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Preface

Quantum Measurement is a book on the mathematical and conceptual foundations
of quantum mechanics, with a focus on its measurement theory. It has been written
primarily for students of physics and mathematics with a taste for mathematical
rigour and conceptual clarity in their quest to understand quantum mechanics. We
hope it will also serve as a useful reference text for researchers working in a broad
range of subfields of quantum physics and its foundations.

The exposition is divided into four parts entitled Mathematics (Chaps. 2–8),
Elements (Chaps. 9–13), Realisations (Chaps. 14–19), and Foundations
(Chaps. 20–23). An overview of each part is given in the Introduction, Chap. 1,
and each chapter begins with a brief non-technical outline of its contents.

A glance through the table of contents shows that different chapters require
somewhat different backgrounds and levels of prerequisite knowledge on the part
of the reader. The material is arranged in a logical (linear) order, so it should be
possible to read the book from beginning to end and gain the relevant skills along
the way, either from the text itself or occasionally from other sources cited.
However, the reader should also be able to start with any part or chapter of her or
his interest and turn to earlier parts where needed.

Part I is designed to be accessible to a reader possessing an undergraduate level of
familiarity with linear algebra and elementary metric space theory. Chaps. 2 and 3
can be read as an introduction to the part of Hilbert space theory which does not need
measure and integration theory. The latter becomes an essential tool from Chap. 4
onwards, so we give a summary of the key concepts and some relevant results.
Starting with Sect. 4.10, and more essentially from Chap. 6 on, we occasionally need
the basic notions of general topology and topological vector spaces. Elements of the
theory of C�-algebras and von Neumann algebras are briefly summarised in Chap. 6,
but their role is very limited in the sequel.

While prior study of quantum mechanics might be found useful, it is not a
prerequisite for a successful study of the book. The essence of the work is the
development of tools for a rigorous approach to central questions of quantum
mechanics, which are often considered in a more intuitive and heuristic style in the
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literature. In this way the authors hope to contribute to the clarification of some key
issues in the discussions concerning the foundations and interpretation of quantum
mechanics.

The bibliography is fairly extensive, but it does not claim to be comprehensive in
any sense. It contains many works on general background and key papers in the
development of the field of quantum measurement. Naturally, especially most of the
more recent references relate to the topics central to this book, in which the authors
and their collaborators have also had their share.

The reader will notice that the word measure is used in a variety of meanings,
which should, however, be clear from the context. A measure as a mathematical
concept is a set function which can be specified by giving the value space: we talk
about (positive) measures, probability measures, complex measures, operator
measures, etc. We also speak about the measures of quantifiable features such as
accuracy, disturbance, or unsharpness. The etymologically related word measure-
ment may be taken to refer to a process, but it is also given a precise mathematical
content that can be viewed as an abstraction of this process.

Much of the material in this book has been extracted and developed from various
series of lecture notes for graduate and postgraduate courses in mathematics and
theoretical physics held over many years at the universities of Helsinki, Turku and
York. In its totality, however, the work is considerably more comprehensive than
the union of these courses. It reflects the development of its subject from the early
days of quantum mechanics while the selection of topics is inevitably influenced by
the authors’ research interests. In fact, the book emerged in its present shape from a
decade-long collective effort alongside our investigations into quantum measure-
ment theory and its applications. At this point we wish to express our deep gratitude
and appreciation to the many colleagues, scientific friends and, not least, our stu-
dents with whom we have been fortunate to collaborate and discuss fundamental
problems of quantum physics.

York, UK Paul Busch
Turku, Finland Pekka Lahti

Juha-Pekka Pellonpää
Kari Ylinen
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Chapter 1
Introduction

1.1 Background and Content

The Book of Nature, already according to Galileo Galilei, is written in the language
of mathematics. This dictum sounds like a commonplace to scientists today. True, we
may qualify its content: wemight not know or ever find out the actual writing process,
but mathematics appears to be the best, or even only, vehicle into the otherwise
impenetrable realm of the microworld. Indeed, the formulation of the theory of
quantummechanics as it emerged in the early 20th century after two or three decades
of intense search and debate, frustrations and triumphs, was considered successfully
completed only when appropriate mathematical tools had been identified.

Two extraordinarily influential works, Paul Dirac’s The Principles of Quantum
Mechanics (1930) and John von Neumann’sMathematische Grundlagen der Quan-
tenmechanik (1932) generalised and crystallised the ideas of the founders into work-
able methodologies. According to a commonly held view, perhaps Dirac’s technique
and language were and still are more apt to appeal to (theoretical) physicists and
von Neumann’s to mathematicians and mathematical physicists. At the outset, von
Neumann’s work built on the fast growing body of functional analysis, especially the
spectral theory of Hilbert space operators. On the surface, Dirac’s language is more
heuristic, and while there are later theories which can be used to make it mathemati-
cally sound, the von Neumann style functional analytic approach still dominates the
mathematically oriented research.

The book of von Neumann (with its English translation of 1955) has had an
enormous follow-up with a fruitful interplay of physical and mathematical ideas.
The present work owes its existence to and emphatically joins this tradition.

