

EARTH SYSTEM – ENVIRONMENTAL SCIENCES SERIES

The Biogeochemical Cycle of Silicon in the Ocean

Bernard Quéguiner

The Biogeochemical Cycle of Silicon in the Ocean

FOCUS SERIES

Series Editor Paul Tréguer

The Biogeochemical Cycle of Silicon in the Ocean

Bernard Quéguiner

First published 2016 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd 27-37 St George's Road London SW19 4EU UK

www.iste.co.uk

John Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030 USA

www.wiley.com

© ISTE Ltd 2016 The rights of Bernard Quéguiner to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2016938935

British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISSN 2051-2481 (Print) ISSN 2051-249X (Online) ISBN 978-1-84821-815-4

Contents

Preface	ix
Chapter 1. The Chemical Forms of Silicon in the Marine Domain	1
1.1. The element "silicon"	1
1.2. Orthosilicic acid	2
1.3. Particulate silicas	3
1.3.1. Lithogenic silica	4
1.3.2. Biogenic silica	5
Chapter 2. Techniques for Studying Stocks and Fluxes	7
2.1. Techniques for the chemical analysis of silicon	7
2.1.1. The sequential digestion method	8
2.1.2. The extraction kinetics method	9
2.1.3. The correction by aluminum method	9
2.2. Techniques for the analysis of silicon fluxes	11
2.2.1. Labeling with radioactive isotopes	11
2.2.2. Labeling with stable isotopes	14
2.3. Silica deposit labeling and cellular imaging	17
2.4. Isotopic fractionation of silicon and utilization	
of δ^{30} Si as a tracer in oceanography	18
2.4.1. Demonstration of the isotopic	
fractionation by the diatoms	22

2.4.2. Utilization of δ^{30} Si as a tracer	
in oceanography	23
2.4.3. The interest of analyses of the	
isotopic ratio of silicon	24
Chapter 3. The Marine Producers	27
of Biogenic Silica	27
3.1. Radiolarians.	27
3.2. Silicoflagellates	29
3.3. Diatoms	29
3.4. Silicification within the scope of	
nanoplankton and picoplankton.	31
3.5. Siliceous sponges	33
3.6. The functions of biogenic silica	34
3.7. The evolution of the siliceous organisms	
and the oceanic cycle of the silicon	37
3.8. Sedimentary opal deposits	39
Chapter 4. Cellular Mechanisms of Silica	12
Deposition by Diatoms.	43
4.1. Influence of orthosilicic acid availability	
on uptake and diatom growth	43
4.1.1. General formulations and	
kinetics information	43
4.2. The chemical form of dissolved Si	
available for diatoms	46
4.2.1. The model of Riedel and Nelson	46
4.2.2. The model of Del Amo and Brzezinski	48
4.2.3. The membrane transporters	50
4.3. Cellular mechanisms of orthosilicic acid uptake	51
4.4. Intervention of specific proteins in the	
deposition mechanism	53
4.4.1. The Hecky <i>et al.</i> conceptual model	53
4.4.2. Frustulins and silaffins	56
4.4.3. Frustule synthesis, a complex	
physiological process	58
4.5. The stoichiometric ratios Si/C/N of diatoms	59

4.5.1. Stoichiometry in diatoms and	
limitation by iron	59
4.5.2. The influence of trace metals on the	
uptake of orthosilicic acid	61
Chapter 5. Dissolution of Biogenic	
Silica and Orthosilicic Acid Regeneration	63
5.1. Reactivity of the particulate silica	
and dissolution constants	63
in aqueous phase	66
5.2.1. Variation of the solubility of opal with depth	67
5.2.2. Influence of pH	68
5.2.3. Role of temperature	68
5.2.4. Relationship with bacterial	70
degradation process	70
5.2.5. Influence of aluminum concentration.	71 73
5.3. The solubility of opal in natural conditions	13
Chapter 6. The Control of Biogeochemistry	
by Silicon at Global Scale	77
6.1. The preservation of calcite in ocean sediments	77
6.1.1. Control of alkalinity by organic production	78
6.1.2. The CaCO ₃ /C _{org} ratio (rain ratio) $\dots \dots \dots \dots \dots$	79
6.1.3. The distribution of orthosilicic acid	
in the Global Ocean	80
6.2. The central role of the Southern Ocean	83
6.2.1. Subantarctic Mode Water (SAMW)	83
6.2.2. Si* tracer	85
6.2.3. The influence of SAMW in the Global Ocean	87
6.2.4. The conceptual model of Sarmiento et al.	87
6.3. The silicic acid leakage hypothesis (SALH)	89
6.3.1. The last glacial-interglacial transition	89
6.3.2. The sedimentary record	94
Chapter 7. The Global Budget of	
Silicon in the Oceans	99
7.1. Estimates of production and export	
of biogenic silica	99
7.1.1. Estimation of the upper limit.	100

viii The Biogeochemical Cycle of Silicon in the Ocean

7.1.2. Estimation of the lower limit	
in the Global Ocean.	106
Bibliography	109
Index	129

Preface

Biology, chemistry, physics, mathematics, geosciences, and social sciences provide us with the tools necessary to understand the past, present, and future of the world. These tools allow us to build concepts that are not necessarily accurate but seem sufficiently developed for us to consider them as paradigms. The ancient cosmology of our Western society has long been satisfied with seeing planet Earth as a flat object, a paradigm sufficient for understanding the environment perceived by humanity at that time. We must always keep in mind the approach of Descartes, and progress in our analysis and knowledge of objects in the environment, whilst maintaining the humility essential for knowing that we can sometimes be wrong and that there are limits to our understanding.

