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Preface 
 
 
 
 
 
 
 
 
 
 
Mathematical truth remains uninfluenced by speculation or perspective, and its truth and real-
ity transcend time and space. Mathematical theories do not allow for vagueness or compro-
mise. Therefore, once a theory has been constructed on the basis of its proof, it cannot be al-
tered by anyone. Furthermore, everyone can admire the beautiful fruit borne of mathematical 
theories, no matter what their race, age, religious beliefs, historical views or perception of life 
may be.  
 The authors of this book aim to demonstrate the elegant mathematical proofs of various 
theorems to as many people as possible, especially to university students. Additionally, this 
book was written so that readers can enjoy discovering new theories, regardless of their sim-
plicity. 
 One of the motivating factors behind this book was the fact that we have been involved in 
mathematical programs on television and radio for over two decades and have found that 
many viewers and listeners were tired of the dull math taught in school. We strove to engage 
the audience’s senses to demonstrate how wonderful math can be. In the programs we tried as 
much as possible to avoid any top-down teaching methods. We wanted viewers to discover 
the processes by which the founders of the theories came to their various conclusions – their 
trials, errors, and tribulations. 
 We have always kept in mind the words of Ernest Rutherford, “If you can’t explain a re-
sult in simple, nontechnical terms, then you don’t really understand it.” In other words, “you 
don’t really understand it” means not that your result is wrong, but that you do not fully un-
derstand its origin, meaning, or implications. 
 Fortunately, as a result of our approach, many viewers have told us that for the first time 
in their lives they understood the joy of mathematics. However, there are still many theories 
that are difficult to grasp no matter how much they are broken down. Generally speaking, in 
order to understand complex theories it is imperative to have a high level of knowledge and 
understanding of abstract concepts. At the same time we cannot enjoy or be grateful for such 
theories unless we fully recognize the significance of the theories themselves.  
 There are large, beautiful, unusual flowers on the peaks of high mountains, but there are 
also common flowers such as violets, bellflowers and dandelions that are just as beautiful on 
the small hills near our houses. Similarly, in this book we highlight and focus on wisdom 
taken from daily life – such as examples from various works of art, traditional crafts, patterns 
that appear in nature, music, and mathematical mechanisms in techniques that craftspeople 
use. This book is written in a style that unearths the mathematical theories buried in our eve-
ryday lives. Our goal is for our readers to enjoy the process of applying mathematical rules to 
beautiful art and design by highlighting examples of wonders and mysteries from our daily 
lives. To fulfill these aims, this book deals with polygons and polyhedra that can be found 
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around us. There are detailed explanations concerning their nets, cross sections, surface areas, 
and volumes – as well as their filling properties, their transformations, and their decomposa-
bilities. 
 In this book, Kyuta – a student – is led by a geometry researcher –Gen – through a forest 
of geometry. Through a series of discussions they solve mathematical problems step by step. 
They trek through this vivid forest to dig up mysterious treasure boxes.  
Intuitive geometry is not a field well explored within mathematics. The term “Intuitive Ge-
ometry” does not appear in the AMS subject classification. It was coined by Hungarian 
mathematician László Fejes Tóth to refer to the kind of geometry which, in Hilbert’s words, 
can be explained to and can appeal to the “man on the street.” 
 This book allows people to enjoy intuitive geometry casually and instinctively. It does not 
require more than high school level knowledge, but does call for a sense of wonder, intuition, 
and mathematical maturity.  
 Now, let us begin our trek to hunt for mathematical treasures in this forest of geometry, 
where beautiful flowers bloom and small woodland creatures await! 
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About this Book 
 
 
 
 
 
 
 
 
 
 

The characteristics of this book are the following: 
(a) The theorems and formulas that are presented encourage the reader to discover for him or 

herself (heuristic approach). 
(b) Most of the theorems are presented with a story of how the authors were inspired and 

came up with the idea for the theorem. 
(c) This book introduces not only key results and tools in each topic, but also many original 

results obtained by the authors. This is done through casual conversation between Gen 
and Kyuta. Gen (a mathematician), visits Kyuta and teaches him to appreciate the ex-
citement of creating theorems together with art using mathematics. Most of the topics are 
original and have not been introduced in other books. 

(d) The target readers are undergraduate students; however, this book is self-contained and 
only requires knowledge at the high school level. 

(e) Many of the latest unique and beautiful results in geometry (in particular on polygons 
and polyhedra) and the dynamism of mathematical research history may also captivate 
adults and even researchers. 

