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Preface

This volume was born from the experience of the authors as researchers and
educators, which suggests that many students of data mining are handicapped
in their research by the lack of a formal, systematic education in its mathe-
matics.

The data mining literature contains many excellent titles that address the
needs of users with a variety of interests ranging from decision making to pat-
tern investigation in biological data. However, these books do not deal with
the mathematical tools that are currently needed by data mining researchers
and doctoral students. We felt it timely to produce a book that integrates
the mathematics of data mining with its applications. We emphasize that this
book is about mathematical tools for data mining and not about data mining
itself; despite this, a substantial amount of applications of mathematical con-
cepts in data mining are presented. The book is intended as a reference for
the working data miner.

In our opinion, three areas of mathematics are vital for data mining: set
theory, including partially ordered sets and combinatorics; linear algebra, with
its many applications in principal component analysis and neural networks;
and probability theory, which plays a foundational role in statistics, machine
learning and data mining.

This volume is dedicated to the study of set-theoretical foundations of data
mining. Two further volumes are contemplated that will cover linear algebra
and probability theory.

The first part of this book, dedicated to set theory, begins with a study of
functions and relations. Applications of these fundamental concepts to such is-
sues as equivalences and partitions are discussed. Also, we prepare the ground
for the following volumes by discussing indicator functions, fields and σ-fields,
and other concepts.

In this part, we have also included a précis of universal and linear algebra
that covers the needs of subsequent chapters. This part concludes with a
chapter on graphs and hypergraphs.



vi Preface

The second part is centered around partially ordered sets. We present alge-
braic structures closely related to partial orders, namely lattices, and Boolean
algebras. We study basic issues about lattices, such as their dual roles as
special partially ordered sets and algebraic structures, the theory of complete
lattices and Galois connections, and their applications to the study of associa-
tion rules. Special attention is paid to Boolean algebras which are of increasing
interest for data mining because they allow the discovery of minimal sets of
features necessary for explaining observations and the discovery of hidden
patterns.

An introduction to topology and measure theory, which is essential for the
study of various concepts of dimension and the recent preoccupations of data
mining researchers with the applications of fractal theory to data mining, is
also a component of this part.

A variety of applications in data mining are discussed, such as the notion of
entropy, presented in a new algebraic framework related to partitions rather
than random distributions, levelwise algorithms that generalize the Apriori
technique, and generalized measures and their use in the study of frequent
item sets. This part concludes with a chapter on rough sets.

The third part is focused on metric spaces. Metrics play an important role
in clustering, classification, and certain data preprocessing techniques. We
study a variety of concepts related to metrics, from dissimilarities to metrics,
tree metrics, and ultrametrics. This chapter is followed by an application chap-
ter dedicated to clustering that includes basic types of clustering algorithms,
limitations of clustering, and techniques for evaluating cluster quality.

The fourth part focuses on combinatorics, an area of mathematics dedi-
cated to the study of finite collections of objects that satisfy certain criteria.
The main topics discussed are the inclusion-exclusion principle, combinatorics
of partitions, counting problems related to collections of sets, and the Vapnik-
Chervonenkis dimension of collections of sets.

Each chapter ends with suggestions for further reading. The book contains
more than 400 exercises; they form an integral part of the material. Some of the
exercises are in reality supplemental material. For these, we include solutions.
The mathematics required for making the best use of our book is a typical
three-semester sequence in calculus.

We would like to thank Catherine Brett and Frank Ganz from Springer-
Verlag for their professionalism and helpfulness.

Boston and Villeneuve d’Ascq Dan A. Simovici
January 2008 Chabane Djeraba
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Set Theory
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Sets, Relations, and Functions

1.1 Introduction

In this chapter, dedicated to set-theoretical bases of data mining, we assume
that the reader is familiar with the notion of a set, membership of an element
in a set, and elementary set theory. After a brief review of set-theoretical
operations we discuss collections of sets, ordered pairs, and set products.

The Axiom of Choice, a basic principle used in many branches of math-
ematics, is discussed in Section 1.4. This subject is approached again in the
context of partially ordered sets in Chapter 4. Countable and uncountable
sets are presented in Section 1.5. An introductory section on elementary com-
binatorics is expanded in Chapter 14. Finally, we introduce the basics of the
relational database model.

1.2 Sets and Collections

If x is a member of a set S, this is denoted, as usual, by x ∈ S. To denote
that x is not a member of the set S, we write x �∈ S.