The mathematical groundwork for von Neumann’s book [1] was laid down in a
couple of papers from the year 1927 [2, 3]. There he undertakes an analysis of general
statistical aspects of a physical experiment using the concepts of states and observ-
ables, with the requirement that these entities determine the respective probabilities
for the registration of measurement outcomes. This fundamental investigation led to
the following result, summarised here in present-day terminology:

© Springer International Publishing Switzerland 2016
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2 1 Introduction

It is assumed that the description of a physical system is based on a complex separableHilbert
space H with inner product 〈 · | · 〉 and that the pure states of the system are represented by
the unit vectors ϕ (modulo a phase factor) of H. It is required further that the measurement
outcome probabilities for a given observable are to be given in terms of a single (linear)
operator acting in H. It follows that this operator must be a selfadjoint operator A, and the
probability that a measurement of the observable represented by A in a state described by ϕ
leads to a result in a (real Borel) set X is given by the number

〈
ϕ |EA(X)ϕ

〉
, where EA(X)

is the spectral projection of A associated with the set X .

In addition, von Neumann showed that the most comprehensive representation
of states is given in terms of the positive operators ρ of trace one acting on H
called states or density operators; the pure states are the idempotent elements among
these operators, ρ2 = ρ, hence the projections onto one-dimensional subspaces ofH.
Thus he already deduced the trace formula tr

[
ρEA(X)

]
for themeasurement outcome

probabilities.
It took until the late 1960’s before it was fully recognised that representing mea-

surement outcomeprobabilities of an observable in a state in termsof a single operator
is unnecessarily restrictive. Indeed, from the mathematical point of view the proba-
bilistic analysis leads to the representation of observables as semispectral measures,
normalised positive operator measures, thus going beyond the more special spectral
measures. This mathematical extension not only broadened the domain of applicabil-
ity of quantummeasurements but also opened new avenues for a quantitative analysis
of questions like approximate joint measurability of observables traditionally repre-
sented by mutually noncommuting operators (spectral measures) or the unavoidable
disturbance caused by a measurement. The monographs [4–7] give an account of
this line of development.

These ingredients—states as positive trace one operators, observables as nor-
malised positive operator measures (with all operators acting on a fixed complex
separable Hilbert space), and the probability measures they define—form the starting
point of the formulation of Hilbert space quantum mechanics discussed in this book.
We will mostly adhere to the so-called minimal interpretation of quantum mechan-
ics, according to which quantum mechanics is a theory of measurement outcome
probabilities defined by states (equivalence classes of preparations) and observables
(equivalence classes of measurements). This has the advantage of offering a con-
ceptually clear and mathematically rigorous framework with no immediate need to
consider the more philosophical issues in the foundations of quantum mechanics.
It is possible, in some sense, to read most of the book as a piece of mathematics,
although the choice of topics is dictated by physical applications. This attitude seems
to be in line with the actual practice of physicists, who in their collaboration may
use the same mathematical language and minimal interpretation whilst maintaining
widely diverging philosophical views.

Our book is divided into four parts and 23 chapters: I. Mathematics (2–8); II.
Elements (9–13); III. Realisations (14–19); IV. Foundations (20–23). We now give
a brief overview of the contents.

Part I. Mathematics. The purpose of this part is to set the stage for a mathematical, or
more specifically, Hilbert space based analysis of the physical phenomena generally
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described as quantum measurements. The choice of the material has been made with
readers of diverse backgrounds in mind.

In Chap.2 we develop the basics of Hilbert space theory. Chapter 3 looks at com-
pact operators from different angles, the main result being the spectral representation
of a compact selfadjoint operator. With this we are ready to study operator ideals
like the trace class and to consider problems such as the Schmidt decomposition of
a vector in a tensor product Hilbert space.

Chapters4 and 5 contain the spectral representation theory of (generally
unbounded) selfadjoint operators and its application to the representation of one-
parameter unitary groups. Here we proceed via the case of bounded normal operators
and use of the Cayley transform. In anticipation of the physical applications through-
out the remaining parts of the book, the treatment adopts the general perspective of
positive operator measures (and bimeasures) while it is understood that the spectral
theorem only requires the spectral measures.

Chapters6–8, somewhat less self-contained, introduce various functional analytic
techniques including some elements of the theory of C∗-algebras and von Neumann
algebras (Chap. 6) and the dilation theories of Naimark and Stinespring (Chap. 7).
In the interest of economy, the dilation theorems of Naimark and Stinespring are
deduced from a two variable dilation theorem, which has also independent impor-
tance in measurement theory. Chapter 8 contains specific physical examples of posi-
tive operator measures, which give a glimpse of the kind of material to be expected in
the sequel. The technique of direct integral Hilbert spaces and a related elementary
approach to a Dirac type treatment are briefly discussed here as well.

Part II. Elements. This part develops the basic notions and structures of Hilbert space
quantum mechanics as applied in this monograph. Chapter9 starts with setting out
the associated statistical duality: fixing the set of states of a quantum system to consist
of the positive trace one operators on a complex separable Hilbert space, we can then
deduce the structure of observables and themeasurement outcome probabilities. This
chapter also introduces the tools required to describe the changes a physical system
may undergo in the course of its time evolution or due to an intervention, such as a
measurement. Further we recall the composition rules that lead to the Hilbert tensor
product structure as the framework for the theory of compound systems. The chapter
concludes with a brief discussion of the important concepts of subsystem states,
dynamics, correlations, and entanglement.

