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Preface

During the academic year 2010–2011, the Ohio State University Mathematics
Department hosted a special year on geometric group theory. Over the course of the
year, four-week-long workshops, two weekend conferences, and a week-long
conference were held, each emphasizing a different aspect of topology and/or
geometric group theory. Overall, approximately 80 international experts passed
through Columbus over the course of the year, and the talks covered a large swath
of the current research in geometric group theory. This volume contains contri-
butions from the workshop on “Topology and geometric group theory,” held in
May 2011.

One of the basic questions in manifold topology is the Borel Conjecture, which
asks whether the fundamental group of a closed aspherical manifold determines the
manifold up to homeomorphism. The foundational work on this problem was
carried out in the late 1980s by Farrell and Jones, who reformulated the problem in
terms of the K-theoretic and L-theoretic Farrell–Jones Isomorphism Conjectures
(FJIC). In the mid-2000s, Bartels, Lück, and Reich were able to vastly extend the
techniques of Farrell and Jones. Notably, they were able to establish the FJICs (and
hence the Borel Conjecture) for manifolds whose fundamental groups were
Gromov hyperbolic. Lück reported on this progress at the 2006 ICM in Madrid. At
the Ohio State University workshop, Arthur Bartels gave a series of lectures
explaining their joint work on the FJICs. The write-up of these lectures provides a
gentle introduction to this important topic, with an emphasis on the techniques of
proof.

Staying on the theme of the Farrell–Jones Isomorphism Conjectures, Daniel
Juan-Pineda and Jorge Sánchez Saldaña contributed an article in which both the
K- and L-theoretic FJIC are verified for the braid groups on surfaces. These are the
fundamental groups of configuration spaces of finite tuples of points, moving on the
surface. Braid groups have been long studied, both by algebraic topologists, and by
geometric group theorists.

A major theme in geometric group theory is the study of the behavior “at
infinity” of a space (or group). This is a subject that has been studied by geometric
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topologists since the 1960s. Indeed, an important aspect of the study of open
manifolds is the topology of their ends. The lectures by Craig Guilbault present
the state of the art on these topics. These lectures were subsequently expanded into
a graduate course, offered in Fall 2011 at the University of Wisconsin (Milwaukee).

An important class of examples in geometric group theory is given by CAT(0)
cubical complexes and groups acting geometrically on them. Interest in these has
grown in recent years, due in large part to their importance in 3-manifold theory
(e.g., their use in Agol and Wise’s resolution of Thurston’s virtual Haken conjec-
ture). A number of foundational results on CAT(0) cubical spaces were obtained in
Michah Sageev’s thesis. In his contributed article Daniel Farley gives a new proof
of one of Sageev’s key results: any hyperplane in a CAT(0) cubical complex
embeds and separates the complex into two convex sets.

One of the powers of geometric group theory lies in its ability to produce,
through geometric or topological means, groups with surprising algebraic proper-
ties. One such example was Burger and Mozes’ construction of finitely presented,
torsion-free simple groups, which were obtained as uniform lattices inside the
automorphism group of a product of two trees (a CAT(0) cubical complex!). The
article by Pierre-Emmanuel Caprace and Bertrand Rémy introduces a geometric
argument to show that some nonuniform lattices inside the automorphism group of
a product of trees are also simple.

An important link between algebra and topology is provided by the cohomology
functors. Our final contribution, by Peter Kropholler, contributes to our under-
standing of the functorial properties of group cohomology. He considers, for a fixed
group G, the set of integers n for which the group cohomology functor HnðG;�Þ
commutes with certain colimits of coefficient modules. For a large class of groups,
he shows this set of integers is always either finite or cofinite.

We hope these proceedings provide a glimpse of the breadth of mathematics
covered during the workshop. The editors would also like to take this opportunity to
thank all the participants at the workshop for a truly enjoyable event.

Columbus, OH, USA Michael W. Davis
December 2015 James Fowler

Jean-Francois Lafont
Ian J. Leary
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Chapter 1
On Proofs of the Farrell–Jones Conjecture

Arthur Bartels

Abstract These notes contain an introduction to proofs of Farrell–Jones Conjecture
for some groups and are based on talks given in Ohio, Oxford, Berlin, Shanghai,
Münster and Oberwolfach in 2011 and 2012.

