jαj D
α1 C � � � C αn the length of the multiindex. If α D (α1, . . . , αn), � D (�1, . . . , �n) 2
Nn

0 , then we use the following notations:

α � � if α i � � i , i D 1, n I (1.11) 
�
α

!
D �!

α!(� � α)!
, where α! D α1!α2! . . . αn! , (1.12)

x α D x1
α1 x2

α2 . . . xn
αn . (1.13)

We denote by Dα f the partial derivative of order jαj D α1 C � � � C αn of a
function f W Ω � Rn ! Γ ,

Dα f D @jαj

@x α1
1 x α2

2 . . . x αn
n

f , Dα D Dα1
1 Dα2

2 . . . Dαn
n , D j D @

@x j
, j D 1, n .

If jαj D 0, then α i D 0, i D 1, n, that is, D0 f D f .
If the function f has continuous partial derivatives up to the order jα C �j inclu-

sively, then

DαC� f D Dα (D � f ) D D�(Dα f ).

We shall denote by C m(Ω ) the set of functions f W Ω � Rn ! Γ with con-
tinuous derivatives of order m, that is, Dα f is continuous on Ω for every α with
jαj � m. When m D 0 we have the set C0(Ω ) of continuous functions on Ω ;
C1(Ω ) is the set of functions on Ω with continuous derivatives of all orders.
Clearly, we have C1(Ω ) � C m(Ω ) � C0(Ω ).

These sets are vector spaces over Ω with respect to the usual definition of addi-
tion of functions and multiplication by scalars from Ω . The null element of these
spaces is the identically zero function on Ω and it will be denoted by 0.
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Definition 1.5 We call the support of the function f W Rn ! Γ the set

supp( f ) D fx 2 Rn , f (x ) ¤ 0g , (1.14)

hence the closure of the set of points where the function is not zero.

If x0 2 supp( f ), then 8Bx0(r), 9x 2 Rn thus that f (x ) ¤ 0. In particular, if
supp( f ) is bounded, then, since supp( f ) is a closed set, it is also compact.

Proposition 1.4 If f, g W Rn ! Γ , then:

supp( f C g) � supp( f ) [ supp(g) , (1.15)

supp( f � g) � supp( f ) \ supp(g) , (1.16)

supp(λ f ) D supp( f ) , λ ¤ 0 . (1.17)

Proof: If x0 2 supp( f C g), then 8Br(x0) � Rn , 9x 2 Br(x0) such that ( f C g)(x )
¤ 0, from which results f (x ) ¤ 0 or g(x ) ¤ 0. Consequently, either x0 2 supp( f )
or x0 2 supp(g), hence x0 2 supp( f ) [ supp(g). Regarding relation (1.16), we
notice that x0 2 supp( f � g) implies ( f g)(x ) ¤ 0, x 2 Br(x0); hence f (x ) ¤ 0 and
g(x ) ¤ 0. Consequently, x0 2 supp( f ) and x0 2 supp(g), hence supp( f )\supp(g).
Because relation (1.17) is obvious, the proof is complete. �

Proposition 1.5 If the functions f, g 2 C p (Ω ), Ω � Rn , then f g 2 C p (Ω ) and we
have

Dα ( f � g) D
X
�Cγ

α!
�!γ !

D� f � Dγ g , Dα D Dα1
1 Dα2

2 . . . Dαn
n , (1.18)

where α D (α1, . . . , αn) 2 Nn
0 , jαj � p .

The proof of this formula is accomplished through induction.

Definition 1.6 A function f W A � Rn ! R is said to be uniformly continuous
on A if for any ε > 0 there is δ > 0 such that for any x , y 2 A satisfying the
condition kx � yk < δ(ε) the inequality j f (x ) � f (y )j < ε holds.

We mention that a uniformly continuous function on A � Rn is continuous at each
point of the set A. It follows that the continuity is a local (more precisely, pointwise)
property of a function f, while the uniform continuity is a global property of f. In
the study of the properties of spaces of test functions, the notion of uniformly
convergent sequence plays an important role.