The theory of measurement is formulated in Chap.10 by considering measure-
ments as physical processes subject to the laws of quantum mechanics. We identify
a hierarchy of three levels of description: observables–instruments–measurements.
Observables are equivalence classes of completely positive instruments, and the latter
are equivalence classes of measurement schemes. This hierarchy reflects the options
of restricting one’s attention to the outcome probabilities at the level of the measured
system, or taking into account the system’s conditional state changes, or adopting
the most comprehensive level of modelling the interaction and information transfer
between system and probe.
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In Chap.11 we turn our attention to one of the most striking nonclassical features
of quantum mechanics: the existence of sets of observables that are incompatible
in the sense that they cannot be measured jointly. We consider several equivalent
formulations of the notion of jointmeasurability of observables. A natural framework
is thus obtained for investigating incompatibility and the disturbance of the object
system caused by a measurement. Operationally, this disturbance manifests itself in
a change of the measurement outcome statistics of some other observables.

The finalChaps. 12 and 13, of Part IImake precise such concepts as indeterminacy,
uncertainty, approximate measurement, and disturbance caused by a measurement.
We also introduce various measures of uncertainty, inaccuracy and disturbance, and
show how to quantify the degree of unsharpness of an observable. We use these mea-
sures to formulate examples of preparation and measurement uncertainty relations.

Part III. Realisations. In this part themajor examples of observables and someof their
measurement models are investigated. The list of examples includes qubit observ-
ables (Chap. 14), position and momentum (Chap.15), number and phase (Chap. 16),
and time and energy (Chap. 17). The question of approximate joint measurements is
taken up once more and examples of model-independent error trade-off relations are
given for incompatible pairs of qubit observables and for the position andmomentum
observables of a particle.

Chapter18 is devoted to a study of informational completeness and the related
problem of state reconstruction. Special attention is given there to the continuous
variable case. The key concepts and the basic results will be introduced, including a
short discussion of the qubit case. The so-called Pauli problem—the informational
incompleteness of the canonical position–momentum pair—and the two basic ways
of overcoming this problem are studied.

Part III concludes with Chap.19 where the tools of measurement theory are put
to full use to illustrate the implementation of more or less realistic measurement
schemes for typical observables. The focus will be on the realisation of joint approx-
imate measurements of noncommuting pairs of observables, with the Arthurs–Kelly
model, homodyne detection schemes and Mach–Zehnder interferometry serving as
prototypical examples.

Part IV. Foundations. The final part of the book is devoted to a selection of founda-
tional issues of quantummechanics insofar as they have somemeasurement-theoretic
significance: Bell inequality violations and their dependence on the use of incompat-
ible measurements (Chap.20); limitations of measurements due to conservation laws
(Chap.21); the so-called measurement problem (Chap. 22); and finally, an axiomatic
justification of the Hilbert space formulation of quantum mechanics based on onto-
logical premises constraining measurement possibilities (Chap.23).
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1.2 Statistical Duality—an Outline

We now give a brief outline of the key mathematical structure that motivates and
underlies the developments presented in this book: the duality of states and observ-
ables, concepts that are fundamental to the formalisation of any probabilistic physical
theory. We also indicate some of the prominent probabilistic features that distinguish
quantum mechanics from its classical counterpart. While the Hilbert space realisa-
tion of the statistical duality is developed mathematically in Part I and used freely
in virtually all applications discussed thereafter, we revisit the abstract duality in the
final chapter where it serves as the starting point for an axiomatic basis of quantum
mechanics that we will review there.

The Duality

In von Neumann’s formulation of quantum mechanics one meets states and observ-
ables as positive trace-one operators and general selfadjoint operators (or the asso-
ciated spectral measures), respectively. The states and the projections that figure in
the description of standard observables are elements of the real vector spaces of
selfadjoint trace class operators and of selfadjoint bounded operators, respectively,
where the latter is the dual space of the former. The extension of the notion of observ-
able towards including general normalised positive operator measures is found to be
both natural and comprehensive when considered from the perspective of a general
statistical duality.

The dual pair of states and observables can be easily manifested as core elements
of a probabilistic description by way of a simple analysis of the general statistical
aspects of a physical experiment. In a typical experiment one can distinguish three
steps: the preparation of a physical system, followed by a measurement which is
performed on it, and finally the registration of a result. In order that an experiment
serves its purpose of providing information about the system under investigation,
it should meet a requirement of statistical causality: the registered outcome should
depend, generally in a probabilistic way, on how the system was prepared and what
kind of measurement was performed.

The physical system S under consideration can be prepared in various ways and
then subjected to one ormore of a range of differentmeasurements.We take the terms
system, preparation and measurement to be intuitively understood without trying to
explicate them at this stage.

Let π denote a preparation andΠ the collection of all possible preparations of the
system S. Further let σ stand for a measurement and Σ denote the collection of all
conceivablemeasurements that can be performed onS. By fixing ameasurement σ in
Σ one also specifies the range of its possible outcomes. We identify these outcomes
as members of a set Ω which can typically be thought of as a set of real numbers,
and for the purpose of counting statistics a sigma-algebra A of subsets of Ω will be
specified consisting of the test sets, that is, bins within which groups of outcomes are
counted. Thus, a measurement is represented as a triple (σ,Ω,A), which we will
often simply denote by σ.



6 1 Introduction

Fig. 1.1 Scheme of a physical experiment

The notion of statistical causality specifies that any preparation π and measure-
ment σ determine a probability distribution for the possible measurement outcomes.
Thus there is a probability measure pσ

π : A → [0, 1], with the heuristic understand-
ing that if one makes a large number, N , of repetitions of the same measurement σ
under the same conditions π, and a result ω ∈ Ω is registered n(X) times in a test
set X , then1

n(X)

N
� pσ

π(X).