Keywords K -theory · L-theory · Controlled topology · Controlled algebra ·
Geodesic flow · CAT(0)-Geometry

Introduction

Let R be a ring andG be a group. TheFarrell–JonesConjecture [25] is concernedwith
the K - and L-theory of the group ring R[G]. Roughly it says that theK- and L-theory
of R[G] is determined by the K - and L-theory of the rings R[V ]where V varies over
the family of virtually cyclic subgroups of G and group homology. The conjecture
is related to a number of other conjectures in geometric topology and K -theory,
most prominently the Borel Conjecture. Detailed discussions of applications and the
formulation of this conjecture (and related conjectures) can be found in [10, 32–35].

These notes are aimed at the reader who is already convinced that the
Farrell–Jones Conjecture is a worthwhile conjecture and is interested in recent
proofs [3, 6, 9] of instances of this Conjecture. In these notes I discuss aspects
or special cases of these proofs that I think are important and illustrating. The dis-
cussion is based on talks given over the last two years. It will be much more informal
than the actual proofs in the cited papers, but I tried to provide more details than I
usually do in talks. I took the liberty to express opinion in some remarks; the reader
is encouraged to disagree with me. The cited results all build on the seminal work
of Farrell and Jones surrounding their conjecture, in particular, their introduction of
the geodesic flow as a tool in K - and L-theory [23]. Nevertheless, I will not assume
that the reader is already familiar with the methods developed by Farrell and Jones.

A. Bartels (B)
Mathematisches Institut, Westfälische Wilhelms-Universität Münster,
Einsteinstr. 62, 48149 Münster, Germany
e-mail: a.bartels@uni-muenster.de

© Springer International Publishing Switzerland 2016
M.W. Davis et al. (eds.), Topology and Geometric Group Theory,
Springer Proceedings in Mathematics & Statistics 184,
DOI 10.1007/978-3-319-43674-6_1
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2 A. Bartels

Abrief summaryof these notes is as follows. Section1.1 contains a brief discussion
of the statement of the conjecture. The reader is certainly encouraged to consult
[10, 32–35] for much more details, motivation and background. Section1.2 contains
a short introduction to geometric modules that is sufficient for these notes. Three
axiomatic results, labeled Theorems A, B and C, about the Farrell–Jones Conjecture
are formulated in Sect. 1.3. Checking for a group G the assumptions of these results
is never easy. Nevertheless, the reader is encouraged to find further applications
of them. In Sect. 1.4 an outline of the proof of Theorem A is given. Section1.5
describes the role of flows in proofs of the Farrell–Jones Conjecture. It also contains
a discussion of the flow space for CAT(0)-groups. Finally, in Sect. 1.6 an application
of Theorem C to some groups of the form Z

n
� Z is discussed.

1.1 Statement of the Farrell–Jones Conjecture

Classifying Spaces for Families

Let G be a group. A family of subgroups of G is a non-empty collection F of
subgroups of G that is closed under conjugation and taking subgroups. Examples
are the family Fin of finite subgroups, the family Cyc of cyclic subgroups, the family
of virtually cyclic subgroups VCyc, the family Ab of abelian subgroups, the family
{1} consisting of only the trivial subgroup and the family All of all subgroups. If
F is a family, then the collection VF of all V ⊆ G which contain a member of
F as a finite index subgroup is also a family. All these examples are closed under
abstract isomorphism, but this is not part of the definition. If G acts on a set X then
{H ≤ G | XH �= ∅} is a family of subgroups.

Definition 1.1.1 A G-CW -complex E is called a classifying space for the family
F , if EH is non-empty and contractible for all H ∈ F and empty otherwise.

Such aG-CW -complex always exists and is unique up toG-equivariant homotopy
equivalence. We often say such a space E is a model for EFG; less precisely we
simply write E = EFG for such a space.