Throughout this book, we use standardized notations for certain important
sets of numbers:

C the set of complex numbers
R the set of real numbers
R≥0 the set of nonnegative real numbers
R>0 the set of positive real numbers
R̂≥0 the set R≥0 ∪ {+∞}
R̂ the set R ∪ {−∞,+∞}
Q the set of rational numbers
I the set of irrational numbers
Z the set of integers
N the set of natural numbers
N1 the set of positive natural numbers

D.A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,
DOI: 10.1007/978-1-84800-201-2 1, c© Springer-Verlag London Limited 2008
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The usual order of real numbers is extended to the set R̂ by−∞ < x < +∞
for every x ∈ R. In addition, we assume that

x+∞ = ∞+ x = +∞,
x−∞ = −∞+ x = −∞,

for every x ∈ R. Also,

x · ∞ = ∞ · x =

{
+∞ if x > 0
−∞ if x < 0,

and

x · (−∞) = (−∞) · x =

{
−∞ if x > 0
∞ if x < 0.

Note that the product of 0 with either +∞ or −∞ is not defined. Division is
extended by x/+∞ = x/−∞ = 0 for every x ∈ R.

If S is a finite set, we denote by |S| the number of elements of S.
Sets may contain other sets as elements. For example, the set

C = {∅, {0}, {0, 1}, {0, 2}, {1, 2, 3}}

contains the empty set ∅ and {0}, {0, 1},{0, 2},{1, 2, 3} as its elements. We
refer to such sets as collections of sets or simply collections. In general, we use
calligraphic letters C,D, . . . to denote collections of sets.

If C and D are two collections, we say that C is included in D, or that C is
a subcollection of D, if every member of C is a member of D. This is denoted
by C ⊆ D.

Two collections C and D are equal if we have both C ⊆ D and D ⊆ C.
This is denoted by C = D.

Definition 1.1. Let C be a collection of sets. The union of C, denoted by
⋃

C,
is the set defined by ⋃

C = {x | x ∈ S for some S ∈ C}.

If C is a nonempty collection, its intersection is the set
⋂

C given by⋂
C = {x | x ∈ S for every S ∈ C}.

If C = {S, T}, we have x ∈
⋃

C if and only if x ∈ S or x ∈ T and x ∈
⋃

C

if and only if x ∈ S and y ∈ T . The union and the intersection of this two-set
collection are denoted by S ∪ T and S ∩ T and are referred to as the union
and the intersection of S and T , respectively.

We give, without proof, several properties of union and intersection of sets:
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1. S ∪ (T ∪ U) = (S ∪ T ) ∪ U (associativity of union),
2. S ∪ T = T ∪ S (commutativity of union),
3. S ∪ S = S (idempotency of union),
4. S ∪ ∅ = S,
5. S ∩ (T ∩ U) = (S ∩ T ) ∩ U (associativity of intersection),
6. S ∩ T = T ∩ S (commutativity of intersection),
7. S ∩ S = S (idempotency of intersection),
8. S ∩ ∅ = ∅,

for all sets S, T, U .
The associativity of union and intersection allows us to denote unambigu-

ously the union of three sets S, T, U by S∪T ∪U and the intersection of three
sets S, T, U by S ∪ T ∪ U .

Definition 1.2. The sets S and T are disjoint if S ∩ T = ∅.
A collection of sets C is said to be a collection of pairwise disjoint sets if

for every S and T in C, if S �= T , S and T are disjoint.

Definition 1.3. Let S and T be two sets. The difference of S and T is the
set S − T defined by

S − T = {x ∈ S | x �∈ T}.

When the set S is understood from the context, we write T for S−T , and
we refer to the set T as the complement of T with respect to S or simply the
complement of T .

The relationship between set difference and set union and intersection is
given in the following theorem.

Theorem 1.4. For every set S and nonempty collection C of sets, we have

S −
⋃

C =
⋂
{S − C | C ∈ C},

S −
⋂

C =
⋃
{S − C | C ∈ C}.

Proof. We leave the proof of these equalities to the reader. 	


Corollary 1.5. For any sets S, T, U , we have

S − (T ∪ U) = (S − T ) ∩ (S − U),
S − (T ∩ U) = (S − T ) ∪ (S − U).

Proof. The corollary follows immediately from Theorem 1.4 by choosing C =
{T,U}. 	


With the notation previously introduced for the complement of a set, the
equalities of Corollary 1.5 become
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T ∪ U = T ∩ U,
T ∩ U = T ∪ U.

The link between union and intersection is given by the distributivity
properties contained in the following theorem.

Theorem 1.6. For any collection of sets C and set T , we have(⋃
C
)
∩ T =

⋃
{C ∩ T | C ∈ C}.

If C is nonempty, we also have(⋂
C
)
∪ T =

⋂
{C ∪ T | C ∈ C}.

Proof. We shall prove only the first equality; the proof of the second one is
left as an exercise for the reader.