Two preparations π1 and π2 are said to be equivalent, π1 ≡ π2, if they give the
same measurement outcome probabilities for all measurements, that is, pσ

π1
= pσ

π2

for all measurements σ. We may hence consider the collection Π to be divided into
equivalence classes [π] = {π′ ∈ Π | π′ ≡ π}. These classes are called states of the
system. We let S denote the set of states of S. Thus the formal concept of state
represents those aspects of a physical process applied as a preparation of a system
that determine the outcome probabilities of any subsequent measurement (Fig. 1.1).

Similarly, two measurements σ1 and σ2 are equivalent if pσ1
π = pσ2

π for all prepa-
rations π. We may accordingly talk about equivalent classes of measurements as
observables; we let O denote the collection of all observables. The notion of observ-
able, as delineated here, embodies the idea that a physical quantity is uniquely deter-
mined through its probabilistic signature. We shall refer to the pair (S, O) as a
statistical duality.

For any state s ∈ S and observable O ∈ O one defines

pO
s = pσ

π , π ∈ s,σ ∈ O.

1We leave aside the problem of justifying the frequency interpretation of probabilities. A lucid
account of this problem and a consistent interpretation of probabilities as relative frequencies is
given by van Fraassen [8].
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This is a well-defined probabilitymeasure with the followingminimal interpretation:
the number pO

s (X) is the probability that a measurement of the observable O leads
to a result in the set X when the system is in the state s.

The above discussion leading to this brief statement is there simply to give intuitive
background andmotivation for the terminology used in our subsequent mathematical
work, not to gloss over the inherent problems of the use of mathematical language
in physical theories. When we use mathematical structures in the sequel we do not
deviate from the usual mathematical parlance.

Elementary Structures

There are two basic structural properties that the statistical duality (S, O)may always
be assumed to possess. First, since a convex combination of two or more probability
measures is a probability measure, the set S of states can be equipped with a con-
vex structure. Indeed, if s1, s2 ∈ S and 0 ≤ λ ≤ 1, then for any O ∈ O, the convex
combination

λpO
s1 + (1 − λ)pO

s2

is a probability measure. One may thus pose the requirement that there is a (neces-
sarily unique) s ∈ S such that

pO
s = λpO

s1 + (1 − λ)pO
s2

for all O ∈ O. The assumption that S is closed under convex combinations corre-
sponds to the idea that any two preparations π1 ∈ s1, π2 ∈ s2 can be combined into a
new preparation, for instance by applyingπ1 andπ2 in randomorder with frequencies
λN , (1 − λ)N , respectively; upon measurement one obtains outcome distributions
that are given by the convex combination λpO

s1 + (1 − λ)pO
s2 .

An important feature of the convex structure2 of the set of states S is the pos-
sibility of distinguishing pure states as those that cannot be expressed as a convex
combinations of other states; all other states are referred to asmixed states. Thus, the
second assumption concerning the set of states one may adopt is that it contains a
sufficiently rich set of pure states, which embodymaximal information onemay have
about the system, so that all other states can be obtained as convex combinations of
them (or more generally, as limits of such combinations in a suitable sense). This is
realised in the classical and quantum mechanical probabilistic theories.

A classical theory is distinguished by the fact that its set of states is a simplex,
which means that every mixed state can be expressed as a (generalised) convex
combination of pure states in one and only one way. In contrast, a mixed quantum
state has infinitely many different decompositions into pure states. (Theorem9.2
gives a full characterisation of such decompositions.)

2The convex structure of the set of states is initially defined abstractly, without first assuming that
the set of states is a subset of a real vector space. The underlying linear structure can be deduced by
making a simple, innocent additional assumption, namely, that the set of observables allows one to
separate distinct states. We return to this point in greater detail in Sect. 23.1.
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This formal difference between the quantum and classical statistical dualities is
closely related to the fundamental phenomenon of quantum indeterminacy, usually
referred to by the term uncertainty principle. Broadly, this is the statement that there
is no state in which all observables would have definite values. A classical statistical
duality is typically formulated in terms of a convex set of probability measures on a
phase space such that all pure states, given by the point measures (also called Dirac
measures), are included. Any phase space point, and hence every point measure,
specifies the values of all observables, defined as functions on phase space. Since
every mixed state is represented in a unique way as a (generalised) convex combi-
nation of pure states, it becomes possible to interpret the associated probabilities as
representing a lack of information about the actual value of an observable. In contrast,
there is no pure quantum state that could assign probability one to a value of every
observable. This fundamental quantum indeterminacy or preparation uncertainty is
often quantified by means of the preparation uncertainty relations.

Another distinctive feature of classical physical theories, already alluded to above,
concerns the joint measurability of observables: in a general statistical duality, one
can ask which sets of observables can be measured jointly. In the classical case,
there is no restriction to joint measurability, whereas in quantum mechanics, there
are severe limitations: according to a theorem due to von Neumann [9], any two
observables represented by selfadjoint operators are jointly measurable if and only
if they commute with each other. (Theorem11.3 expresses this result.)

