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Preface

It’s remarkable how often we, the authors, have had a similar experience. At a
conference, or during a break at a technical meeting, someone asks “can you
recommend a good book about CMGs and reaction wheels?”

The answer is always about the same: “Well, there’s this spacecraft dynamics
book and that spacecraft design book, and the new edition of that old reference book
we all use, but none of them really talk about momentum control in any depth. You
probably already know as much as you’ll find there.” Then there’s a pause. “Not
that those books are bad; I'm not saying that. They’re a decent start for a certain
audience, such as students who have never worked on a flight program.”

“How about academic articles?”

“Sure, there are a few helpful survey papers and some useful older stuff—
especially from the *70s. For some reason they really seemed to know what they
were doing back then.” Another awkward pause. “I don’t really want to go digging
into all that.” Then, inevitably, “maybe you should just write a book.”

So that’s what we did.

The reader will find that this book differs from other books on spacecraft
dynamics and control. Others provide a broad overview of actuators, sensors, and
feedback-control architectures without ever going into these important matters
of implementation. And while there exist whole books on propulsive actuators,
offering useful depth in the design and operation of rocket engines such as those
used for reaction control, there is nothing analogous for momentum actuators.
But omitting momentum actuators from a treatment of spacecraft design is like
explaining all about automobiles, except for the engine and the transmission. So,
finally, there’s a book that addresses the crucial matters of what kind and how many
momentum devices to implement, how they should be sized, and how to control the
array of them.

This book is an effort to offer a complete picture of momentum actuators—
spinning rotors and gimbaled devices—for use in attitude control of spacecraft.
It’s a picture that combines our diverse experience in government space systems
(satellites for the Air Force, Navy, and NASA) as well as in the commercial space
industry and academia. The scope of this book extends from electromechanical
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details of individual actuators to space-system architecture issues of interest in
spacecraft concept development. We discuss the foundational rigid- and flexible-
body dynamics, the subtle mathematics of steering multiple devices within an array,
and the applications of these technologies.

These momentum actuators are at the heart of contemporary spacecraft that
perform Earth imaging. The rapid growth of commercial success in this application
area since the beginning of the twenty-first century is ultimately due to the
technological capabilities that these actuators offer. In the decades to come, our
industry is likely to see new applications: asteroid mining, in-orbit servicing and
repair of satellites, and new human-space missions, all of which will require high
torque and momentum storage. Small spacecraft, now the most commonly launched
type of satellite, are only just beginning to incorporate sophisticated momentum
control, thanks to entrepreneurial investment and a new generation of passionate
spacecraft technologists. The momentum devices described in this book enable
contemporary spacecraft and will make the future possible.

The authors hope that the breadth of information offered here, most of which
has never been collected in one place, will serve the needs of this new generation
of spacecraft engineers. And, at least as important, we’ll have an answer to that
perennial question, “‘can you recommend a book about this stuff?”

Kirtland A.F.B., NM, USA Frederick A. Leve
Glendale, AZ, USA Brian J. Hamilton
Ithaca, NY, USA Mason A. Peck
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Chapter 1
Introduction

1.1 Spacecraft Design, Commercial Space, and Angular
Momentum

The WorldView 1 Spacecraft shown in Fig. 1.1, successfully reached orbit on
September 18, 2007.

Ball Aerospace, the prime contractor, and DigitalGlobe, the owner and operator
of the satellite, celebrated this event as a technical success and commemorated
the occasion with a press release that called it “a major contribution towards the
advancement of the commercial remote-sensing industry by providing higher col-
lection capabilities, more frequent revisit time, and greater imaging flexibility” (Ball
Aerospace [1]). This satellite is one of several that now provides commercial earth
imagery for customers that include Google Earth. It is an agile satellite, meaning
that the satellite achieves comparatively high angular rates and accelerations. As a
commercial agile spacecraft, it is the first of its kind.

A technology known as the control-moment gyroscope (CMG) makes Worldview
uniquely agile. Until WorldView’s launch, the USA and Russian governments were
the only owner/operators of spacecraft that use this technology. Examples include
NASA’s Skylab, the Soviet/Russian space station MIR, and the International Space
Station. These momentum-control devices enable spacecraft to absorb large external
torque disturbances and to slew payloads quickly from one attitude to another.
Power is a precious resource on even the largest spacecraft. So, the fact that CMGs
apply these high torques with tens to hundreds of times greater power efficiency
than other momentum actuators makes them an appealing choice in the design of
contemporary earth-observation spacecraft.

© Springer International Publishing Switzerland 2015 1
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Fig. 1.2 OrbView 4 Satellite (Image Courtesy of Orbital ATK)

Other commercial agile satellites, such as Orbview (see Fig. 1.2), DigitalGlobe’s
QuickBird (Fig. 1.3), Ikonos (Fig. 1.4), and GeoEye (Fig. 1.5), depend not on CMGs
but high-torque reaction wheel assemblies (RWAs) as attitude-control actuators. By
2007, RWAs had been used for decades, in a variety of applications, despite that
CMGs were known to offer orders-of-magnitude higher torque for the power. With
the launch of WorldView I, momentum-control technologies that had been used
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Fig. 1.3 QuickBird satellite (Image Courtesy of DigitalGlobe Inc.)