Let x ∈ (
⋃

C)∩T . This means that x ∈
⋃

C and x ∈ T . There is a set C ∈ C

such that x ∈ C; hence, x ∈ C ∩ T , which implies x ∈
⋃
{C ∩ T | C ∈ C}.

Conversely, if x ∈
⋃
{C ∩T | C ∈ C}, there exists a member C ∩T of this

collection such that x ∈ C ∩ T , so x ∈ C and x ∈ T . It follows that x ∈
⋃

C,
and this, in turn, gives x ∈ (

⋃
C) ∩ T . 	


Corollary 1.7. For any sets T , U , V , we have

(U ∪ V ) ∩ T = (U ∩ T ) ∪ (V ∩ T ),
(U ∩ V ) ∪ T = (U ∪ T ) ∩ (V ∪ T ).

Proof. The corollary follows immediately by choosing C = {U, V } in Theo-
rem 1.6. 	


Note that if C and D are two collections such that C ⊆ D, then⋃
C ⊆

⋃
D

and ⋂
D ⊆

⋂
C.

We initially excluded the empty collection from the definition of the intersec-
tion of a collection. However, within the framework of collections of subsets of
a given set S, we will extend the previous definition by taking

⋂
∅ = S for the

empty collection of subsets of S. This is consistent with the fact that ∅ ⊆ C

implies
⋂

C ⊆ S.
The symmetric difference of sets denoted by ⊕ is defined by

U ⊕ V = (U − V ) ∪ (V − U)

for all sets U, V .
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Theorem 1.8. For all sets U, V, T , we have
(i) U ⊕ U = ∅;
(ii) U ⊕ V = V ⊕ T ;
(iii) (U ⊕ V )⊕ T = U ⊕ (V ⊕ T ).

Proof. The first two parts of the theorem are direct applications of the defini-
tion of ⊕. We leave to the reader the proof of the third part (the associativity
of ⊕).

The next theorem allows us to introduce a type of set collection of funda-
mental importance.

Theorem 1.9. Let {{x, y}, {x}} and {{u, v}, {u}} be two collections such that
{{x, y}, {x}} = {{u, v}, {u}}. Then, we have x = u and y = v.

Proof. Suppose that {{x, y}, {x}} = {{u, v}, {u}}.
If x = y, the collection {{x, y}, {x}} consists of a single set, {x}, so

the collection {{u, v}, {u}} will also consist of a single set. This means that
{u, v} = {u}, which implies u = v. Therefore, x = u, which gives the desired
conclusion because we also have y = v.

If x �= y, then neither (x, y) nor (u, v) are singletons. However, they both
contain exactly one singleton, namely {x} and {u}, respectively, so x = u.
They also contain the equal sets {x, y} and {u, v}, which must be equal. Since
v ∈ {x, y} and v �= u = x, we conclude that v = y. 	


Definition 1.10. An ordered pair is a collection of sets {{x, y}, {x}}.

Theorem 1.9 implies that for an ordered pair {{x, y}, {x}}, x and y are
uniquely determined. This justifies the following definition.

Definition 1.11. Let {{x, y}, {x}} be an ordered pair. Then x is the first
component of p and y is the second component of p.

From now on, an ordered pair {{x, y}, {x}} will be denoted by (x, y). If
both x, y ∈ S, we refer to (x, y) as an ordered pair on the set S.

Definition 1.12. Let C and D be two collections of sets such that
⋃

C =
⋃

D.
D is a refinement of C if, for every D ∈ D, there exists C ∈ C such that D ⊆ C.

This is denoted by C � D.

Example 1.13. Consider the collection C = {(a,∞) | a ∈ R} and D = {(a, b) |
a, b ∈ R, a < b}. It is clear that

⋃
C =

⋃
D = R.

Since we have (a, b) ⊆ (a,∞) for every a, b ∈ R such that a < b, it follows
that D is a refinement of C.

Definition 1.14. A collection of sets C is hereditary if U ∈ C and W ⊆ U
implies W ∈ C.
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Example 1.15. Let S be a set. The collection of subsets of S, denoted by P(S),
is a hereditary collection of sets since a subset of a subset T of S is itself a
subset of S.

The set of subsets of S that contain k elements is denoted by Pk(S).
Clearly, for every set S, we have P0(S) = {∅} because there is only one
subset of S that contains 0 elements, namely the empty set. The set of all
finite subsets of a set S is denoted by Pfin(S). It is clear that Pfin(S) =⋃
k ∈ NPk(S).

Example 1.16. If S = {a, b, c}, then P(S) consists of the following eight sets:

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.

For the empty set, we have P(∅) = {∅}.

Definition 1.17. A collection C has finite character if C ∈ C if and only if
every finite subset of C belongs to C.