Example 1.1.2 Let F be a family of subgroups. Consider the G-set S := ∐
F∈F

G/F . The full simplicial complex Δ(S) spanned by S (i.e., the simplicial complex
that contains a simplex for every non-empty finite subset of S) carries a simplicial
G-action. The isotropy groups of vertices of Δ(S) are all members ofF , but for an
arbitrary point of Δ(S) the isotropy group will only contain a member of F as a
finite index subgroup. The first barycentric subdivision ofΔ(S) is aG-CW -complex
and it is not hard to see that it is a model for EVFG.

This construction works for any G-set S such that F = {H ≤ G | SH �= ∅}.
More information about classifying spaces for families can be found in [31].
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Statement of the Conjecture

The original formulation of the Farrell–Jones Conjecture [25] used homology with
coefficients in stratified and twisted Ω-spectra. We will use the elegant formulation
of the conjecture developed by Davis and Lück [21]. Given a ring R and a group G
Davis–Lück construct a homology theory for G-spaces

X �→ HG
∗ (X; KR)

with the property that HG∗ (G/H ; KR) = K∗(R[H ]).
Definition 1.1.3 Let F be a family of subgroups of G. The projection EFG �
G/G to the one-point G-space G/G induces the F -assembly map

αF : HG
∗ (EFG; KR) → HG

∗ (G/G; KR) = K∗(R[G]).

Conjecture 1.1.4 (Farrell–Jones Conjecture) For all groups G and all rings R the
assembly map αVCyc is an isomorphism.

Remark 1.1.5 Farrell–Jones really only conjectured this for R = Z. Moreover, they
wrote (in 1993) that they regard this and related conjectures only as estimates which
best fit the known data at this time. It still fits all known data today.

For arbitrary rings the conjecture was formulated in [2]. The proofs discussed in
this article all work for arbitrary rings and it seems unlikely that the conjecture holds
for R = Z and all groups, but not for arbitrary rings.

Remark 1.1.6 Let F be a family of subgroups of G. If R is a ring such that
K∗R[F] = 0 for all F ∈ F , then HG∗ (EFG; KR) = 0.

In particular, the Farrell–Jones Conjecture predicts the following: if R is a ring
such that K∗(R[V ]) = 0 for all V ∈ VCyc then K∗(R[G]) = 0 for all groups G.

Transitivity Principle

The family in the Farrell–Jones Conjecture is fixed to be the family of virtually
cyclic groups. Nevertheless, it is beneficial to keep the family flexible, because of
the following transitivity principle [25, A. 10].

Proposition 1.1.7 Let F ⊆ H be families of subgroups of G. Write F ∩ H for
the family of subgroups of H that belong toF . Assume that

(a) αH : HG∗ (EH G; KR) → K∗(R[G]) is an isomorphism,
(b) αF∩H : HH∗ (EF∩H H ; KR) → K∗(R[H ]) is an isomorphism for all H ∈ H .

Then αF : HG∗ (EFG; KR) → K∗(R[G]) is an isomorphism.

Remark 1.1.8 The following illustrates the transitivity principle.
Assume that R is a ring such that K∗(R[F]) = 0 for all F ∈ F . Assumemoreover

that the assumptions of Proposition 1.1.7 are satisfied. Combining Remark 1.1.6
with (b) we conclude K∗(R[H ]) = 0 for all H ∈ H . Then combining Remark 1.1.6
with (a) it follows that K∗(R[G]) = 0.
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Remark 1.1.9 The transitivity principle can be used to prove the Farrell–Jones Con-
jecture for certain classes by induction. For example the proof of the Farrell–Jones
Conjecture for GLn(Z) uses an induction on n [11]. Of course the hard part is still
to prove in the induction step that αFn−1 is an isomorphism for GLn(Z) where the
familyFn−1 contains only groups that can be build from GLn−1(Z) and poly-cyclic
groups. The induction step uses TheoremB from Sect. 1.3. See also Remark1.5.18.

More General Coefficients

Farrell and Jones also introduced a generalization of their conjecture now called the
fibered Farrell–Jones Conjecture. This version of the conjecture is often not harder to
prove than the original conjecture. Its advantage is that it has better inheritance prop-
erties. An alternative to the fibered conjecture is to allow more general coefficients
where the group can act on the ring. As K -theory only depends on the category
of finitely generated projective modules and not on the ring itself, it is natural to
also replace the ring by an additive category. We briefly recall this generalization
from [13].