Fig. 1.4 Ikonos Spacecraft (Image Courtesy of GeoEye/DigitalGlobe)

only for government-sponsored spacecraft programs entered the commercial realm.
Honeywell International provides the CMGs for the WorldView spacecraft. Ball
was Honeywell’s first commercial customer for its M95 CMGs, the smallest flight-
qualified class of CMG available at that time.



4 1 Introduction

Fig. 1.5 GeoEye Spacecraft (Image Courtesy of GeoEye/DigitalGlobe)

Now, nearly a decade later, CMG technologies are not only mainstream in
commercial Earth observation, they are also appearing in new applications. CMGs
have found their way into small spacecraft with scientific objectives, such as Cornell
University’s Violet nanosatellite shown in Fig. 1.6.

Violet is a 50 kg spacecraft with an ultraviolet spectrometer that is designed to
make observations of the Earth’s upper atmosphere to help astronomers calibrate
observations of exoplanets. It has eight small CMGs, built by Goodrich Corpo-
ration. Honeybee Robotics has created golf-ball size CMGs suitable for 10-40kg
nanosatellites. The University of Florida built and launched similarly small CMGs
(see Sect.4.8). And Honeywell’s miniature momentum control system (MMCS)
provides a plug-and-play solution for 100-1000kg spacecraft that require high-
precision pointing performance (see Sect. 2.1.4).
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Fig. 1.6 Violet nanosatellite (Image Courtesy of Cornell University)

1.2 Momentum Control Devices and Attitude Control
Systems

Spacecraft attitude control involves sensors and actuators, along with a feedback-
control architecture that embraces the subtleties of spaceflight dynamics. Sensors
such as star trackers and rate gyroscopes measure spacecraft motion, which on-
board computers compare to desired kinematics. To correct this error, i.e., the
difference between the measured and desired state, actuators such as momentum-
control devices and thrusters apply torques to the spacecraft. The nature of these
actuators—their torque and momentum capabilities, as well as their precision and
speed of response—determines their usefulness for the range of missions that
spacecraft are intended to achieve.

This book focuses on CMGs and RWAs, which are known as momentum-control
devices. A spacecraft typically includes several such devices in an array. This array
of actuators, along with electronics, high-level software, structural components, and
possibly vibration isolators, comprises a momentum-control system (MCS). In turn,
an MCS is part of the attitude-control system for a spacecraft. Figure 1.7 is a diagram
that shows the relationships among these many nested elements.

Momentum devices produce torque by changing their stored angular momentum,
realized in a spinning disc. Because momentum is a vector quantity, the product of
angular velocity and inertia, there are two ways to effect this change. The simplest
way is exploited in an RWA. The vector direction of the angular momentum of
an RWA bolted to the spacecraft is constant-fixed in a spacecraft-fixed reference
frame. The length or magnitude of the momentum vector changes as the wheel spins
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Fig. 1.7 Attitude-control centric view of spacecraft subsystems

faster or slower. In the case of a CMG, the wheel speed (and thus the magnitude of
the momentum vector) is relatively constant, but a gimbal tilts the spinning rotor
to change the direction of the momentum vector. The trades between these two
technologies are many, and this book discusses them at some length. In each case,
the device can store momentum up to a design maximum. That maximum value
exists because a rotor of a given size is designed to spin at some maximum speed,
typically determined by the tensile-strength limit of the rotor’s material and its
geometry. Going beyond that speed would incur excessive mechanical stress and
fatigue, resulting in failure. Diagrams of a CMG and RWA are shown in Figs. 1.8
and 1.9.

The spinning rotors in an MCS serve two functions: momentum storage and
torque application. From elementary physics, the MCS accumulates momentum as it
imparts torque to the spacecraft (or reacts torque from the spacecraft, depending on
one’s perspective). This torque is internal, in the sense that the angular momentum
of the overall spacecraft is a constant, regardless of what the MCS is doing. The
MCS and the spacecraft body exchange angular momentum, but none is created.
In this respect, an MCS is fundamentally different from a reaction-control system
comprised of thrusters or jets. Momentum devices offer clear benefits in spacecraft
design: years of operation without expending resources, the highest precision of any
actuator, and freedom to place these actuators anywhere in the bus structure. But
these benefits come with limitations. In a thruster-based system, the thrusters can
apply torque in a given direction until the expendables have been exhausted, which
may be hours to months. However, an MCS can apply torque in a single direction for
only a limited time because the hardware can only accumulate a limited amount of
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Fig. 1.8 Key components of a single-Gimbal CMG (Image Courtesy of Honeywell, Inc.)
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Fig. 1.9 Key components of a reaction wheel (Bialke [2])