It is clear that, for a collection C of finite character, if C ∈ C and D ⊆ C,
then we also have D ∈ C. In other words, every collection of finite character
is hereditary.

Theorem 1.18. Let C be a collection of finite character that consists of sub-
sets of a set S. If U0, . . . , Un, . . . are members of C such that U0 ⊆ · · · ⊆ Un ⊆
· · · , then U =

⋃
{Ui | i ≥ 0} ∈ C.

Proof. Let W = {wi | 0 ≤ i ≤ n − 1} be a finite subset of U . For every
w� ∈ W , let w� be the least integer such that w� ∈ Uq�

for 0 ≤ � ≤ n − 1. If
q = max{q0, . . . , qk−1}, then W ⊆ Uq, so W ∈ C. Since every finite subset of
U belongs to C, we obtain U ∈ C. 	


Definition 1.19. Let C be a collection of sets and let K be a set. The trace
of the collection C on the set K is the collection {C ∩K | C ∈ C}.

An alternative notation for CK is C �K , a notation that we shall use when the
collection C is adorned by other subscripts.

We conclude this presentation of collections of sets with two more opera-
tions on collections of sets.

Definition 1.20. Let C and D be two collections of sets. The collections C∨D,
C ∧D, and C−D are given by

C ∨D = {C ∪D | C ∈ C and D ∈ D},
C ∧D = {C ∩D | C ∈ C and D ∈ D},
C−D = {C −D | C ∈ C and D ∈ D}.
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Example 1.21. Let C and D be the collections of sets defined by

C = {{x}, {y, z}, {x, y}, {x, y, z}},
D = {{y}, {x, y}, {u, y, z}}.

We have

C ∨D = {{x, y}, {y, z}, {x, y, z}, {u, y, z}, {u, x, y, z}},
C ∧D = {∅, {x}, {y}, {x, y}, {y, z}},
C−D = {∅, {x}, {z}, {x, z}},
D− C = {∅, {u}, {x}, {y}, {u, z}, {u, y, z}}.

Unlike “∪” and “∩”, the operations “∨” and “∧” between collections of
sets are not idempotent. Indeed, we have, for example,

D ∨D = {{y}, {x, y}, {u, y, z}, {u, x, y, z}} �= D.

The trace CK of a collection C on K can be written as CK = C ∧ {K}.

1.3 Relations and Functions

This section covers a number of topics that are derived from the notion of
relation.

1.3.1 Cartesian Products of Sets

Definition 1.22. Let X and Y be two sets. The Cartesian product of X and
Y is the set X × Y , which consists of all pairs (x, y) such that x ∈ X and
y ∈ Y .

If either X = ∅ or Y = ∅, then X × Y = ∅.

Example 1.23. Consider the setsX = {a, b, c} and Y = {0, 1}. Their Cartesian
product is the set:

X × Y = {(x, 0), (y, 0), (z, 0), (x, 1), (y, 1), (z, 1)}.

Example 1.24. The Cartesian product R × R consists of all ordered pairs of
real numbers (x, y). Geometrically, each such ordered pair corresponds to a
point in a plane equipped with a system of coordinates. Namely, the pair
(u, v) ∈ R × R is represented by the point P whose x-coordinate is u and
y-coordinate is v (see Figure 1.1)

The Cartesian product is distributive over union, intersection, and differ-
ence of sets.
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�

�

�
P

x

y

Fig. 1.1. Cartesian representation of the pair (x, y).

Theorem 1.25. If � is one of ∪,∩, or −, then for any sets R, S, and T , we
have

(R � S)× T = (R× T ) � (S × T ),
T × (R � S) = (T ×R) � (T × S).

Proof. We prove only that (R − S) × T = (R × T ) − (S × T ). Let (x, y) ∈
(R − S) × T . We have x ∈ R − S and y ∈ T . Therefore, (x, y) ∈ R × T and
(x, y) �∈ S × T , which show that (x, y) ∈ (R× T )− (S × T ).

Conversely, (x, y) ∈ (R × T ) − (S × T ) implies x ∈ and y ∈ T and also
(x, y) �∈ S × T . Thus, we have x �∈ S, so (x, y) ∈ (R− S)× T . 	


It is not difficult to see that if R ⊆ R′ and S ⊆ S′, then R× S ⊆ R′ × S′.
We refer to this property as the monotonicity of the Cartesian product with
respect to set inclusion.

1.3.2 Relations

Definition 1.26. A relation is a set of ordered pairs.
If S and T are sets and ρ is a relation such that ρ ⊆ S × T , then we refer

to ρ as a relation from S to T .
A relation from S to S is called a relation on S.

