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Preface

The purpose of this book is to give an updated and problematic description of
the atmospheric turbulence and the dispersion in the planetary boundary layer, for
students, and perhaps to researchers, interested in the atmospheric sciences. Well-
settled arguments coexists with topics investigated in the last years or even under
discussion: thus, the reader will find differences in the treatment of the arguments
that reflect these aspects. The hope is to give a comprehensive view of the physics
of the planetary boundary layer, with the certainties and the uncertainties, to raise
interest and to stimulate future research.

A couple of observations (which should become suggestions to the reader). The
first one: many boring computations are put into the exercises. Most of them refer
to analytic solutions of simplified problems. Although numerical modelling is of
increasing use, the exact solutions may be a benchmark for models and are useful to
better evidence the basic mechanisms and approximations. The student should not
overlook this aspect.

The second one: in the Appendix to the Introduction, some data sets are cited, and
reference is given to download the data. Note that the list is not exhaustive; other
data sets are freely available. The data typically refer to variables averaged over
some time interval. Most of the figures of the book are made using such data, so
that every figure can be understood as an exercise for the student, who can remake,
modify and possibly improve it. (As a general rule for the figures, the data are plotted
directly, with various symbols, or binned in intervals of the independent variable
and reported in terms of the median and the 10th and the 90th percentiles, with error
bars.)

I would like to acknowledge here all who contributed to the genesis of the book:
first, all my students who pushed me to build (as far as possible for me) a clear
and unifying picture of the topic and the colleagues for discussions and criticism, in
particular those who gave me data and special images. Special thanks to Domenico
Anfossi, Alessandra Lanotte, Silvia Trini Castelli and Sergej Zilitinkevich, who
suggested specific arguments and supplied the proper material. Last but not least,
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vi Preface

I must remember two people who addressed my research and thus are in part
responsible for the genesis of this book: Ottavio Vittori, who taught me not to cross
the road on zebra crossing, and Julian Hunt, who introduced me to the mysteries of
turbulence.
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Sect. 2.3.1

F.c/ Flux of the scalar c, Sect. 2.2.4
Fr D U=NL Froude number, Sect. 2.2.7

g Gravity acceleration, reference value 9:81 m s�2,
Sect. 2.2.1; Richardson law constant, reference value
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Chapter 1
Introduction

Abstract In the Introduction the planetary boundary layer (PBL) is described in
general, as the part of the atmosphere where turbulence acts driving exchange
processes and dispersion. Attention is paid to field and laboratory measurements,
as well as to the use of numerical experiments as a further tool for knowledge.

1.1 The Basic Definition of the Planetary Boundary Layer

The planetary boundary layer (PBL) is the lower part of the troposphere, where the
interactions with the surface of the Earth occur.

Similarly to all the boundary layers that develop as a fluid flows over a
surface, the PBL is (under suitable conditions, which normally are verified for the
atmosphere) characterized by the turbulence, that affects the exchange processes.
For this reason, in this textbook we shall discuss about turbulence. The interaction
with the surface occurs due to the exchange of momentum, of heat and of scalars
(like the water vapour): the surface (the bare ground, a vegetative or a urban
canopy, the sea) is a sink of momentum, but can be a source or a sink of heat
or other scalars. Understanding these interactions is an important step for the
proper modelling of weather and climate, and, in general, of the dynamics of the
atmosphere.

The turbulence affects the transport of tracers (pollutants), which is a relevant
issue in the air quality applications, and, more generally, in the study of the
composition of the atmosphere (linked with climate). Besides the applications, the
transport problem is related to the intimate nature of the turbulent flows, so that it
deserves special attention also from a fundamental (theoretical) point of view.

Turbulent boundary layers are not limited to atmospheric flows: the general
findings are relevant in geophysics as well as in engineering. However, some
features are specific for the atmosphere, and will be detailed as possible.

© Springer International Publishing Switzerland 2017
F. Tampieri, Turbulence and Dispersion in the Planetary Boundary Layer,
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2 1 Introduction

1.2 A Few Words About Turbulence

An exhaustive treatment of this issue is well beyond the science of the author
and the scope of this book. The reader must refer to the many textbooks starting
from Monin and Yaglom (1971, 1975) for a classical introduction, with attention
to geophysical applications, to the apparently simple Tennekes and Lumley (1972),
to Pope (2000) in particular for turbulence modelling, to Wyngaard (2010) again
focusing on the atmosphere. A suggested reading to go into the specific, but widely
quoted, argument of the inertial subrange is Frisch (1995).

Here a short summary is presented, for the aspects of direct interest for the
present study. A turbulent flow is characterized by random features of the state
variables (velocity, temperature, or tracer concentration, for instance), by the
existence of a wide range of scales of the motion (in terms of space and time),
and by mixing properties.