Let A be an additive category with a G-action. There is a construction of an
additive category A [G] that generalizes the twisted group ring for actions of G
on a ring R. (In the notation of [13, Definition 2.1] this category is denoted as
A ∗G G/G;A [G] is amore descriptive name for it.) There is also a homology theory
HG∗ (−; KA ) forG-spaces such that HG∗ (G/H ; KA ) = K∗(A [H ]). Therefore there
are assembly maps

αF : HG
∗ (EFG; KA ) → HG

∗ (G/G; KA ) = K∗(A [G]).

Conjecture 1.1.10 (Farrell–Jones Conjecture with coefficients) For all groups G
and all additive categories A with G-action the assembly map αVCyc is an isomor-
phism.

An advantage of this version of the conjecture is the following inheritance prop-
erty.

Proposition 1.1.11 Let N � G � Q be an extension of groups. Assume that Q and
all preimages of virtually cyclic subgroups under G � Q satisfies the Farrell–Jones
Conjecture with coefficients 1.1.10. Then G satisfies the Farrell–Jones Conjecture
with coefficients 1.1.10.

Remark 1.1.12 Proposition 1.1.11 can be used to prove the Farrell–Jones Conjecture
with coefficients for virtually nilpotent groups using the conjecture for virtually
abelian groups, compare [10, Theorem 3.2].

It can also be used to reduce the conjecture for virtually poly-cyclic groups to
irreducible special affine groups [3, Sect. 3]. The latter class consists of certain groups
G for which there is an exact sequence Δ → G → D, where D is infinite cyclic or
the infinite dihedral group and Δ is a crystallographic group.
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Remark 1.1.13 For additive categories with G-action the consequence from
Remark 1.1.6 becomes an equivalent formulation of the conjecture: A group G sat-
isfies the Farrell–Jones Conjecture with coefficients 1.1.10 if and only if for additive
categories B with G-action we have

K∗(B[V ]) = 0 for all V ∈ VCyc =⇒ K∗(B[G]) = 0.

(This follows from [9, Proposition3.8] because the obstruction category
OG(EFG;A ) is equivalent to B[G] for some B with K∗(B[F]) = 0 for all
F ∈ F .)

In particular, surjectivity implies bijectivity for the Farrell–Jones Conjecture with
coefficients.

Remark 1.1.14 The Farrell–Jones Conjecture 1.1.4 should be viewed as a conjecture
about finitely generated groups. If it holds for all finitely generated subgroups of a
group G, then it holds for G. The reason for this is that the conjecture is stable under
directed unions of groups [27, Theorem 7.1].

With coefficients the situation is even better. This version of the conjecture is
stable under directed colimits of groups [4, Corollary 0.8]. Consequently the Farrell–
Jones Conjecture with coefficients holds for all groups if and only if it holds for all
finitely presented groups, compare [1, Corollary 4.7]. It is therefore a conjecture
about finitely presented groups.

Despite the usefulness of this more general version of the conjecture I will mostly
ignore it in this paper to keep the notation a little simpler.

L-Theory

There is a version of the Farrell–Jones Conjecture for L-Theory. For some applica-
tions this is very important. For example the Borel Conjecture asserting the rigidity
of closed aspherical topological manifolds follows in dimensions ≥5 via surgery
theory from the Farrell–Jones Conjecture in K - and L-theory. The L-theory version
of the conjecture is very similar to the K -theory version. Everything said so far about
the K -theory version also holds for the L-theory version.

For some time proofs of the L-theoretic Farrell–Jones conjecture have been con-
siderably harder than their K -theoretic analoga. Geometric transfer arguments used
in L-theory are considerably more involved than their counterparts in K -theory. A
change that came with considering arbitrary rings as coefficients in [2], is that trans-
fers became more algebraic. It turned out [6] that this more algebraic point of view
allowed for much easier L-theory transfers. (In essence, because the world of chain
complexes with Poincaré duality is much more flexible than the world of manifolds.)
This is elaborated at the end of Sect. 1.4.