P(S × T ) is the set of all relations from S to T .
Among the relations from S to T , we distinguish the empty relation ∅ and

the full relation S × T .
The identity relation of a set S is the relation ιS ⊆ S × S defined by

ιS = {(x, x) | x ∈ S}. The full relation on S is θS = S × S.
If (x, y) ∈ ρ, we sometimes denote this fact by x ρ y, and we write x � ρ y

instead of (x, y) �∈ ρ.
Example 1.27. Let S ⊆ R. The relation “less than” on S is given by

{(x, y) | x, y ∈ S and y = x+ z for some z ∈ R≥0}.
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Example 1.28. Consider the relation ν ⊆ Z×Q given by

ν = {(n, q) | n ∈ Z, q ∈ Q, and n ≤ q < n+ 1}.

We have (−3,−2.3) ∈ ν and (2, 2.3) ∈ ν. Clearly, (n, q) ∈ ν if and only if
n is the integral part of the rational number q.

Example 1.29. The relation δ is defined by

δ = {(m,n) ∈ N× N | n = km for some k ∈ N}.

We have (m,n) ∈ δ if m divides n evenly.

Note that if S ⊆ T , then ιS ⊆ ιT and θS ⊆ θT .

Definition 1.30. The domain of a relation ρ from S to T is the set

Dom(ρ) = {x ∈ S | (x, y) ∈ ρ for some y ∈ T}.

The range of ρ from S to T is the set

Ran(ρ) = {y ∈ T | (x, y) ∈ ρ for some x ∈ S}.

If ρ is a relation and S and T are sets, then ρ is a relation from S to T if
and only if Dom(ρ) ⊆ S and Ran(ρ) ⊆ T . Clearly, ρ is always a relation from
Dom(ρ) to Ran(ρ).

If ρ and σ are relations and ρ ⊆ σ, then Dom(ρ) ⊆ Dom(σ) and Ran(ρ) ⊆
Ran(σ).

If ρ and σ are relations, then so are ρ∪σ, ρ∩σ, and ρ−σ, and in fact if ρ
and σ are both relations from S to T , then these relations are also relations
from S to T .

Definition 1.31. Let ρ be a relation. The inverse of ρ is the relation ρ−1

given by
ρ−1 = {(y, x) | (x, y) ∈ ρ}.

The proofs of the following simple properties are left to the reader:
(i) Dom(ρ−1) = Ran(ρ),
(ii) Ran(ρ−1) = Dom(ρ),
(iii) if ρ is a relation from A to B, then ρ−1 is a relation from B to A, and
(iv) (ρ−1)−1 = ρ
for every relation ρ. Furthermore, if ρ and σ are two relations such that ρ ⊆ σ,
then ρ−1 ⊆ σ−1 (monotonicity of the inverse).

Definition 1.32. Let ρ and σ be relations. The product of ρ and σ is the
relation ρσ, where

ρσ = {(x, z) | for some y, (x, y) ∈ ρ, and (y, z) ∈ σ}.
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It is easy to see that Dom(ρσ) ⊆ Dom(ρ) and Ran(ρσ) ⊆ Ran(σ). Further,
if ρ is a relation from A to B and σ is a relation from B to C, then ρσ is a
relation from A to C.

Several properties of the relation product are given in the following theo-
rem.

Theorem 1.33. Let ρ1, ρ2, and ρ3 be relations. We have
(i) ρ1(ρ2ρ3) = (ρ1ρ2)ρ3 (associativity of relation product).
(ii) ρ1(ρ2∪ρ3) = (ρ1ρ2)∪(ρ1ρ3) and (ρ1∪ρ2)ρ3 = (ρ1ρ3)∪(ρ2ρ3) (distributivity

of relation product over union).
(iii) (ρ1ρ2)−1 = ρ−1

2 ρ−1
1 .

(iv) If ρ2 ⊆ ρ3, then ρ1ρ2 ⊆ ρ1ρ3 and ρ2ρ1 ⊆ ρ3ρ1 (monotonicity of relation
product).

(v) If S and T are any sets, then ιSρ1 ⊆ ρ1 and ρ1ιT ⊆ ρ1. Further, ιSρ1 = ρ1
if and only if Dom(ρ1) ⊆ S, and ρ1ιT = ρ1 if and only if Ran(ρ1) ⊆ T .
(Thus, ρ1 is a relation from S to T if and only if ιSρ1 = ρ1 = ρ1ιT .)

Proof. We prove (i), (ii), and (iv) and leave the other parts as exercises.
To prove Part (i), let (a, d) ∈ ρ1(ρ2ρ3). There is a b such that (a, b) ∈ ρ1

and (b, d) ∈ ρ2ρ3. This means that there exists c such that (b, c) ∈ ρ2 and
(c, d) ∈ ρ3. Therefore, we have (a, c) ∈ ρ1ρ2, which implies (a, d) ∈ (ρ1ρ2)ρ3.
This shows that ρ1(ρ2ρ3) ⊆ (ρ1ρ2)ρ3.