The Reynolds number Re D UL=� characterizes the flow of a viscous fluid. Here
U is a velocity scale, for instance the average velocity, and L a length scale, for
instance the depth of the fluid, or the width of the channel. The internal, molecular,
friction is measured by the kinematic viscosity �. If Re � 1 the flow is laminar (and
predictable). As Re increases beyond 1000, say, the hydrodynamic instabilities make
unpredictable some features of the flow. The velocity, for instance, is continuous
(the fluid is viscous), but the accelerations can be quite large, and for many practical
purposes the flow velocity can be considered a stochastic variable. The consequence
is the need to give statistical descriptions of many phenomena characterizing the
turbulent flow, and to refer to the probability density functions of the state variables.
A time record of the velocity components and of the temperature in an atmospheric
boundary layer is reported in Fig. 1.1, which qualitatively illustrates the random
features of the variables characterizing the flow.

A second relevant feature of the turbulent flows is the presence of a range of time
and space scales of the motion; in other words, the stochastic variables are not white
noise, but are correlated in time and space (there is an underlying structure). This
aspect can be qualitatively understood looking at the time patterns of Fig. 1.1: the
high frequency fluctuations are superimposed to a fluctuating trend, characterized
by longer time scales. The motion is organized in eddies, with spatial scales that
range from those imposed by the boundaries down to scales small enough that their
specific (computed from their length and velocity scales) Reynolds number is small,
and viscosity dominates.

The internal structure of the turbulent flow produces important effects on the
mixing. At small Re the transport of scalars is described by the Fick law, i.e. the
small scale molecular motion produces a large scale transport of the scalar in the
direction of minus the gradient of the mean concentration (down-gradient transport):
the paradigmatic case of diffusion occurs. At large Re the eddies produce mixing, but
the existence of a continuous range of scales inhibits the straightforward application
of the diffusive, Fick law, approach. In a turbulent flow, the eddies may be as large
as the scale of the gradient, and the transport may become non-Fickian.
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Fig. 1.1 Time series of the along-wind (red line), transversal (green) and vertical (blue) com-
ponents of the air velocity fluctuations (a) and of the temperature (b), measured by a sonic
anemometer at 7:5 m above the ground (CCT data). The high frequency record highlights the
fluctuating behaviour of the observations and the different mean values of the three velocity
components. Courtesy Mauro Mazzola, CNR ISAC

The space and time resolution of the observations and/or of the numerical models
allow to resolve (i.e., explicitly describe) the larger scales of the motion. This aspect
will be considered in detail in the following chapters; here it may be interesting
to note that traditionally the motion of the atmosphere has been divided in mean
wind and turbulence, just because the anemometers take an average over some time
interval (of the order of minutes), so that the resolved variable (the averaged one) is
the wind, the unresolved part is the turbulence. The arbitrariness is evident: from the
point of view of seasonal dynamics of the atmosphere, the mid-latitude perturbations
are eddies, i.e. turbulence.

1.3 The Structure and Evolution of the PBL

Quite schematically, the energy balance of the atmosphere in the PBL is related to
the effect of the large scale motions of the atmosphere itself (winds and waves) and
to the exchanges of momentum and heat at the surface. These exchanges are related
to the radiation balance (incoming and outcoming radiation) and to the heat flux into
the ground. Moisture effects can be relevant.
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1.3.1 Local Equilibrium

As the vertical fluxes are large and the horizontal conditions pretty homogeneous,
the PBL dynamics is dominated by the local conditions, i.e. its properties are
only function of the distance from the surface, while the effects of the horizontal
heterogeneities can be neglected. The local equilibrium is the basic paradigm for
the study and the understanding of the phenomenology of the PBL, and will be
discussed in Chap. 3.

Over a solid surface, if radiation is weak (overcast sky), the wind drives the
turbulence and thus the exchanges. The turbulence is mainly produced by the shear,
while thermal effects are minor: these are called quasi-neutral conditions (perfectly
neutral conditions, occurring in absence of heat exchange, are probably realized
only in the laboratory). In presence of a diurnal cycle, over the land, we shall take
into account the time evolution of the radiative flux: the radiative flux during the
day heats the ground and thus the air (turbulence increases, leading to the so-called
unstable conditions) and cools both during the night (decreasing turbulence, leading
to stable conditions). Intense heating of the ground gives origin to eddies of vertical
size of the order of the PBL depth, with quite large positive vertical velocity: this is
the onset of convection, a very efficient mechanism of mixing of the entire layer.
Strong cooling damps the turbulence and the related exchanges, layers of air at
different heights may be nearly independent on each other, the surface may become
almost unimportant while phenomena occurring aloft have a relevant influence on
the dynamics. The effect of radiation depends on the heat capacity of the surface,
so that it is enhanced over the desert and almost negligible over the sea. The diurnal
cycle disappears at high latitudes, leading to PBL characterized by a slow time
evolution.

