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Preface 

Biology, chemistry, physics, mathematics, geosciences, and social 
sciences provide us with the tools necessary to understand the past, 
present, and future of the world. These tools allow us to build 
concepts that are not necessarily accurate but seem sufficiently 
developed for us to consider them as paradigms. The ancient 
cosmology of our Western society has long been satisfied with seeing 
planet Earth as a flat object, a paradigm sufficient for understanding 
the environment perceived by humanity at that time. We must always 
keep in mind the approach of Descartes, and progress in our analysis 
and knowledge of objects in the environment, whilst maintaining the 
humility essential for knowing that we can sometimes be wrong and 
that there are limits to our understanding. 

Geochemistry is the science or study of the elemental chemical 
composition of Earth, the chemical speciation of the elements in the 
dynamic aspect of their transfers (= fluxes) between different 
compartments (= stocks). Whether or not life has little influence on the 
deep geochemistry of our planet1, it is a feature of its external envelope, 
and may be unique on the Universe scale. Biological mechanisms have 
emerged progressively, acting as drivers of the basic dynamics of matter 
regarding the chemical composition of fluid envelopes and the upper 
mantle rocks as well as element fluxes between these compartments 
under a variety of chemical species. How do we explain the elemental 
                          
1 Although the discovery of “active” microorganisms within the deep sedimentary 
layers is likely to change this concept in the near future. 
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composition of our atmosphere and its evolution on a geological time 
scale without referring to the emergence and development of life on 
Earth? This question also applies to the hydrosphere and, particularly, 
the oceans, whose chemical composition changes on that same scale, 
which are closely associated with the chemical structure of the 
primordial Earth and the evolution of living organisms. How do we 
explain the formation and composition of not only sedimentary rocks, 
but also of metamorphic rocks and even some crystalline rocks of 
variable nature over geological eras, evading the role of life on land and 
in the oceans? This short list of questions is not exhaustive and is 
provided here as an example; it reflects the direction of thinking from 
the first naturalists to modern scientists involved in studies of the 
Earth’s environment that ultimately led to the definition of a new, 
eminently multidisciplinary science: biogeochemistry. This can 
therefore be defined as the science whose objects are the elemental 
chemical composition of the Earth, the chemical speciation of its 
components, stock dynamics of the main reservoirs and fluxes between 
them, under the simultaneous control of physical, chemical and 
biological reactions. Such a wide program underlines the inclusiveness 
of biogeochemical studies, whether it be through the establishment of 
working concepts on the global scale or through the definition of 
experimental sampling schemes and processing of supporting data of 
such concepts! Therefore, biogeochemistry occupies a special place 
among other more mono-disciplinary sciences. 

The global carbon cycle is at the center of current concerns of 
biogeochemists because biogeochemistry is inseparable from climate 
science. The concept of the biological pump perfectly illustrates this 
case. Autotrophic organisms living on the surface of our planet are 
indeed responsible for the annual fixing of around 120 Gt2 of carbon in 
almost equal proportions between the continents and oceans. In the 
oceanic compartment, diatoms, microalgae with siliceous cell walls, are 
responsible for nearly half of the primary production. This is one of the 
reasons why, albeit belatedly, marine biogeochemists became interested 
in the silicon cycle. Furthermore, despite the importance of primary 
marine production, only a small proportion of organic carbon formed is 
finally deposited and buried in deep sediments. Indeed, through 
                          
2 Gt: unit, a gigatonne (109 t), equal to a petagram (Pg, 1015 g). 
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heterotrophic respiration, but also through that of autotrophs, the bulk of 
primary marine production is returned to the atmosphere as CO2 on 
short time scales ranging from minutes to years. This is one reason why 
the biological pump plays a smaller role than the physical pump in the 
annual cycle of carbon, the latter being responsible for more than 90% 
of the carbon annually swept along in the oceans by CO2 dissolution in 
surface water and subduction during the formation of intermediate and 
deep water. However, the carbon carried away by the physical pump 
will not be permanently sequestered, as the return of the deep water to 
the surface by the global thermohaline circulation will release it again to 
the atmosphere as CO2, on time scales less than 1,200 years. Ultimately, 
the biological pump will play the key role because, although less than 
0.5% of the carbon fixed in surface waters accumulates in deep 
sediments, it is the only way to isolate carbon over geological time 
scales. 

The biological pump is a set of processes responsible not only for 
the processing and vertical advection of dissolved organic material, but 
also for the passive sedimentation flux of particulate organic material 
and associated biominerals as well as the active transport by the 
nycthemeral migration of zooplankton. This definition taken from 
Robinson et al. [ROB 10] underlines the unique role played by 
organisms in the pelagic realm, from bacteria to mesozooplankton. In 
this book, we will focus on a group of particularly important organisms 
for the functioning of the biological pump. These organisms represent a 
functional group of “biomineralizers” using silicon and are therefore 
dependent on the availability of this element to be able to develop. 
Several groups of organisms are represented here, but the diatom group 
is undoubtedly the one that plays the major role. Understanding the 
mechanisms that will govern the ability of diatoms to use the silicon 
cycle is therefore essential to understand their role in the biological 
carbon pump. 

 

Bernard QUÉGUINER 
April 2016



 



1 

The Chemical Forms of Silicon  
in the Marine Domain 

1.1. The element “silicon” 

Silicon (symbol Si, atomic number 14) is not found in its native 
state1, but in the form of silicates it is the most abundant element in 
the Earth’s surface (about 28%), after oxygen. Its name comes from 
the Latin word silex, meaning stone. Lavoisier had suspected its 
existence in 1787, but it was not until 1811 that it was discovered by 
Gay-Lussac and Thénard. In 1823, Berzelius isolated silicon in a 
sufficient state of purity to be able to approach its study. Natural 
silicon is a metalloid that actually corresponds to a mixture of three 
stable isotopes. 

Isotope Atomic mass Abundance (% atoms) 
28Si 279,769,265,325 92,223 
29Si 28,976,494,700 4,685 
30Si 2,997,377,017 3,092 

Table 1.1. Natural atomic masses and abundances of three  
stable isotopes of silicon [HAY 16]. The weighted average  

atomic mass of natural silicon is equal to 28.08549871 

                          
1 Several chemical methods, however, are used to prepare elemental silicon, 
particularly from the reduction of SiO2 at very high temperatures (~2000°C). 
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