Conversely, let (a, d) ∈ (ρ1ρ2)ρ3. There is a c such that (a, c) ∈ ρ1ρ2
and (c, d) ∈ ρ3. This implies the existence of a b for which (a, b) ∈ ρ1 and
(b, c) ∈ ρ3. For this b, we have (b, d) ∈ ρ2ρ3, which gives (a, d) ∈ ρ1(ρ2ρ3).
We have proven the reverse inclusion, (ρ1ρ2)ρ3 ⊆ ρ1(ρ2ρ3), which gives the
associativity of relation product.

For Part (ii), let (a, c) ∈ ρ1(ρ2∪ρ3). Then, there is a b such that (a, b) ∈ ρ1
and (b, c) ∈ ρ2 or (b, c) ∈ ρ3. In the first case, we have (a, c) ∈ ρ1ρ2; in the
second, (a, c) ∈ ρ1ρ3. Therefore, we have (a, c) ∈ (ρ1ρ2)∪(ρ1ρ3) in either case,
so ρ1(ρ2 ∪ ρ3) ⊆ (ρ1ρ2) ∪ (ρ1ρ3).

Let (a, c) ∈ (ρ1ρ2) ∪ (ρ1ρ3). We have either (a, c) ∈ ρ1ρ2 or (a, c) ∈ ρ1ρ3.
In the first case, there is a b such that (a, b) ∈ ρ1 and (b, c) ∈ ρ2 ⊆ ρ2 ∪ ρ3.
Therefore, (a, c) ∈ ρ1(ρ2 ∪ ρ3). The second case is handled similarly. This
establishes

(ρ1ρ2) ∪ (ρ1ρ3) ⊆ ρ1(ρ2 ∪ ρ3).
The other distributivity property has a similar argument.

Finally, for Part (iv), let ρ2 and ρ3 be such that ρ2 ⊆ ρ3. Since ρ2∪ρ3 = ρ3,
we obtain from (ii) that

ρ1ρ3 = (ρ1ρ2) ∪ (ρ1ρ3),

which shows that ρ1ρ2 ⊆ ρ1ρ3. The second inclusion is proven similarly. 	


Definition 1.34. The n-power of a relation ρ ⊆ S × S is defined inductively
by ρ0 = ιS and ρn+1 = ρnρ for n ∈ N.
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Note that ρ1 = ρ0ρ = ιSρ = ρ for any relation ρ.

Example 1.35. Let ρ ⊆ R× R be the relation defined by

ρ = {(x, x+ 1) | x ∈ R}.

The zero-th power of ρ is the relation ι
R

. The second power of ρ is

ρ2 = ρ · ρ = {(x, y) ∈ R× R | (x, z) ∈ ρ and (z, y) ∈ ρ for some z ∈ R}.

In other words, ρ2 = {(x, x+ 2) | x ∈ R}. In general, ρn = {(x, x+ n) | x ∈
R}.

Definition 1.36. A relation ρ is a function if for all x, y, z, (x, y) ∈ ρ and
(x, z) ∈ ρ imply y = z; ρ is a one-to-one relation if, for all x, x′, and y,
(x, y) ∈ ρ and (x′, y) ∈ ρ imply x = x′.

Observe that ∅ is a function (referred to in this context as the empty func-
tion) because ∅ satisfies vacuously the defining condition for being a function.

Example 1.37. Let S be a set. The relation ρ on S × P(S) given by

ρ = {(x, {x}) | x ∈ S}

is a function.

Example 1.38. For every set S, the relation ιS is both a function and a one-to-
one relation. The relation ν from Example 1.28 is a one-to-one relation, but
it is not a function.

Theorem 1.39. For any relation ρ, ρ is a function if and only if ρ−1 is a
one-to-one relation.

Proof. Suppose that ρ is a function, and let (y1, x), (y2, x) ∈ ρ−1. Definition
1.31 implies that (x, y1), (x, y2) ∈ ρ; hence, y1 = y2 because ρ is a function.
This proves that ρ−1 is one-to-one.

Conversely, assume that ρ−1 is one-to-one and let (x, y1), (x, y2) ∈ ρ. Ap-
plying Definition 1.31, we obtain (y1, x), (y2, x) ∈ ρ−1 and, since ρ−1 is one-
to-one, we have y1 = y2. This shows that ρ is a function. 	


Example 1.40. We observed that the relation ν introduced in Example 1.28
is one-to-one. Therefore, its inverse ν−1 ⊆ Q × Z is a function. In fact, ν−1

associates to each rational number q its integer part �q�.