The notion of joint measurability can be readily captured in terms of the general
preparation–measurement–registration scheme of a statistical duality (S, O). There
are several obvious ways of defining the joint measurability of, say, a pair of observ-
ables (Oi ,Ωi ,Ai ), i = 1, 2.We refer to Chap.11 for a more comprehensive analysis
of this concept and adopt here to the following formulation: assume that there is an
observable (O,Ω,A) with measurable functions fi : Ω → Ωi , i = 1, 2, such that
for any state s ∈ S,

pO1
s (X) = pO

s

(
f −1
1 (X)

)
, X ∈ A1, (1.1)

pO2
s (Y ) = pO

s

(
f −1
2 (Y )

)
, Y ∈ A2. (1.2)

The observable (O,Ω,A), together with the functions fi , comprises all probabil-
ity measures associated with the observables O1, O2 and thus serves as their joint
measurement.

As already noted, it is a fundamental feature of quantum mechanics that there
are observables (represented by noncommuting selfadjoint operators) that cannot be
measured jointly. It was a bold idea of Werner Heisenberg, expressed in his seminal
paper [10] of 1927, that such observables can, however, be measured jointly in
an approximate way if the approximation errors satisfy a measurement uncertainty
relation. With the tools available at that time, Heisenberg was able to give only
intuitive motivations and heuristic arguments for such ideas, essentially on the basis
of semiclassical discussions of some thought experiments.
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In view of the above notion of joint measurement, an approximate joint measure-
ment of observables (Oi ,Ωi ,Ai ), i = 1, 2, is a measurement and thus defines an
observable (Õ,Ω,A), together with measurable functions fi : Ω → Ωi , i = 1, 2,
such that for any state s ∈ S, the measurement outcome distributions of Õ1 and
Õ2 from (1.1) and (1.2) approximate the corresponding distributions of O1 and O2,
respectively. It remains to quantify the quality of approximation, that is, to define
a ‘distance’ of Õi from Oi (in terms of a distance between the distributions pÕi

s
and pOi

s ), and then to analyse the possible measurement uncertainty relations needed
for an approximate joint measurement of the two observables. This is the topic of
Chap.13, elaborated further in some examples in Sects. 14.5 and 15.3.

There are several other features which distinguish quantum probabilistic theories
from classical theories. These could easily be explained and formalised in terms of
the statistical duality (S, O). We mention only the possibility of superposing pure
states into new pure states, or the phenomenon of entanglement in the case where the
system represented by the duality (S, O) can be considered to be composed of two
(or more) subsystems with the dualities (Si , O i ). The idea of superposing pure states
into new pure states appears naturally in the Hilbert space formulation of quantum
mechanics, Sect. 9.1, whereas in Chap.23 the general notion of superposition of
pure states, as given in Definition23.3, is seen to exclude a classical description. The
composition rules of Sect. 9.5 will be seen to lead to the probabilistic dependence
known as entanglement between the subsystems, again something that is foreign to
classical physical theories. Chapter20 on Bell inequalities gives further insight into
this nonclassical aspect of quantum mechanics.
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Chapter 2
Rudiments of Hilbert Space Theory

As the present work is about Hilbert space quantum mechanics, it is mandatory that
the reader has sufficient grounding in Hilbert space theory. This short chapter is
designed to indicate what sort of basic equipment one needs in the ensuing more
sophisticated chapters. At the same time it can be used as an introduction to ele-
mentary Hilbert space theory even for the novice. The material is quite standard and
appears of course in numerous works, so we do not explicitly specify any references,
though some source material can be found in the bibliography.

2.1 Basic Notions and the Projection Theorem

We begin with a key definition. Unless otherwise stated, all vector spaces in this
work have the field C of complex numbers as their field of scalars. We denote by N

the set of positive integers, i.e. N = {1, 2, 3, . . .}, and let N0 = N ∪ {0}.
Definition 2.1 Let E be a (complex) vector space. We say that a mapping h : E ×
E → C is an inner product (in E) and E (equipped with h) is an inner product space,
if for all ϕ, ψ, η ∈ E and α, β ∈ C we have

(IP1) h(ϕ,αψ + βη) = αh(ϕ,ψ) + βh(ϕ, η),
(IP2) h(ϕ,ψ) = h(ψ,ϕ),
(IP3) h(ϕ,ϕ) ≥ 0,
(IP4) h(ϕ,ϕ) > 0 if ϕ �= 0.

Unless otherwise stated, in the sequel we write h(ϕ,ψ) = 〈 ϕ | ψ 〉 in any context
described by this definition.

In (b) below there is the Cauchy–Schwarz inequality.
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14 2 Rudiments of Hilbert Space Theory

Theorem 2.1 Assume that E is an inner product space, ϕ, ψ, η ∈ E, α, β ∈ C.
Then

(a) 〈αϕ + βψ | η 〉 = α 〈 ϕ | η 〉 + β 〈 ψ | η 〉;
(b) | 〈ϕ | ψ 〉 |2 ≤ 〈 ϕ | ϕ 〉 〈 ψ | ψ 〉.
Proof Part (a) is an immediate consequence of the definition. To prove (b), note that
for any α ∈ C we have

0 ≤ 〈 αϕ + ψ | αϕ + ψ 〉 = |α|2 〈 ϕ | ϕ 〉 + α 〈ϕ | ψ 〉 + α 〈ψ | ϕ 〉 + 〈 ψ | ψ 〉 .