(f) Readers can create their own works of art by applying the theorems presented in this 
book, as the procedures are explained explicitly. 

(g) The book is illustrated with color photographs of works of art and design that have been 
created using the theorems and procedures in the book. 
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Chapter 1 
Art From Tiling Patterns 
 
 
 
 
 
 
 
 
 
 

1. Geometric Patterns 

Gen Hi, Kyuta. You look bored. 
 
Kyu Oh, Gen. What kind of mathematical topics will you tell me about today? 
 

Gen points at a spot on the globe and says… 
 
Gen Have you ever been here? 
 
Kyu Is it in Spain!? 
 
Gen Well, wait and see. Have a look at this slide. 
 
 Gen shows a picture of a stately palace (Fig. 1.1.1). 
 
Kyu Wow! I’ve never seen such a spectacular view. What palace is that? 
 
Gen It’s the Alhambra Palace in Granada, built during the thirteenth and fourteenth centu-

ries. In those days, the Islamic Empire was flourishing and had a great deal of influ-
ence over the whole region of Spain. 

 
Gen recites the beginning of the old Japanese story, “The Tale of the Heike”. 

 
Gen “The knell of the bells at the Gion temple echoes the impermanence of all things…” 
 
Kyu Oh, what happened? 
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Fig. 1.1.1  The Alhambra Palace 
 
Gen Do you know “The Tale of the Heike”? It is a historical account of when the Heike 

clan flourished. They held power in Japan around the twelfth century (the first time the 
Samurai warriors seized power in Japan), but lost the war against the Genji clan and 
disappeared by the end of the century.  
The fate of the Islamic Moorish family who built the Alhambra Palace is just the same 
as the Heike, don’t you think? That ancient Islamic palace stands alone in the south of 
Spain, and seems to embody their rise and fall. 

 
Kyu Everything prospers and declines. I thought that was just Samurai philosophy.  

Walls, ceilings, floors… all of the surfaces of the palace have different repeated geo-
metrical patterns in tiles, plaster work and woodcarvings (Fig. 1.1.2). 
How amazing! The beautiful patterns are so elegant. 

 
Gen Islam prohibits images, so Islamic artists can’t put people or animals in their art. That’s 

why they’ve developed exclusively geometrical art.  
 
Kyu I see. 
 
Gen The emperor of the Islamic Moors ordered that every surface of the palace be deco-

rated with geometric patterns in order to make the palace as close to paradise as possi-
ble, as described in the Koran. Look at the patterns carefully. Every pattern consists of 
the same identical shape, repeating over and over again while tiling the plane without 
gaps or overlaps. Do you see that? 

 
Kyu Oh yes, I do. 
 
 
 



31.1. Geometric Patterns 

Fig. 1.1.2

Fig. 1.1.3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gen There are many patterns, but all of them have one feature in common. There are two 

different directions along which the pattern can be translated in such a way that the 
translated pattern coincides with the original pattern (Fig. 1.1.3). This feature is called 
“repeated (periodic) pattern symmetry.” 

 
 Kyuta checks that the feature is true for several different patterns (Fig. 1.1.4). 
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Fig. 1.1.4 
 
 
Gen And there are exactly 17 different groups of repeated patterns in the patterns deco-

rating the Alhambra. 
 
Kyu Only 17 different groups in all the different patterns decorating the Alhambra?  

Are there any other patterns that aren’t in any of the 17 groups of the Alhambra and 
haven’t been discovered yet? 

 
Gen No. There are exactly 17 groups of repeated patterns that can possibly exist.  

The Islamic Moorish artists in the thirteenth and fourteenth century had already found 
all 17 groups of repeated patterns through trial and error. You can classify repeated 
patterns into those 17 groups by asking these questions (Fig. 1.1.5) : 

 
Criteria for Classification of the 17 Groups 

1. What is the smallest rotation around a certain point that makes the rotated pattern 
coincide with the original one? 

2. Is the pattern a (line) reflection or not? 
3. Is the pattern a glide reflection or not? 
 
A glide reflection is a combination of a translation and a (line) reflection. 

 
  



51.1. Geometric Patterns 

Examples of the 17 groups  
(1) 120° rotation 

This kind is neither a reflection nor a glide reflection. When you rotate the pattern by 
120° around any of the marked points, it coincides with the original pattern. 
 