Definition 1.41. A relation ρ from S to T is total if Dom(ρ) = S and is
onto if Ran(ρ) = T .



14 1 Sets, Relations, and Functions

Any relation ρ is a total and onto relation from Dom(ρ) to Ran(ρ). If both
S and T are nonempty, then S × T is a total and onto relation from S to T .

It is easy to prove that a relation ρ from S to T is a total relation from S
to T if and only if ρ−1 is an onto relation from T to S.

If ρ is a relation, then one can determine whether or not ρ is a function or
is one-to-one just by looking at the ordered pairs of ρ. Whether ρ is a total
or onto relation from A to B depends on what A and B are.

Theorem 1.42. Let ρ and σ be relations.
(i) If ρ and σ are functions, then ρσ is also a function.
(ii) If ρ and σ are one-to-one relations, then ρσ is also a one-to-one relation.
(iii) If ρ is a total relation from R to S and σ is a total relation from S to T ,

then ρσ is a total relation from R to T .
(iv) If ρ is an onto relation from R to S and σ is an onto relation from S to

T , then ρσ is an onto relation from R to T .

Proof. To show Part (i), suppose that ρ and σ are both functions and that
(x, z1) and (x, z2) both belong to ρσ. Then, there exists a y1 such that (x, y1) ∈
ρ and (y1, z1) ∈ σ, and there exists a y2 such that (x, y2) ∈ ρ and (y2, z2) ∈ σ.
Since ρ is a function, y1 = y2, and hence, since σ is a function, z1 = z2, as
desired.

Part (ii) follows easily from Part (i). Suppose that relations ρ and σ are
one-to-one (and hence that ρ−1 and σ−1 are both functions). To show that
ρσ is one-to-one, it suffices to show that (ρσ)−1 = σ−1ρ−1 is a function. This
follows immediately from Part (i).

We leave the proofs for the last two parts of the theorem to the reader.
	


The properties of relations defined next allow us to define important classes
of relations.

Definition 1.43. Let S be a set and let ρ ⊆ S×S be a relation. The relation
ρ is:
(i) reflexive if (s, s) ∈ ρ for every s ∈ S;
(ii) irreflexive if (s, s) �∈ ρ for every s ∈ S;
(iii) symmetric if (s, s′) ∈ ρ implies (s′, s) ∈ ρ for s, s′ ∈ S;
(iv) antisymmetric if (s, s′), (s′, s) ∈ ρ implies s = s′ for s, s′ ∈ S;
(v) asymmetric if (s, s′) ∈ ρ implies (s′, s) �∈ ρ; and
(vi) transitive if (s, s′), (s′, s′′) ∈ ρ implies (s, s′′) ∈ ρ.

Example 1.44. The relation ιS is reflexive, symmetric, antisymmetric, and
transitive for any set S.

Example 1.45. The relation δ introduced in Example 1.29 is reflexive since
n · 1 = n for any n ∈ N.

Suppose that (m,n), (n,m) ∈ δ. There are p, q ∈ N such that mp = n and
nq = m. If n = 0, then this also implies m = 0; hence, m = n. Let us assume
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that n �= 0. The previous equalities imply nqp = n, and since n �= 0, we have
qp = 1. In view of the fact that both p and q belong to N, we have p = q = 1;
hence, m = n, which proves the antisymmetry of ρ.

Let (m,n), (n, r) ∈ δ. We can write n = mp and r = nq for some p, q ∈ N,
which gives r = mpq. This means that (m, r) ∈ δ, which shows that δ is also
transitive.

Definition 1.46. Let S and T be two sets and let ρ ⊆ S × T be a relation.
The image of an element s ∈ S under the relation ρ is the set ρ(s) = {t ∈

T | (s, t) ∈ ρ}.
The preimage of an element t ∈ T under ρ is the set {s ∈ S | (s, t) ∈ ρ},

which equals ρ−1(t), using the previous notation.
The collection of images of S under ρ is

IMρ = {ρ(s) | s ∈ S},

while the collection of preimages of T is

PIMρ = IMρ−1 = {ρ−1(t) | t ∈ T}.

If C and C′ are two collections of subsets of S and T , respectively, and C′ = IMρ

and C = PIMρ for some relation ρ ⊆ S × T , we refer to C′ as the dual class
relative to ρ of C.

Example 1.47. Any collection D of subsets of S can be regarded as the col-
lection of images under a suitable relation. Indeed, let C be such a collection.
Define the relation ρ ⊆ S×C as ρ = {(s, C) | s ∈ S,C ∈ C and c ∈ C}. Then,
IMρ consists of all subsets of P(C) of the form ρ(s) = {C ∈ C | s ∈ C} for
s ∈ S. It is easy to see that PIMρ(C) = C.