I think that it is fair to say that, as far as proofs are concerned, there is as at
the moment no significant difference between the K -theoretic and the L-theoretic
Farrell–Jones Conjecture. For this reason L-theory is not discussed in much detail
in these notes.
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1.2 Controlled Topology

The Thin h-Cobordism Theorem

An h-cobordism W is a compact manifold whose boundary is a disjoint union ∂W =
∂0W  ∂1W of closed manifolds such that the inclusions ∂0W → W and ∂1W → W
are homotopy equivalences. If M = ∂0W , then we sayW is an h-cobordism over M .
If W is homeomorphic to M×[0, 1], then W is called trivial.

Definition 1.2.1 Let M be a closed manifold with a metric d. Let ε ≥ 0.
An h-cobordism W over M is said to be ε-controlled over M if there exists a

retraction p : W → M for the inclusion M → W and a homotopy H : idW → p
such that for all x ∈ W the track

{p(H(t, x)) | t ∈ [0, 1]} ⊆ M

has diameter at most ε.

Remark 1.2.2 Clearly, the trivial h-cobordism is 0-controlled. Thus it is natural to
think of being ε-controlled for small ε as being close to the trivial h-cobordism.

The following theorem is due to Quinn [39, Theorem2.7]. See [18, 19, 28] for
closely related results by Chapman and Ferry.

Theorem 1.2.3 (Thin h-cobordism theorem) Assume dim M ≥ 5. Fix a metric d
on M (generating the topology of M).

Then there is ε > 0 such that all ε-controlled h-cobordisms over M are trivial.

Remark 1.2.4 Farrell–Jones used the thin h-cobordism Theorem1.2.3 and general-
izations thereof to study K∗(Z[G]), ∗ ≤ 1. For example in [23] they used the geo-
desic flow of a negatively curved manifold M to show that any element in Wh(π1M)

could be realized by an h-cobordism that in turn had to be trivial by an application
of (a generalization of) the thin h-cobordism theorem. Thus Wh(π1M) = 0. In later
papers they replaced the thin h-cobordism theorem by controlled surgery theory and
controlled pseudoisotopy theory.

The later proofs of the Farrell–Jones Conjecture that we discuss here do not
depend on the thin h-cobordism theorem, controlled surgery theory or controlled
pseudoisotopy theory, but on a more algebraic control theory that we discuss in the
next subsection.

An Algebraic Analog of the Thin h-Cobordism Theorem

Geometric groups (later also called geometric modules) were introduced by Connell-
Hollingsworth [20]. The theorywas developedmuch further by, among others, Quinn
and Pedersen and is sometimes referred to as controlled algebra. A very pleasant
introduction to this theory is given in [37].

Let R be a ring and G be a group.
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Definition 1.2.5 Let X be a free G-space and p : X → Z be a G-map to a metric
space with an isometric G-action.

(a) A geometric R[G]-module over X is a collection (Mx )x∈X of finitely generated
free R-modules such that the following two conditions are satisfied.

– Mx = Mgx for all x ∈ X , g ∈ G.
– {x ∈ X | Mx �= 0} = G · S0 for some finite subset S0 of X .

(b) Let M and N be geometric R[G]-modules over X . Let f : ⊕
x∈X Mx →⊕

x∈X Nx be an R[G]-linear map (for the obvious R[G]-module structures).
Write fx ′′,x ′ for the composition

Mx ′ �
⊕

x∈X
Mx

f−→
⊕

x∈X
Nx � Nx ′′ .

The support of f is defined as supp f := {(x ′′, x ′) | fx ′′,x ′ �= 0} ⊆ X×X . Let
ε ≥ 0. Then f is said to be ε-controlled over Z if

dZ (p(x ′′), p(x ′)) ≤ ε for all (x ′′, x ′) ∈ supp f.

(c) Let M be a geometric R[G]-module over X . Let f : ⊕
x∈X Mx → ⊕

x∈X Mx

be an R[G]-automorphism. Then f is said to be an ε-automorphism over Z if
both f and f −1 are ε-controlled over Z .

Remark 1.2.6 Geometric R[G]-modules over X are finitely generated free R[G]-
modules with an additional structure, namely an G-equivariant decomposition into
R-modules indexed by points in X . This additional structure is not used to change the
notion of morphisms which are still R[G]-linear maps. But this structure provides
an additional point of view for R[G]-linear maps: the set of morphisms between two
geometric R[G]-modules now carries a filtration by control.