 
 
 
 
 
 
 
 

Fig. 1.1.5 (a)  120  rotation 

 
(2) 60° rotation 

This is neither a reflection nor a glide reflection. The smallest rotation is 60° around 
each of the marked points.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 1.1.5 (b)  60 rotation 

 
(3) reflection 

This is a reflection with respect to the line  (not a glide reflection).  
It has no rotation (i.e., the smallest rotation is 360°). 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1.1.5 (c)  Reflection 
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(4) glide reflection 
 
 
 
 
 
 
 
 

Fig. 1.1.5 (d)  Glide reflection 
 
 
Gen If you want to classify any pattern into one of the 17 groups, all you have to do is fol-

low the flowchart in Appendix 1.1.1. I also give several examples of each tile of these 
17 groups in Appendix 1.1.1. The International Crystallographic Union names the 17 
groups “p1”, “pg”, “pm”, “cm”, “p2”, “pgg”, “pmg”, “pmm”, “cmm”, “p4”, “p4g”, 
“p4m”, “p3”, “p3m1”, “p31m”, “p6” and “p6m” as shown in Appendix 1.1.1 [5, 7, 
11, 14, 15, 20]. 

 
Kyu How is it proved that there are exactly 17 groups of repeated patterns? 
 
Gen It is proved by group theory. Explaining it precisely would require too much space. If 

you want see the proof, I recommend the books, Introduction to Geometry by H. S. M. 
Coxeter, and Groups and Symmetry by M. A. Armstong, etc. I also recommend Sym-
metry by M. du Sautoy which gives vivid stories about mathematicians and artists who 
struggled to conquer repeated patterns. 

 
Kyu OK. I’ll read them someday.  
 
Gen In short, every repeated pattern has one of two dimensional symmetry groups whose 

elements are products of translations, rotations and reflections. So, what you have to 
do is determine which features these symmetry groups possess and to numerate all of 
the symmetry groups. Whether there are more groups than these 17 or not wasn’t 
known for certain until the Russian crystallographer E. S. Fedorov proved it in 1891 
([10, 14, 17]). But some other researchers, G. Polya, P. Nigli, A. M. Schönflies and W. 
Barlow also studied and proved it independently without knowing of each others’ work 
([7, 14, 17, 18]).  
In the first place, group theory didn’t exist until Evariste Galois laid the foundation of 
modern group theory around 1830, as Martin Gardner mentioned [17]. So, it took 
about 600 years for human beings to prove that these 17 groups were the only tiling 
patterns. 

 
Kyu 600 years! 
 
Gen The following theorem is a consequence of the theorem that J. H. Conway, H. Bulgiel 

and C. Goodman-Straus called the “Magic Theorem”. 
 
Theorem 1.1.1  There are exactly 17 different groups of repeated patterns that can tile the 
plane. 



71.1. Geometric Patterns 

Gen Let me explain two terminologies, a fundamental region and a prototile. 
The pattern in Fig. 1.1.5 (a) is generated by translations of a fundamental region (a 
gray part) in two directions. This fundamental region consists of three congruent tiles 
(a red part). Such a tile is called a prototile. As shown in Fig. 1.1.6, some tilings have 
several prototiles.  

 
(a)                                       (b) 

 
 
 
 
 
 
 
 

Fig. 1.1.6  A fundamental region and prototiles  
 
 
Kyu In Fig. 1.1.6 (a), (b), a set of prototiles is of {a square, a regular hexagon, a regular 

dodecagon}, {an equilateral triangle, a square, a regular hexagon} respectively. 
 
Gen Each gray part is a fundamental region of Fig. 1.1.6 (a), (b) respectively.  
 
Kyu Prototiles for tilings are similar to be atoms for molecules or chemical compounds.  
 
Gen Yes, I think so, too. 
 
Kyu By the way, can there be such a thing as a non-periodic tiling? 
 
Gen Yes, look at this tiling created by copies of a 2 1 rectangle (Fig. 1.1.7), for example. No 

matter how this tiling is translated, it never coincides with the original tiling pattern. 
 

 
Fig. 1.1.7  A non-periodic tiling 

 
 
Kyu Wow, this tiling pattern is not periodic. I had no idea that such a simple case could 

produce a non-periodic tiling. 
 