Definition 1.7 We consider the sequence of functions ( f n)n�1, f n W A � Rn !
R and the function f W A � Rn ! R. We say that the sequence of functions
( f n)n�1, x 2 A is uniformly convergent towards f, x 2 A, and we write f n

u�!
f, x 2 A � Rn , if for every ε > 0 there exists a natural number N(ε) such that for

all x 2 A and all n � N(ε) the inequality j f n(x ) � f (x )j < ε holds.
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In the case of uniform convergence, the natural number N(ε) depends only on
ε > 0, being the same for all x 2 A, while in the case of pointwise convergence the
natural number N depends on ε and x 2 A. Therefore the uniform convergence
implies pointwise convergence f n

s�! f . The converse is not always true.

Definition 1.8 We say that the function f W A � Rn ! C is absolutely integrable
on A if the integral

R
A j f (x )jdx is finite, hence

R
A j f (x )jdx < 1. The integral can

be considered either in the sense of Riemann, or in the sense of Lebesgue.

If the integral is considered in the sense of Lebesgue, then the existence of the
integral

R
A j f (x )jdx implies the existence of the integral

R
A f (x )dx .

The set of the Lebesgue integrable functions on A will be denoted L1(A).
If f is absolutely integrable on any bounded domain A � Rn , then we say that f

is a locally integrable function. We shall use L1
loc(A) to denote the space of locally

integrable functions on A.
The set A � Rn is said to be negligible or of null Lebesgue measure if for any ε > 0

there is a sequence (Bi)i�1, Bi � Rn , such that [1
iD1Bi � A and the summed

volume of the open ball Bi is less than ε.
The function f W A � Rn ! Γ is said to be null a.e. (almost everywhere) on the

set A if the set fx 2 A, f (x ) ¤ 0g is of null Lebesgue measure.
Thus, the functions f, g W A � Rn ! Γ are a.e. equal (almost everywhere equal),

denoted by f D g a.e., x 2 A, if the set fx 2 A, f (x ) ¤ g(x )g is of null Lebesgue
measure.

The function f W A � Rn ! Γ is p-integrable on A, 1 � p < 1, if j f jp 2
L1(A). The set of p-integrable functions on A is denoted by Lp (A). In this set we
can introduce the equivalence relation f 	 g if f (x ) D g(x ) a.e. The set of all the
equivalence classes is denoted by Lp (A).

The space Lp (A) is a vector space over Γ . The spaces Lp (A) and Lq(A) for which
we have p �1 C q�1 D 1 are called conjugate. For these spaces, we have Hölder’s
inequality

Z
A

j f (x )g(x )jdx �
0
@Z

A

j f (x )jp dx

1
A1/p

�
0
@Z

A

jg(x )jqdx

1
A1/q

. (1.19)

In particular, for p D 2, we have q D 2, that is, L2(A) is self-conjugated and
Schwarz’s inequality holds

Z
A

j f (x )g(x )jdx �
0
@Z

A

j f (x )j2dx

1
A1/2

�
0
@Z

A

jg(x )j2dx

1
A1/2

. (1.20)

The norm of the space Lp (A) is defined as

k f kp D
0
@Z

A

j f (x )jp dx

1
A1/p

. (1.21)

We notice that the space Lp (A) is normed.



1.2 Fundamental Concepts and Formulae 9

1.2.2.1 The Space Dm (Ω )

Definition 1.9 Let Ω � Rn be a given compact set and consider the functions
' W Rn ! Γ . The set of functions D m (Ω ) D f'j' 2 C m(Rn), supp(') � Ωg is
called the space of test functions D m (Ω ).

We notice that ' 2 C m(Rn) with supp(') � Ω implies supp(Dα'(x )) � supp(') �
Ω , jαj � m. Consequently, all functions ' 2 C m(Ω ) together with all their deriva-
tives up to order m inclusive are null outside the compact Ω . We notice that D m(Ω )
is a vector space with respect to Γ . The null element of this space is the identically
null function, denoted by 0, 8x 2 Rn , '(x ) D 0.

Definition 1.10 We say that the sequence of functions ('i )i�1 � D m(Ω ) con-

verges towards ' 2 D m(Ω ), and we write 'i
D m (Ω )�����! ' if the sequence of func-

tions (Dα'i (x ))i�1 converges uniformly towards Dα '(x ) in Ω , hence Dα 'i (x )
u�!

Dα'(x ), 0 � jαj � m , 8x 2 Ω .