Remote sensing techniques based on the detection of density fluctuations and
tracers in the atmosphere (SODAR and LIDAR respectively: see Sect. 1.5 for
references to the instruments) allow the visualization of the vertical structure of
the PBL: see Figs. 1.2, 1.3, 1.4 and 1.5.

Figures 1.2 and 1.3 depict the daily evolution of the PBL at midlatitudes, for
a winter and a summer case, using a SODAR. During the night stable conditions
prevail, and the density fluctuations (evidenced by the dark areas) appear to be
highly variable in the vertical, and coherent in time, especially for the winter case
(almost undetectable in the summer case). Note also the wave pattern at about 400 m
from 3 h to 5 h on Feb. 8.

During the day the heating at the ground leads to the onset of convection, with
large scale turbulent motions (of vertical size as the PBL itself) evidenced by the
signals (dark lines) rapidly variable in time and vertically coherent. The convection
starts around 6 h in the summer case and just before 10 h the plumes are so high to
go beyond the vertical range of measure (i.e. the PBL depth in this case is greater
than 800 m). In the winter case, convection begins around 8 h and is weaker: we can
guess that the PBL depth reaches about 800 m for a few hours, around 14 h.
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Fig. 1.2 SODAR echogram of the daily cycle in a winter day (February 08, 2011) at Castel-
porziano, a rural site near Roma, Italy. The local time (in hours) is reported in abscissa, the height
(m above the ground) in ordinate. The vertical gray stripes correspond to calibration time intervals.
Courtesy Angelo Viola, CNR ISAC, Roma

The development of a convective boundary layer is visualized also using LIDAR
(which gives an estimate of the presence and the concentration of aerosol particles):
see Fig. 1.4. Thanks to the larger measuring range, it shows the single convective
cells that extends up to about 1:5 km in a typical summer sunny day.

A further SODAR sounding of the long lasting stable PBL in Antarctica is shown
in Fig. 1.5. As expected, the absence of any time modulation contrasts with the mid-
latitude cases; it is also worth noting the small depth of the layer, which reduces to
a tenth of meters at the end of the period.

The presence of the diurnal cycle underlines the importance of the time evolution
of the forcing mechanisms: the transitions from stable to unstable/convective
conditions and vice versa, or the nocturnal radiative cooling, causing turbulence
of decreasing intensity. Note that in general these phenomena occur on a time scale
greater than the typical time scales of the turbulent flow, which then usually adjusts
to the changing conditions.

Over the sea, some features characterize the PBL and distinguish it from the
continental counterpart: the presence of a mobile lower boundary, which adjusts
to a certain extent to the dynamics; the constant presence of moisture; the easier
occurrence of homogeneous and steady conditions (apart from the coastal regions
or in presence of cold/warm outbreaks); the diurnal cycle is small as well as the
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Fig. 1.3 As in Fig. 1.3, but for a summer day (August 31, 2010). Courtesy Angelo Viola, CNR
ISAC, Roma

departures from near-neutral conditions (the air mass is in thermal equilibrium with
the surface); large-scale eddies appears in form of rolls (organized motion).

1.3.2 Heterogeneities and Unsteadiness

In the real world, horizontal heterogeneities and unsteadiness on short time scales
often occur, which means that the picture of the previous section must be revised,
and the paradigm of local equilibrium loses its general validity, as discussed in detail
in Chap. 4.

Broadly speaking, we can recognize two different situations in which hetero-
geneity is relevant, which we call ‘large scale’ and ‘small scale’, that undergo
different treatments. The term ‘large scale’ means that we are able to make
measurements and/or to realize numerical simulations and/or physical models which
describe explicitly this situation. Its counterpart (the ‘small scale’ effects) occurs for
heterogeneities/unsteadyness on space/time scales smaller than those we are able, or
we want, to consider explicitly.

Large scale effects can be analyzed in detail; for instance, topographic features
(hills and valleys, coastal borders) affect the wind field and the heating of the
ground, thus produce horizontal variations of the forcing. Local circulations arise
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Fig. 1.4 LIDAR sounding of the convective boundary layer, for June 27, 2012, at San Pietro
Capofiume, a site in the Po Valley, Italy. On the abscissa, time in hours, UTC. On the ordinate,
the height in m above the ground. Courtesy Gianpaolo Gobbi, CNR ISAC, Roma. The presence
of aerosols is evidenced by the almost white areas; blue means no particles. The two vertical lines
correspond to sunrise and sunset. Further informations about the structure of the atmosphere on
this day are reported in Sect. 3.6

(which are outside the scope of this book, but must be taken into account to
understand the real, not too idealized, PBL). Changes of surface characteristics
(grass to trees, land to sea) produce internal boundary layers; for instance, near
the coastal line, during the night in the cold season, in presence of a land breeze,
cold (stable) air blows over a warmer sea, generating an unstable internal PBL. The
transitions related to the diurnal cycle (cited above) are a typical example of large
scale unsteadiness.