Gen Yes, but there are two kinds of tilings that are not periodic. One kind is called 

non-periodic and the other is called aperiodic. Grunbaum and Shephard wrote this in 
their book Tilings and Patterns (1987) [14]: 
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Fig. 1.1.9  Penrose tiling

One of the most remarkable discoveries in the theory of tilings has taken place during 
the last few years it concerns the existence of sets of prototiles which admit infinitely 
many tilings of the plane, yet no such tiling is periodic. Sets of prototiles with this 
property will be called aperiodic. 
(Text partly omitted)  
There are, of course, many sets of prototiles which admit non-periodic tiling. Even a 
2 1 rectangle has this property. However, the essential feature of an aperiodic set of 
prototiles is that every tiling admitted by them is necessarily non-periodic. We stress 
this fact because it seems that there has been some confusion in the past between the 
term “aperiodic” in the sense used here, and “non-periodic”. 

 
Kyu I see. Researchers are more interested in aperiodic tilings. 
 
Gen Right. Let me introduce you to some famous aperiodic tilings. In 1973 R. Penrose 

found aperiodic tilings that combine these two shapes (dart and kite) shown in Fig. 
1.1.8 (a), (b) [5, 13, 15]. 

 
 
 
 
 
 
 
 
       (a) kite               (b) dart         (c) A rhombus composed of a Kite and a Dart 

Fig. 1.1.8  An aperiodic set of prototiles by Penrose 
 
 
Gen In Penrose tilings, the vertices of the darts and kites are colored black and white as in 

(a) and (b). The two Penrose pieces, dart and kite, come from a rhombus (Fig. 1.1.8 
(c)), and copies of a rhombus tile the plane periodically. In Penrose tilings, when you 
tile the plane with copies of the two Penrose pieces, each vertex of the tiling has either 
all black or all white tile vertices (Fig. 1.1.9).  

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

dart
 kite 

 



91.2. Tilings 

Gen There are many books on Penrose tilings, since they have a lot of intriguing properties 
and applications. Besides Penrose tilings, there is one particular result worthy of spe-
cial mention. Recently Joshna E.S. Socolar and Joan Taylor, who lives in Tasmania, 
have created some beautiful aperiodic hexagonal colored tilings that consist of only a 
single type of piece under some matching conditions (Fig. 1.1.10) [23]. 
 

 
(a)                (b)                  (c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
     (d) A portion of the infinite tiling 
 

Fig. 1.1.10  An aperiodic tiling 
 

2. Tilings 

Gen We’ve really enjoyed looking at the many tiling patterns in the Alhambra, so let’s 
study tiling by congruent convex polygons a little more and make some crafts in the 
next chapter. 

 
 

Colored hexagons in (a) and 
(b) are related by reflection 
about a vertical line. 
 

Matching conditions : 

(1) Black stripes must be 
continuous across shared 
edges 
 

(2) Pink or blue segments that 
meet a given edge (e.g. a 
red one in (c)) at opposite 
endpoints and are colline-
ar with that edge must not 
be the same color. 
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Kyu All right! 
 
Gen It is easy to see that both squares and rectangles can tile the plane without gaps or 

overlaps. Before I ask you the next question, let me explain the definition of “convex” 
and “concave”. A polygon P is said to be convex if every inner angle of P is less than 
180°, and concave otherwise.  
Now, can you tile the plane with each of these quadrangles (Fig. 1.2.1)? 
 
 
 
 
 
 
 
 

 
Fig. 1.2.1 Convex and Concave Quadrangles 

 
 
Kyu It’s trivial that parallelograms can tile the plane. 

Two congruent trapezoids combine to form a parallelogram, so any trapezoid can tile 
the plane (Fig. 1.2.2). 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.2.2  A tiling by a trapezoid  

 
 
Gen Good!  
 
Kyu Next, the convex and concave quadrangles in Fig. 1.2.1 (c) and (d). Hmm…. 
 
 While Kyuta thinks, Gen gives him some hints. 
 
  

(a) Trapezoid (b) Parallelogram (c) Convex quadrangle (d) Concave quadrangle 



111.2. Tilings 

Gen Look at these tilings, Kyuta (Fig. 1.2.3). 
 
(a) convex                                   (b) concave 
 
 
 
 
 
 
 
 
 
 

Fig. 1.2.3 Tilings by a hexagon  
 
 
Kyu Both hexagons tile the plane! 
 
Gen That’s right. Do you notice that those hexagons are special hexagons? A hexagon P is 

called a parallelohexagon if P has three parallel pairs of edges such that members of 
the same pair have the same length (Fig. 1.2.4). Any parallelohexagon can tile the 
plane. 