We note that the space D m(Ω ) becomes a normed vector space if we define the
norm by

k'kD m D sup
jαj�m , x2Ω

jDα'(x )j D sup
0�jαj�m

sup
x2Ω

jDα'(x )j, α 2 Nn
0 . (1.22)

In particular, for m D 0, the space D0(Ω ) will be denoted by C0
C (Ω ). This is the

space of complex (real) functions of class C0(Rn), the supports of which are con-
tained in the compact set Ω � Rn . The test functions space C0

C (Ω ) is a normed
vector space with the norm

k'kC0
C

D sup
x2Ω

j'(x )j . (1.23)

The sequence ('i )i�1 � C0
C (Ω ) converges towards ' 2 C0

C (Ω ) if limi supx2Ω
j'i � 'j D 0, that is, if ('i )i�1 converges uniformly towards ' in Ω .

An example of functions from the space D m(Ω ) is the function

'(x ) D

8̂<
:̂

nY
iD1

sinmC1 xi � ai

b i � ai
π , x 2 [a1, b1] � � � � � [an , bn ] D

nY
iD1

�[ai , bi ]

0 , x … [a1, b1] � � � � � [an , bn ]

where

Ω �
nY

iD1

�[ai , bi ] .

It is immediately verified that ' 2 C m(Rn) and supp(') D Qn
iD1 �[ai , bi ].

Also the function ' W R ! R, where

' D
(

(x � a)α (b � x )� , x 2 [a, b]

0 , x … [a, b]
, α, � > m ,
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is a function from D m([c, d]), [c, d] � [a, b], because ' 2 C m([c, d]) and supp(') D
[a, b].

Let us consider the sequence of functions ('n)n�1 � D m(Ω ), defined by

'n(x ) D
8<
:

1
n

sinmC1 x C a
2a

π , x 2 [�a, a] ,

0 , x … [�a, a] .

We have supp 'n(x ) D [�a, a] D Ω for any n. This sequence, with its derivatives
up to order m inclusive, converges uniformly towards zero in Ω . So we can write

'n(x )
D(Ω )����! 0 in Ω .

Even if the sequence of functions

'n(x ) D

8̂<
:̂

1
n

sinmC1 a C x/n
2a

π ,
x
n

2 [�a, a] ,

0 ,
x
n

… [�a, a] ,

converges uniformly towards zero, together with all their derivatives up to order m
inclusive, it is not convergent towards zero in the space D m (Ω ). This is because
supp['n(x )] D [�na, na], thus the supports of the functions 'n(x ) are not bounded
when n ! 1, hence 'n(x ), x 2 R, n 2 N, are not test functions from D m(Ω ).

1.2.2.2 The Space D(Ω )

Definition 1.11 Let Ω � Rn be a given compact set and consider the functions
' W Rn ! Γ . The set of functions

D(Ω ) D f'j' 2 C1(Rn), supp(') � Ω g

is called the space of test functions D(Ω ).

The space D(Ω ) is a vector space over Γ like D m(Ω ).

Definition 1.12 We say that the sequence ('i )i�1 � D(Ω ) converges towards ' 2
D(Ω ), and we write 'i

D(Ω )����! ', if the sequence of derivative (Dα'i (x ))i�1 con-
verges uniformly towards Dα '(x ) in Ω , 8α 2 Nn

0 , hence Dα 'i (x )
u�! Dα'(x ),

8x 2 Ω , 8α 2 Nn
0 .

We remark that the test space D(Ω ) is not a normed vector space.

Example 1.2 If Ω D fx jx 2 Rn , kxk � 2ag, then the function ' W Rn ! R, having
the expression

'(x ) D

8̂<
:̂

exp
�

� a2

a2 � kxk2

�
, kxk < a

0 , kxk � a
, a > 0 , (1.24)
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is an element of the space D(Ω ), since ' 2 C1(Rn) and supp(') D fx jx 2 Rn ,
kxk � ag � Ω .

The sets Ω and supp(') are compact sets of Rn , representing closed balls with
centers at the origin and radii 2a and a, respectively.

Unlike the function ', the function ψ W R ! R,

ψ(x ) D
(

0 , x � 0 ,

exp(�x2) , x > 0 ,
(1.25)

does not belong to the space D(Ω ).
This function is infinitely differentiable, so ψ 2 C1(Rn), but the support is not

a compact set because supp(ψ) D (0, 1).

1.2.2.3 The Space E

Definition 1.13 The functions set

E D f'j' W Rn ! Γ , ' 2 C1(Rn)g . (1.26)

having arbitrary support is called the space of test functions E D E (Rn).

With respect to the usual sum and scalar product operation, the space E is a vector
space over Γ .