If 〈ϕ | ϕ 〉 �= 0, choose α = −〈 ϕ | ψ 〉 〈 ϕ | ϕ 〉−1, and then

| 〈ϕ | ψ 〉 |2〈ϕ | ϕ 〉−1 − | 〈 ϕ | ψ 〉 |2〈 ϕ | ϕ 〉−1 − | 〈 ϕ | ψ 〉 |2〈 ϕ | ϕ 〉−1 + 〈 ψ | ψ 〉 ≥ 0,

which implies the claim. If 〈 ϕ | ϕ 〉 = 0, by multiplying ϕ with a suitable complex
number of modulus one we may assume that 〈 ϕ | ψ 〉 is real, and then it is easy to
see that the above inequality can be true for all α ∈ R only if 〈 ϕ | ψ 〉 = 0. �

Remark 2.1 If (IP1) and (a) above hold for h, then the map h is called sesquilinear.
If, moreover, (IP3) holds, it is a positive sesquilinear form. If h is sesquilinear, then
h(ϕ,ψ) = h(ψ,ϕ) for allϕ, ψ ∈ H if and only if h(ϕ,ϕ) ∈ R for allϕ ∈ H. Indeed,
the “only if ” part is obvious, and to prove the “if ” part, write

h(αϕ + βψ,αϕ + βψ) = |α|2h(ϕ,ϕ) + αβh(ϕ,ψ) + βαh(ψ,ϕ) + |β|2h(ψ,ψ)

and substitute first α = β = 1 and then α = 1, β = i to see that Im h(ϕ,ψ) =
− Im h(ψ,ϕ) andRe h(ϕ,ψ) = Re h(ψ,ϕ). In particular, positive sesquilinear forms
automatically satisfy (IP2), and the proof we gave for the Cauchy–Schwarz inequal-
ity was so formulated that it is valid without assuming (IP4). This generality will be
needed later. �

The proof of the next result is an easy exercise.

Theorem 2.2 Let E be an inner product space. Denote ‖ϕ‖ = √〈 ϕ | ϕ 〉, when
ϕ ∈ E. Then

(a) ‖ϕ‖ ≥ 0 for all ϕ ∈ E;
(b) ‖ϕ‖ = 0, if and only if ϕ = 0;
(c) ‖αϕ‖ = |α|‖ϕ‖ for each α ∈ C and ϕ ∈ E;
(d) ‖ϕ + ψ‖ ≤ ‖ϕ‖ + ‖ψ‖ for all ϕ, ψ ∈ E.

Remark 2.2 The preceding result means that the map ϕ �→ √
(ϕ|ϕ) is a norm on E .

Unless otherwise stated, an inner product space will be equipped with this norm. �

Example 2.1 The set Cn = {x = (x1, . . . , xn) | xk ∈ C, k = 1, . . . , n} (where n ∈
N) is an inner product space with respect to its usual operations (x1, . . . , xn) +
(y1, . . . , yn) = (x1 + y1, . . . , xn + yn) andα(x1, . . . , xn) = (αx1, . . . ,αxn) and the
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inner product 〈 x | y 〉 = ∑n
k=1 xk yk , x = (x1, . . . , xn), y = (y1, . . . , yn). TheCauchy-

Schwarz inequality acquires the form

∣
∣
∣

n∑

k=1

xk yk

∣
∣
∣ ≤

(
n∑

k=1

|xk |2
) 1

2
(

n∑

k=1

|yk |2
) 1

2

.

�

Example 2.2 Denote �2 = �2
C

= {
f : N → C

∣
∣
∑∞

n=1 | f (n)|2 < ∞}
and define as

usual (α f )(n) = α( f (n)) and ( f + g)(n) = f (n) + g(n). Clearlyα f ∈ �2 ifα ∈ C

and f ∈ �2. Since | f (n)g(n)| ≤ 1
2 [| f (n)|2 + |g(n)|2], we have

| f (n) + g(n)|2 ≤ (| f (n)| + |g(n)|)2 = | f (n)|2 + 2| f (n)g(n)| + |g(n)|2
≤ 2

[| f (n)|2 + |g(n)|2],

and so f + g ∈ �2 whenever f, g ∈ �2. Thus �2 is a vector space. Moreover, the
series

∑∞
n=1 f (n)g(n) converges absolutely if f, g ∈ �2. We define

〈 f | g 〉 =
∞∑

n=1

f (n)g(n)

for f, g ∈ �2. This defines an inner product in �2, leading to the norm ‖ f ‖ = ‖ f ‖2 =
(∑∞

n=1 | f (n)|2)1/2. �

In the next theorem, the equation in (a) is the inner product space version of the
Pythagorean theorem. The equation in (b) is called the parallelogram law and the
one in (c) is the polarisation identity. All are proved by straightforward calculations.

Theorem 2.3 Let E be an inner product space.

(a) If ϕ1, . . . ,ϕn ∈ E are vectors satisfying
〈
ϕi | ϕ j

〉 = 0, whenever i �= j , then

∥
∥
∥
∥
∥

n∑

k=1

ϕk

∥
∥
∥
∥
∥

2

=
n∑

k=1

‖ϕk‖2.

(b) For all ϕ, ψ ∈ E,

‖ϕ + ψ‖2 + ‖ϕ − ψ‖2 = 2‖ϕ‖2 + 2‖ψ‖2.

(c) If F is any vector space and B : F × F → C a sesquilinear form, then for any
ϕ, ψ ∈ F

B(ϕ,ψ) = 1

4

3∑

n=0

i n B(ψ + i nϕ,ψ + i nϕ).
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The polarisation identity, in particular, shows that the norm of an inner product
space completely determines the inner product defining it.