 
Parallelohexagons  
 
 
 
 
 
 
 
 

Fig. 1.2.4 Parallelohexagons 
 
 
Kyu I see. Then what do these tilings with parallelohexagons have to do with tiling with 

those quadrangles?  
 
Gen A very good question! What kind of shape appears if you combine the two congruent 

quadrangles in Fig. 1.2.1 (c) and (d) respectively along their common edge as in Fig. 
1.2.5? 

 
Kyu Wow! Each of them forms a parallelohexagon. Any kind of parallelohexagon can tile 

the plane. That means any kind of quadrangle can tile the plane! 
 
 
 
 
 

AB//ED, BC//FE, CD//AF 
AB=ED, BC=FE, CD=AF 
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Fig. 1.2.5  Two congruent quadrangles form a parallelohexagon 

 
Gen Good! 
  
 Kyuta tiled the plane using each of the quadrangle tiles (Fig. 1.2.6 (a), (b)). 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.2.6  Tilings by quadrangles 



131.2. Tilings 

Gen Next, what about a triangle? 
 
Kyu If two copies of a triangle are joined along a common edge, it makes a parallelogram. 

This means that any triangle can tile the plane (Fig. 1.2.7). 
 
 
 
 

 
 
 
 

Fig. 1.2.7 A tiling by a triangle 
 
 
Gen You’re right. Let’s summarize what we’ve observed so far. 
 
Summary 
(1) Any parallelogram (including a square, rectangle, or rhombus) can tile the plane. 
(2) Any triangle can tile the plane, because a combination of two congruent copies forms a 

parallelogram. 
(3) Any parallelohexagon can tile the plane. 
(4) Any quadrangle can tile the plane, because a combination of two congruent copies forms 

a parallelogram or a parallelohexagon. 
 
Gen It was known in ancient Greece that any kind of triangle or quadrangle (even a con-

cave one) can tile the plane with congruent copies. 
 
Kyu It dates back to the period of ancient Greece more than 2000 years ago! 
 
Gen Next, what about a regular pentagon? 
 
 
  
 
 
 
 
 
 

Fig. 1.2.8  A regular pentagon can’t tile the plane 
 
 
Kyu Impossible. No matter how I place regular pentagonal tiles, there will be gaps (Fig. 1.2.8). 
 
Gen That’s right. Next, what about a regular hexagon? 
 
Kyu I can tile the plane with regular hexagons (Fig. 1.2.9). 

A regular pentagon 

A triangle 
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a regular heptagon a regular octagon 

Gen Does this tiling pattern remind you of something? 
 
Kyu Well… 
 
 
 
 
 
 
 
 

Fig. 1.2.9  A tiling by a regular hexagon 
 
 
Gen A honeycomb has the same pattern. These days, they make the nets of football goals 

using the honeycomb pattern (i.e., regular hexagonal tiling patterns). I wish I em-
ployed bees as my private secretaries! They are very wise, skillful, and work very 
hard!  

 
Kyu I admit that bees are more skillful than I am. I wonder how bees are able to construct 

regular hexagonal structures without rulers, protractors or compasses. 
 
Gen Now, what about a regular heptagon, a regular octagon and so on (Fig. 1.2.10)? And 

what about convex pentagons, hexagons, heptagons, and more? 
 
Kyu Well … I guess none of them can tile the plane. 
 
 
 
 
 
 
 
 
 
 

Fig. 1.2.10  Regular -gons ( ) 
 
 
Gen Indeed, K. Reinhardt proved in [19] that for , no convex -gons can tile the 

plane. 
Among convex pentagons, 14 types had been found that can tile the plane (see Appen-
dix 1.2.1), until the surprising news came in that type 15 was discovered by C. Mann, J. 
McLoud and D. V. Derau at the end of July in 2015 (Fig. 1.2.11) [28]. 30 years have  
passed since type 14 of tessellative convex pentagon was found in 1985. If you tile the 
plane with convex pentagons under the condition that only edge-to-edge tiling is al-
lowed (i.e., every edge of a tile touches exactly one edge of another tile), then it has 
been proved that the convex pentagonal tiles must be of these 15 types ([2, 25]). 
But no one has discovered whether any convex pentagons exist outside the 15 types 
that can tile the plane in a non-edge-to-edge manner ([5, 12, 14, 24, 25, 26]) as of 
2015. 