Thus, the functions '(x ) D 1, '(x ) D x2, '(x ) D exp(x2), x 2 R are elements of
E (Rn).

As regards the convergence in the space E this is given:

Definition 1.14 The sequence ('i )i�1 � E is said to converge towards ' 2 E , and

we write 'i
E�! ', if the sequence of functions (Dα'i )i�1 � E converges uniformly

towards Dα '(x ) 2 E on any compact of Rn , 8α 2 Nn
0 , that is, Dα 'i

u�! Dα'.

The function (1.25) belongs to the space E since ψ 2 C1(Rn), its supports being
the unbounded set (0, 1).

1.2.2.4 The Space D (the Schwartz Space)

Definition 1.15 The space D D D(Rn) consists of the set of functions

D D f'j' W Rn ! Γ , ' 2 C1(Rn), supp(') D Ω D compactg . (1.27)

Since 8' 2 D , it belongs to a certain D(Ω ), it follows that D is the reunion of
spaces D(Ω ) over the compacts Ω � Rn . Consequently, we can write the following
relations:

D D
[
Ω

D(Ω ), D(Ω ) � D � E .
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With respect to the usual sum and scalar product operations, D is a vector space
on Γ , its null element being the identically zero function. The support of this func-
tion is the empty set.

The convergence in the space D is defined as:

Definition 1.16 The sequence of functions ('i)i�1 � D converges towards ' 2 D ,

and we write 'i
D�! ', if the following conditions are satisfied:

1. 8i 2 N, there is a compact Ω � Rn such that supp('i ), supp(') � Ω ;
2. 8α 2 Nn

0 , Dα'i converges uniformly towards Dα ' on Ω , that is, Dα 'i
u�! Dα'

on Ω .

Thus, the convergence in the space D is reduced to the convergence in the space
D(Ω ).
The vector space D(Rn) endowed with the convergence structure defined above
is called the space of test functions or the Schwartz space. Every element of the
space D will be called a test function.

Example 1.3 The function 'a W Rn ! R, a > 0, defined by

'a(x ) D

8̂<
:̂

exp
�

� a2

a2 � kxk2

�
, kxk < a ,

0 , kxk � a ,
(1.28)

is an element of D(Rn), since 'a 2 C1(Rn) and supp('a ) D fx jx 2 Rn , kxk �
ag D compact.

Example 1.4 Let ' W R ! R be a function defined by

'(x ) D
8<
: exp

�
� jabj

(x � a)(b � x )

�
, x 2 (a, b) ,

0 , x … (a, b) .
(1.29)

It is noted that ' 2 C1(R) has compact support [a, b]. At the points a and b, the
function ' and with its derivatives of any order are zero. Consequently, ' 2 D(R).
The graph of the function is shown in Figure 1.1.

exp
( −4|ab|

(b−a)2

)
y

O a b

x

Figure 1.1
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Also, the function ' W Rn ! R, where

'(x1, . . . , xn) D

8̂<
:̂

nY
iD1

exp
�

� jai b i j
(xi � ai )(bi � xi )

�
, xi 2 (ai , bi) ,

0 , xi … (ai , bi) ,

(1.30)

is a function of the space D(Rn), with the compact support Ωn D [a1, b1]�[a2, b2]�
� � � � [an , bn ].

Example 1.5 Let ('n)n�1 � D(R) be a sequence of functions

'n(x ) D 1
n

'a (x ) D

8̂<
:̂

1
n

exp
�

� a2

a2 � x2

�
, jx j < a, a > 0 ,

0 , jx j � a, a > 0 .
(1.31)

We have 'n
D(R)����! 0, that is, the sequence ('n)n�1 � D(R) converges towards

' D 0 2 D(R) in the space D(R), because 8n 2 N, supp('n) � supp('a) D
compact and (dα/dx α)'n(x )

u�! 0, 8α 2 N0, jx j � a.

Definition 1.17 We say that the function ψ W Rn ! Γ is a multiplier for the space
D if 8' 2 D the mapping ' ! ψ' is continuous from D in D .

Hence, if ψ is a multiplier for space D , then ψ' 2 D , 8' 2 D and 'i
D�! '

implies ψ'i
D�!ψ'.

We can easily check that any function ψ 2 C1(Rn) is a multiplier for space D .
Indeed, since ψ 2 C1(Rn) and ' 2 C1(Rn), ' 2 D(Rn), we apply for-

mula (1.18) and have

Dα (ψ') 2
X

�CγDα

α!
�!γ !