Geochemistry is the science or study of the elemental chemical composition of Earth, the chemical speciation of the elements in the dynamic aspect of their transfers (= fluxes) between different compartments (= stocks). Whether or not life has little influence on the deep geochemistry of our planet¹, it is a feature of its external envelope, and may be unique on the Universe scale. Biological mechanisms have emerged progressively, acting as drivers of the basic dynamics of matter regarding the chemical composition of fluid envelopes and the upper mantle rocks as well as element fluxes between these compartments under a variety of chemical species. How do we explain the elemental

¹ Although the discovery of "active" microorganisms within the deep sedimentary layers is likely to change this concept in the near future.

composition of our atmosphere and its evolution on a geological time scale without referring to the emergence and development of life on Earth? This question also applies to the hydrosphere and, particularly, the oceans, whose chemical composition changes on that same scale, which are closely associated with the chemical structure of the primordial Earth and the evolution of living organisms. How do we explain the formation and composition of not only sedimentary rocks, but also of metamorphic rocks and even some crystalline rocks of variable nature over geological eras, evading the role of life on land and in the oceans? This short list of questions is not exhaustive and is provided here as an example; it reflects the direction of thinking from the first naturalists to modern scientists involved in studies of the Earth's environment that ultimately led to the definition of a new, eminently multidisciplinary science: biogeochemistry. This can therefore be defined as the science whose objects are the elemental chemical composition of the Earth, the chemical speciation of its components, stock dynamics of the main reservoirs and fluxes between them, under the simultaneous control of physical, chemical and biological reactions. Such a wide program underlines the inclusiveness of biogeochemical studies, whether it be through the establishment of working concepts on the global scale or through the definition of experimental sampling schemes and processing of supporting data of such concepts! Therefore, biogeochemistry occupies a special place among other more mono-disciplinary sciences.

The global carbon cycle is at the center of current concerns of biogeochemists because biogeochemistry is inseparable from climate science. The concept of the biological pump perfectly illustrates this case. Autotrophic organisms living on the surface of our planet are indeed responsible for the annual fixing of around 120 Gt² of carbon in almost equal proportions between the continents and oceans. In the oceanic compartment, diatoms, microalgae with siliceous cell walls, are responsible for nearly half of the primary production. This is one of the reasons why, albeit belatedly, marine biogeochemists became interested in the silicon cycle. Furthermore, despite the importance of primary marine production, only a small proportion of organic carbon formed is finally deposited and buried in deep sediments. Indeed, through

² Gt: unit, a gigatonne (109 t), equal to a petagram (Pg, 1015 g).

heterotrophic respiration, but also through that of autotrophs, the bulk of primary marine production is returned to the atmosphere as CO_2 on short time scales ranging from minutes to years. This is one reason why the biological pump plays a smaller role than the physical pump in the annual cycle of carbon, the latter being responsible for more than 90% of the carbon annually swept along in the oceans by CO_2 dissolution in surface water and subduction during the formation of intermediate and deep water. However, the carbon carried away by the physical pump will not be permanently sequestered, as the return of the deep water to the surface by the global thermohaline circulation will release it again to the atmosphere as CO_2 , on time scales less than 1,200 years. Ultimately, the biological pump will play the key role because, although less than 0.5% of the carbon fixed in surface waters accumulates in deep sediments, it is the only way to isolate carbon over geological time scales.

The biological pump is a set of processes responsible not only for the processing and vertical advection of dissolved organic material, but also for the passive sedimentation flux of particulate organic material and associated biominerals as well as the active transport by the nycthemeral migration of zooplankton. This definition taken from Robinson et al. [ROB 10] underlines the unique role played by organisms in the pelagic realm, from bacteria to mesozooplankton. In this book, we will focus on a group of particularly important organisms for the functioning of the biological pump. These organisms represent a functional group of "biomineralizers" using silicon and are therefore dependent on the availability of this element to be able to develop. Several groups of organisms are represented here, but the diatom group is undoubtedly the one that plays the major role. Understanding the mechanisms that will govern the ability of diatoms to use the silicon cycle is therefore essential to understand their role in the biological carbon pump.

> Bernard QUÉGUINER April 2016

The Chemical Forms of Silicon in the Marine Domain

1.1. The element "silicon"

Silicon (symbol Si, atomic number 14) is not found in its native state¹, but in the form of silicates it is the most abundant element in the Earth's surface (about 28%), after oxygen. Its name comes from the Latin word *silex*, meaning stone. Lavoisier had suspected its existence in 1787, but it was not until 1811 that it was discovered by Gay-Lussac and Thénard. In 1823, Berzelius isolated silicon in a sufficient state of purity to be able to approach its study. Natural silicon is a metalloid that actually corresponds to a mixture of three stable isotopes.

Isotope	Atomic mass	Abundance (% atoms)
²⁸ Si	279,769,265,325	92,223
²⁹ Si	28,976,494,700	4,685
³⁰ Si	2,997,377,017	3,092

 Table 1.1. Natural atomic masses and abundances of three stable isotopes of silicon [HAY 16]. The weighted average atomic mass of natural silicon is equal to 28.08549871

¹ Several chemical methods, however, are used to prepare elemental silicon, particularly from the reduction of SiO_2 at very high temperatures (~2000°C).