Small scale effects are considered in terms of modifications of the rules
characteristic of the local equilibrium paradigm: we abdicate the universality of
the rules, maintaining some formal features and parameterizing the dependence
on the small scale in the numerical value of the coefficients which appears in the
formulas. The main consequence is the difficulty in finding general formulations of
the parameterization.

The trend for tackling heterogeneous conditions is to refine the scale of the
description, moving from parameterization to explicit treatment, thanks to the
increasing computational power and the improvement of the observations. On the
other hand, it is sometimes almost impossible, or unconvenient, to deal explicitly
with all the details, while an averaged description may be all that we need. Situations
like the wind and the vertical exchanges in a forest, or the meandering of the wind
when the wind itself is quite low are examples of problems that typically do not
require (or even do not permit) a detailed description. Note that both the ‘large
scale’ and the ‘small scale’ approaches occur in the investigation on the urban PBL,
and the different descriptions coexist in the common practice.
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Fig. 1.5 Echogram of the stable boundary layer during the winter (August 20, 2012) at Concordia
Station, Dome C, Antarctica, by an high resolution Surface-Layer MiniSODAR. Heights in m,
local time in hours. Courtesy Stefania Argentini, CNR ISAC, Roma

1.3.3 The Boundary Layer Depth

The PBL depth h can be broadly defined as the height at which the interaction of the
tropospheric flow with the surface becomes negligible. In spite of the fact that it is
not a directly measurable quantity, a lot of words are spent about its determination,
essentially because of the practical importance in modelling applications. This depth
is quite evident in Fig. 1.4 as the level at which the aerosol sharply disappears, or in
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Fig. 1.2 or Fig. 1.3 as the level at which convection stops, during daytime. Note thus
that the depth is well identifiable in some conditions, and less well in others.

The traditional analysis of the PBL is largely based on the assumption that the
surface fluxes play the major role in its dynamics and evolution, and h is the height
at which these surface fluxes become negligible. The straightforward consequence is
that the turbulent fluxes (at least of momentum and heat, but not only) are functions
of the height z.

However, the surface fluxes may be small, or not relevant. In convective
conditions, the mixing at the PBL top (i.e., the downwards heat flux from the
troposphere) contributes to the growth of the layer. In stable conditions, the vertical
fluxes may become negligible at the surface, while the turbulence is produced by the
wind shear or by the waves aloft. In such cases the basic definition remains correct,
but h cannot be estimated from surface fluxes.

Earth rotation introduces a further limitation to the PBL growth. So the final
statement is that h is related to the surface fluxes, to the stability and wind conditions
aloft (at its top), and to the Coriolis effect, if the geometry of the surface (hills and
valleys) can be neglected.

1.4 The Transport Problem and the Turbulent Dispersion

The behaviour of a tracer advected by a turbulent flow shows complex, chaotic
features. The tracer may be a pollutant, may be the temperature, may be a
microorganism living in the sea. Some tracers are characterized by an almost infinite
living time: they do not react with the environment; others combine by chemical
reactions. Radioactive tracers change their properties according to their decay time.

Some tracers behave like the fluid molecules, i.e. their velocity is at any time
equal to that of the flow: we shall refer to as fluid parcels. A fluid parcel is supposed
to be an ideal small volume of fluid which can be identified: in general gaseous
pollutants behave as parcels.

Other tracers are subject to the gravity acceleration and have their own dynamics,
due to the inertia, like aerosols or water droplets: we shall refer to as inertial
particles. In general, their velocity is different from that of the flow, and at least
in certain conditions this aspect becomes critical.

Last but not least, some substances interact with the dynamics of the flow: for
instance, temperature changes can occur associated with chemical reactions (this
aspect will not be treated in this book).

The transport problem is tackled by computing the trajectories of the parcels,
or of the particles, which means that their velocities must be known as function of
time. In a turbulent flow, characterized by a wide range of scales of motion, this
computation can be done in general for the large scales, but not for the small scales
(a notable exception is given by the use of direct numerical simulations (DNS) of
the flow). The problem is solved in a statistical sense, that is, in the computation
of some moments of the positions of the parcels (or particles), or of their relative