D� ψDγ ', Dα D Dα1
1 . . . Dαn

n , α D (α1, . . . , αn) 2 Nn
0 ,

(1.32)

from which it results that ψ' 2 C1(Rn).
On the other hand, we have supp(ψ') � supp(ψ) \ supp(') � supp(') D Ω D

compact.

Next, we show that 'i
D�! ' implies ψ'i

D�! ψ'. From the expression of the
derivative Dα(ψ') it results

jDα ψ('i � ')j �
X

kγk�kαk

A γ jDγ ('i � ')j , A γ > 0 constants .

Since Dα('i � ')
D�! 0, we obtain jDα ψ('i � ')j D�! 0, hence ψ'i

D�! ψ'.

Theorem 1.1 The partition of unity If ' 2 D and Ui , i D 1, 2, . . . , p , are open and
bounded sets, which form a finite covering of the support function ', then there
exist the functions e i 2 D , i D 1, 2, . . . , p , with the properties:
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1. e i (x ) 2 [0, 1], supp(e i ) � Ui ;

2.
pX

iD1

e i (x) D 1, x 2 supp(');

3. '(x ) D
pX

iD1

e i (x )'(x ).

We note that the partition theorem is frequently used to demonstrate the local prop-
erties of distributions, as well as the operations with them.

1.2.2.5 The Space S (the Space Functions which Decrease Rapidly)

Definition 1.18 We call the test function space S D S(Rn) the set of functions
' W Rn ! Γ , infinitely differentiable, which for kxk ! 1 approach zero together
with all their derivatives of any order, faster than any power of kxk�1.

If ' 2 S , then 8k 2 N and 8� 2 Nn
0 we have

lim
kxk!1

kxkk D�' D 0 .

This means that 8' 2 S , we have ' 2 C1(Rn) and 8α, � 2 Nn
0 , limkxk!1

jx αD�'j D 0, that is, jx αD�'j < Cα,� , where Cα,� are constants.

Example 1.6 An example of a function in S is '(x ) D exp(�akxk2), a > 0, x 2 Rn .
On the other hand, the function '(x ) D exp(�x), x 2 R, does not belong to the
space S(R), since limkxk!�1 jx α'(n)(x )j D limx!�1 jx jα exp(�x ) D 1, 8α 2
N, although limkxk!C1 jx α'(n)(x )j D limx!C1 jx jα exp(�x ) D 0, 8α 2 N0.

Also, the functions '1(x ) D exp(x ), '2(x ) D exp(�jx j), x 2 R do not belong to
the space S(R) because the function '1(x ) does not tend to zero when x ! 1, and
the function '2(x ) is not differentiable at the origin.

Obviously, the space S is a vector space over Γ , having as null element ' D 0, 8x 2
Rn . Between the spaces D,S ,E there exist the relations D � S � E .

Definition 1.19 Let ' 2 S and consider the sequence ('i)i�1 � S . We say that the

sequence of functions ('i )i�1 converges towards ' and write 'i
S�! ' if

8α, � 2 Nn
0 , x �Dα'i

u�! x �Dα' , x 2 Rn . (1.33)

Consequently, if 'i
S�! ', then 8α, � 2 Nn

0 on any compact from Rn we have

x �Dα'i
u�! x �Dα'.

Comparing the convergence of the spaces D and S , D � S , we can state:

Proposition 1.6 The convergence in space D is stronger than the convergence in
space S .

Indeed, if 'i
D�! ', then there is D(Ω ) � D so that 'i

D(Ω )����! ', hence x �Dα'i

converges uniformly towards x �Dα' on any compact from Rn , that is, 'i
S�! '.



1.2 Fundamental Concepts and Formulae 15

Proposition 1.7 The space D is dense in S .

This means that 8' 2 S there is ('i )i�1 � D such that 'i
S�! '.

Also, we can prove that the space D is dense in E .
Regarding the multipliers of the space S , we note that not every infinitely differ-

entiable function is a multiplier.
Thus, the function a(x ) D exp(kxk2) belongs to the class C1(Rn), but it is not

a multiplier of the space S , because considering '(x ) D exp(�kxk2) 2 S , we then
have a(x )'(x ) 
 1 … S .