Definition 2.2 If the inner product space E is complete with respect to the norm
defined by its inner product, i.e. if every Cauchy sequence converges, then E is called
a Hilbert space.

Example 2.3 The inner product spaces Cn and �2 treated in Examples2.1 and 2.2
are Hilbert spaces. We omit the standard completeness proofs. �

Unless otherwise stated, throughout the rest of this work we assume that H is a
Hilbert space whose inner product is the mapping (ϕ,ψ) �→ 〈ϕ | ψ 〉. The parallel-
ogram law has a central role in the study of Hilbert space geometry. For exam-
ple, let E �= ∅ be a closed subset of H and assume that E is also convex (i.e.
tϕ + (1 − t)ψ ∈ E whenever ϕ, ψ ∈ E and t ∈ [0, 1]). Let d be the infimum of
the set {‖ϕ‖ | ϕ ∈ E}. Then there is a sequence (ϕn) in E with limn→∞ ‖ϕn‖ = d.
The parallelogram law shows that

‖ϕm − ϕn‖2 = 2‖ϕm‖2 + 2‖ϕn‖2 − 4
∥
∥ 1
2 (ϕm + ϕn)

∥
∥2

≤ 2‖ϕm‖2 + 2‖ϕn‖2 − 4d2 → 0,

when m, n → ∞. Thus (ϕn) is a Cauchy sequence and hence converges to some
ϕ ∈ E (as E is closed), and ‖ϕ‖ = limn→∞ ‖ϕn‖ = d by the continuity of the norm.
Thus ϕ is an element of E having the smallest possible norm. The parallelogram law
can also be applied analogously to the above proof to show that such a ϕ is uniquely
determined.

Suppose now that M is a closed vector subspace of H, ϕ ∈ H, and E = ϕ − M
(= {ϕ − ψ | ψ ∈ M}). Then, as shown above, in E there is an element ξ = ϕ − ψ
having the smallest possible norm. If η ∈ M , ‖η‖ = 1, the inner product of 〈 η | ξ 〉 η
and ξ − 〈 η | ξ 〉 η vanishes, and so the Pythagorean theorem shows that

| 〈 η | ξ 〉 |2 + ‖ξ − 〈 η | ξ 〉 η‖2 = ‖ξ‖2.

But ξ − 〈 η | ξ 〉 η ∈ E , so that ‖ξ − 〈 η | ξ 〉 η‖2 ≥ ‖ξ‖2, implying 〈 η | ξ 〉 = 0. Thus
ξ belongs to the orthogonal complement M⊥ = {θ ∈ H | 〈 θ | η 〉 = 0 for all η ∈ M}
of M and ϕ = ψ + ξ where ψ ∈ M , ξ ∈ M⊥. Since M ∩ M⊥ = {0} and

M⊥ = ∩η∈M{θ ∈ H | 〈 θ | η 〉 = 0}

is a closed subspace of H, we have proved the following projection theorem:

Theorem 2.4 If M is a closed subspace of H, then H is the direct sum of M and
the closed subspace M⊥, that is, H = M ⊕ M⊥.

The statementH = M ⊕ M⊥ means that every ϕ ∈ H can be uniquely expressed
as ϕ = ψ + ξ with ψ ∈ M and ξ ∈ M⊥. Denoting PMϕ = ψ, we thus obtain a
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mapping PM : H → M , which we call the (orthogonal) projection of H onto M .
The definition immediately shows that PM is linear. Since ‖ϕ‖2 = ‖ψ‖2 + ‖ξ‖2 by
the Pythagorean theorem, we have ‖PMϕ‖ = ‖ψ‖ ≤ ‖ϕ‖.

2.2 The Fréchet–Riesz Theorem and Bounded Linear
Operators

Let H be a Hilbert space. A linear map T : H → H is called a bounded (linear)
operator or abounded linear map if there is a constantC ∈ [0,∞) satisfying‖T ϕ‖ ≤
C ‖ϕ‖ for all ϕ ∈ H. The existence of such a constant C is equivalent to the norm
continuity of T . We let L(H) denote the set of all bounded linear maps T : H → H.
If T ∈ L(H) we write ‖T ‖ = sup{‖T ϕ‖ | ϕ ∈ H, ‖ϕ‖ ≤ 1}. It is easy to see that
L(H) is a vector space, and ‖ · ‖ is a norm. Moreover, ‖T ϕ‖ ≤ ‖T ‖ ‖ϕ‖, which
implies that ‖ST ‖ ≤ ‖S‖ ‖T ‖ for all S, T ∈ L(H).

In general, we denote by G∗ the dual of a normed space G (over C), i.e. G∗ is the
space of continuous linear functionals f : G → C. Here continuity is equivalent to
the condition

‖ f ‖ = sup{| f (x)| | ‖x‖ ≤ 1} < ∞,

and the function ‖·‖ is a norm on G∗. The following key result is called the
Fréchet–Riesz representation theorem.

Theorem 2.5 For each f ∈ H∗ there is a unique ψ ∈ H satisfying f (ϕ) = 〈 ψ | ϕ 〉
for all ϕ ∈ H. Moreover, ‖ψ‖ = ‖ f ‖.