A good (and very simple) analog is the following. Consider finitely generated
free R-modules. An additional structure one might be interested in are bases for
such modules. This additional information allows us to view R-linear maps between
them as matrices.

Controlled algebra is really not much more than working with (infinite) matrices
whose index set is a (metric) space. Nevertheless this theory is very useful and
flexible.

It is a central theme in controlled topology that sufficiently controlled obstructions
(for example Whitehead torsion) are trivial. Another related theme is that assembly
maps can be constructed as forget-control maps. In this paper we will use a variation
of this theme for K1 of group rings over arbitrary rings. Before we can state it we
briefly fix some conventions for simplicial complexes.

Convention 1.2.1 Let F be a family of subgroups of G. By a simplicial (G,F )-
complex we shall mean a simplicial complex E with a simplicial G-action whose
isotropy groups Gx = {g ∈ G | g · x = x} belong toF for all x ∈ E.
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Convention 1.2.2 We will always use the l1-metric on simplicial complexes. Let
Z (0) be the vertex set of the simplicial complex Z. Then every element z ∈ Z can be
uniquely written as z = ∑

v∈Z (0) zv · v where zv ∈ [0, 1], all but finitely many zv are
zero and

∑
v∈Z (0) zv = 1. The l1-metric on Z is given by

d1
Z (z, z′) =

∑

v∈V
|zv − z′

v|.

Remark 1.2.7 If E is a simplicial complex with a simplicial G-action such that
the isotropy groups Gv belong to F for all vertices v ∈ E (0) of E , then E is a
simplicial (G, VF )-complex, where VF consists of all subgroups H of G that
admit a subgroup of finite index that belongs toF .

Theorem 1.2.8 (Algebraic thin h-cobordism theorem) Given a natural number N,
there is εN > 0 such that the following holds: Let

(a) Z be a simplicial (G,F )-complex of dimension at most N ,
(b) p : X → Z be a G-map, where X is a free G-space,
(c) M be a geometric R[G]-module over X,
(d) f : M → M be an εN -automorphism over Z (with respect to the l1-metric on Z).

Then the K1-class [ f ] of f belongs to the image of the assembly map

αF : HG
1 (EFG; KR) → K1(R[G]).

Remark 1.2.9 I called Theorem 1.2.8 the algebraic thin h-cobordism theorem here,
because it can be used to prove the thin h-cobordism theorem. Very roughly, this
works as follows. Let W be an ε-thin h-cobordism over M . Let G = π1M = π1W .
TheWhitehead torsion ofW can be constructed using the singular chain complexes of
the universal covers W̃ and M̃ . This realizes theWhitehead torsion τW ∈ Wh(G)ofW
by an ε̃-automorphism fW over M̃ , i.e. [ fW ]maps to τW under K1(Z[G]) → Wh(G).
Moreover, ε̃ can be explicitly bounded in terms of ε, such that ε̃ → 0 as ε → 0.
Because M̃ is a freeG = π1M-space it follows fromTheorem1.2.8 that [ fW ] belongs
to the image of the assembly map α : HG

1 (EG, KZ) → K1(Z[G]). But Wh(G) is
the cokernel of α and therefore τW = 0. This reduces the thin h-cobordism theorem
to the s-cobordism theorem.

I believe that—at least in spirit—this outline is very close to Quinn’s proof in [39].

Remark 1.2.10 If f : M → M ′ is ε-controlled over Z and f ′ : M ′ → M ′′ is
ε′-controlled over Z , then their composition f ′ ◦ f is ε + ε′-controlled. In particu-
lar, there is no category whose objects are geometric modules and whose morphisms
are ε-controlled for fixed (small) ε. However, there are very elegant substitutes for
this ill-defined category. These are built by considering a variant of the theory over
an open cone over Z and taking a quotient category. In this quotient category every
morphisms has for every ε > 0 an ε-controlled representative. Pedersen–Weibel [38]
used this to construct homology of a space E with coefficients in the K -theory spec-
trum as the K -theory of an additive category. Similar constructions can be used to