We note OM the functions of class C1(Rn) such that the function and all its
derivatives do not increase at infinity faster than a polynomial does, hence if ψ 2
OM , then we have

8α 2 Nn
0 , jDα ψj � cα(1 C kxk)mα , (1.34)

where cα > 0, mα � 0 are constants.
It follows that OM is the space of multipliers for S , because if ψ 2 OM and

8' 2 S , then ψ' 2 S and 'i
S�! ' involve ψ'i

S�! ψ'.
Thus, the functions f1(x ) D cos x , f2(x ) D sin x , P(x ) (polynomial in x), x 2 R,

are multipliers for the space S(R).
Consequently, if ' 2 S then 8α, � 2 Nn

0 , x �Dα' 2 S is bounded and integrable
on Rn , hence S � Lp , p � 1.

The spaces of functions with convergence D m(Ω ), D(Ω ), D , E and S will be
called test function spaces, and the functions of these spaces, test functions.

Let Φ be a test function space, so Φ 2 fD m(Ω ), D(Ω ), D , E ,Sg.
We note that the function h(x ) D ex , x 2 R is not a multiplier of the space S(R),

because it increases to infinity faster than a polynomial.

1.2.3
Spaces of Distributions

The concept by which one introduces the notion of distribution is the linear func-
tional one. This method, used by Schwartz, has been proved useful, with wide
applications in various fields of mathematics, mechanics, physics and technology.

Let (E , Γ ), (Y, Γ ) be two vector spaces over the same scalar body Γ and let X � E
be a subspace of (E , Γ ). We shall call the mapping T W X ! Y operator defined
on X with values in Y. The value of the operator T at the point x 2 X will be
denoted by (T, x ) D T(x ) D y 2 Y .

Definition 1.20 The operator T W X ! Y is called linear if and only if

T(α1x1 C α2x2) D α1T(x1) C α2T(x2), 8α1, α2 2 Γ , 8x1, x2 2 X . (1.35)

Thus, if we denote E D C n(Ω ) and Y D C0(Ω ), Ω � R, then the application
T W E ! Y defined by

(T, f ) D a0Dn f C a1Dn�1 f C � � � C an�1 D f C an f , (1.36)
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where f (x ) 2 E , Dk D dk/dx k , ak (x ) 2 C0(Ω ), k D 0, 1, 2, . . . , n is a linear opera-
tor on E.

The operator (1.36) expressed by means of derivatives D j is called linear differ-
ential operator with variable coefficients or polynomial differential operator and we
also note P(D).

The operator T W C0[a, b] ! C1[a, b] defined by

(T, f ) D
xZ

a

f (t)dt , x 2 [a, b] , (1.37)

is an integral operator. It is shown that it is an integral operator.
A particular class of operators is formed by functionals. Thus, if the domain Y in

which the linear operator T takes values is Γ , Y D Γ , then the operator

T W X � E ! Γ (1.38)

will be called functional.
The functional T will be called real or complex as its value (T, x ) at the point

x 2 X is a real or complex number.
We say that the functional (1.38) is linear if it satisfies the condition of linearity

of an operator (1.35).

Definition 1.21 A continuous linear functional defined on a space of test functions
Φ 2 fDm(Ω ),D(Ω ),D, E ,Sg is called distribution.

This definition involves the fulfillment of the following conditions:

1. To any function ' 2 Φ we associate according to some rule f, a complex num-
ber ( f, ') 2 Γ ;

2. 8λ1, λ2 2 Γ , 8'1, '2 2 Φ , ( f, λ1'1 C λ2'2) D λ1( f, '1) C λ2( f, '2);

3. If ('i )i�1 2 Φ , ' 2 Φ and 'i
Φ�! ', then limi ( f, 'i ) D ( f, ').

The first condition expresses the fact that it is a functional, the second condition
corresponds to the linearity of the functional, whereas the third condition expresses
its continuity.
The set of distributions defined on Φ is denoted by Φ 0 and can be organized as a
vector space over the field of scalars Γ .

For this purpose, we define the sum of two distributions and the product of a
distribution with a scalar as follows:

8 f , g 2 Φ 0 , 8' 2 Φ , ( f C g, ') D ( f, ') C (g, ') , (1.39)

8α 2 Γ , 8' 2 Φ , 8 f 2 Φ 0 , (α f, ') D α( f, ') . (1.40)

It can be verified immediately that the functional α f C �g is linear and contin-
uous, hence it is a distribution from Φ 0.