Proof Let f ∈ H∗. We may assume that f �= 0, so that M = {ϕ | f (ϕ) = 0} is a
proper closed subspace of H. It follows from Theorem2.4 that there is a ξ ∈ M⊥
such that ‖ξ‖ = 1. If ϕ ∈ H, then

ϕ − f (ϕ)

f (ξ)
ξ ∈ M,

since f
(
ϕ − (

f (ϕ)/ f (ξ)
)
ξ
) = f (ϕ) − (

f (ϕ)/ f (ξ)
)

f (ξ) = 0. This means that〈
ξ | ϕ − (

f (ϕ)/ f (ξ)
)
ξ
〉 = 0, implying 〈 ξ | ϕ 〉 = f (ϕ)/ f (ξ) 〈 ξ | ξ 〉 = f (ϕ)/ f (ξ).

Therefore we may choose ψ = f (ξ)ξ. The uniqueness part is clear, since if
〈
ψ | ψ − ψ′ 〉 = 〈

ψ′ | ψ − ψ′ 〉, then
∥
∥ψ − ψ′∥∥2 = 0. As | f (ϕ)| ≤ ‖ψ‖ ‖ϕ‖, we have

‖ f ‖ ≤ ‖ψ‖, and on the other hand ‖ψ‖2 = f (ψ) ≤ ‖ f ‖ ‖ψ‖, so that ‖ψ‖ ≤
‖ f ‖. �

A straightforward consequence is that the mapping ψ �→ fψ where fψ(ϕ) =
〈ψ | ϕ 〉 for all ϕ ∈ H is a conjugate-linear isometric bijection from H onto H∗.
Another consequence is the following result.
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Proposition 2.1 Let B : H × H → C be a bounded sesquilinear form, i.e. a map-
ping satisfying the following conditions:

(i) B(αϕ + βψ, ξ) = αB(ϕ, ξ) + βB(ψ, ξ) and
(ii) B(ϕ,αψ + βξ) = αB(ϕ,ψ) + βB(ϕ, ξ) for all α, β ∈ C, ϕ, ψ, ξ ∈ H;
(iii) sup

{|B(ϕ,ψ)| ∣∣ ‖ϕ‖ ≤ 1, ‖ψ‖ ≤ 1
}

< ∞.

Then there is a unique S ∈ L(H) such that B(ϕ,ψ) = 〈 Sϕ | ψ 〉 for all ϕ, ψ ∈ H.
Moreover, ‖S‖ = sup

{|B(ϕ,ψ)| ∣∣ ‖ϕ‖ ≤ 1, ‖ψ‖ ≤ 1
}
.

Proof Let C denote the supremum in (iii). If ϕ ∈ H, we get a linear functional
fϕ on H by setting fϕ(ψ) = B(ϕ,ψ), and since | fϕ(ψ)| ≤ C ‖ϕ‖ ‖ψ‖, fϕ is con-
tinuous. Theorem2.5 yields a unique ξϕ ∈ H such that fϕ(ψ) = 〈

ξϕ | ψ 〉
for all

ψ ∈ H. We define Sϕ = ξϕ. Since B(αϕ1 + βϕ2,ψ) = αB(ϕ1,ψ) + β(ϕ2,ψ) =
α 〈 Sϕ1 | ψ 〉 + β 〈 Sϕ2 | ψ 〉 = 〈 αSϕ1 + βSϕ2 | ψ 〉, S is linear. Since

‖Sϕ‖2 = 〈 Sϕ | Sϕ 〉 = B(ϕ, Sϕ) ≤ C ‖ϕ‖ ‖Sϕ‖

we have ‖Sϕ‖ ≤ C ‖ϕ‖, and so S is bounded. The uniqueness of S follows from that
of ξϕ. The proof of the norm equality is an easy exercise. �

The above result can be used to define for each T ∈ L(H) its adjoint as the
map T ∗ ∈ L(H) which is characterised by the equation 〈 ϕ | T ψ 〉 = 〈 T ∗ϕ | ψ 〉 for
all ϕ, ψ ∈ L(H): we simply take B(ϕ,ψ) = 〈ϕ | T ψ 〉 in Proposition2.1. Since
‖T ∗ϕ‖2 ≤ 〈 ϕ | T T ∗ϕ 〉 ≤ ‖ϕ‖ ‖T ‖ ‖T ∗ϕ‖, it is clear that ‖T ∗‖ ≤ ‖T ‖. Using (a)
in the next theorem, we see that on the other hand ‖T ‖ = ‖T ∗∗‖ ≤ ‖T ∗‖, and so
‖T ∗‖ = ‖T ‖.
Theorem 2.6 If S, T ∈ L(H) and α ∈ C, then

(a) T ∗∗ = T ;
(b) (S + T )∗ = S∗ + T ∗;
(c) (αT )∗ = αT ∗;
(d) (ST )∗ = T ∗S∗;
(e) ‖T ∗T ‖ = ‖T ‖2.
We omit the simple proof. We still mention some notions defined in terms of the
adjoint of T ∈ L(H). If T ∗ = T , T is selfadjoint. If T ∗T = T T ∗, T is normal.
If T ∗T = T T ∗ = I , where I (or IH) is the identity map of H, T is unitary. If
‖T ϕ‖ = ‖ϕ‖ for all ϕ ∈ H, T is isometric. Using the polarisation identity it is easy
to see that T is unitary if and only if it is an isometric surjection.

The norm of a selfadjoint operator has the following property.

Proposition 2.2 If T ∈ L(H) is selfadjoint, then

‖T ‖ = sup
‖ϕ‖≤1

| 〈 ϕ | T ϕ 〉 |.