The collection IMρ defined in this example is referred to as the bi-dual
collection of C.

1.3.3 Functions

We saw that a function is a relation ρ such that, for every x in Dom(ρ), there
is only one y such that (x, y) ∈ ρ. In other words, a function assigns a unique
value to each member of its domain.

From now on, we will use the letters f, g, h, and k to denote functions, and
we will denote the identity relation ιS , which we have already remarked is a
function, by 1S .

If f is a function, then, for each x in Dom(f), we let f(x) denote the
unique y with (x, y) ∈ f , and we refer to f(x) as the image of x under f .

Definition 1.48. Let S and T be sets. A partial function from S to T is a
relation from S to T that is a function.

A total function from S to T (also called a function from S to T or a
mapping from S to T ) is a partial function from S to T that is a total relation
from S to T .
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The set of all partial functions from S to T is denoted by S � T and the
set of all total functions from S to T by S −→ T . We have S −→ T ⊆ S � T
for all sets S and T .

The fact that f is a partial function from S to T is indicated by writing
f : S � T rather than f ∈ S � T . Similarly, instead of writing f ∈ S −→ T ,
we use the notation f : S −→ T .

For any sets S and T , we have ∅ ∈ S � T . If either S or T is empty, then
∅ is the only partial function from S to T . If S = ∅, then the empty function
is a total function from S to any T . Thus, for any sets S and T , we have

S � ∅ = {∅},
∅ � T = {∅},
∅ −→ T = {∅}.

Furthermore, if S is nonempty, then there can be no (total) function from S
to the empty set, so we have

S −→ ∅ = ∅ (if S �= ∅).

Definition 1.49. A one-to-one function is called an injection.
A function f : S � T is called a surjection (from S to T ) if f is an onto

relation from S to T , and it is called a bijection (from S to T ) or a one-to-one
correspondence between S and T if it is total, an injection, and a surjection.

Using our notation for functions, we can restate the definition of injection
as follows: f is an injection if for all s, s′ ∈ Dom(f), f(s) = f(s′) implies
s = s′. Likewise, f : S � T is a surjection if for every t ∈ T there is an s ∈ S
with f(s) = t.

Example 1.50. Let S and T be two sets and assume that S ⊆ T . The contain-
ment mapping c : S −→ T defined by c(s) = s for s ∈ S is an injection. We
denote such a containment by c : S ↪→ T .

Example 1.51. Let m ∈ N be a natural number, m ≥ 2. Consider the function
rm : N −→ {0, . . . ,m−1}, where rm(n) is the remainder when n is divided by
m. Obviously, rm is well-defined since the remainder p when a natural number
is divided by m satisfies 0 ≤ p ≤ m − 1. The function rm is onto because of
the fact that, for any p ∈ {0, . . . ,m − 1}, we have rm(km + p) = p for any
k ∈ N.

For instance, if m = 4, we have r4(0) = r4(4) = r4(8) = · · · = 0, r4(1) =
r4(5) = r4(9) = · · · = 1, r4(2) = r4(6) = r4(10) = · · · = 2 and r4(3) = r4(7) =
r4(11) = · · · = 3.

Example 1.52. Let Pfin(N) be the set of finite subsets of N. Define the function
φ : Pfin(N) −→ N as
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φ(K) =

{
0 if K = ∅,∑p

i=1 2ni if K = {n1, . . . , np}.

It is easy to see that φ is a bijection.

Since a function is a relation, the ideas introduced in the previous section
for relations in general can be equally well applied to functions. In particular,
we can consider the inverse of a function and the product of two functions.

If f is a function, then, by Theorem 1.39, f−1 is a one-to-one relation;
however, f−1 is not necessarily a function. In fact, by the same theorem, if f
is a function, then f−1 is a function if and only if f is an injection.

Suppose now that f : S � T is an injection. Then, f−1 : T � S is also
an injection. Further, f−1 : T � S is total if and only if f : S � T is a
surjection, and f−1 : T � S is a surjection if and only if f : S � T is total. It
follows that f : S � T is a bijection if and only if f−1 : T � S is a bijection.

If f and g are functions, then we will always use the alternative notation
gf instead of the notation fg used for the relation product. We will refer to
gf as the composition of f and g rather than the product.

By Theorem 1.42, the composition of two functions is a function. In fact,
it follows from the definition of composition that

Dom(gf) = {s ∈ Dom(f) | f(s) ∈ Dom(g)}

and, for all s ∈ Dom(gf),
gf(s) = g(f(s)).

This explains why we use gf rather than fg. If we used the other notation, the
previous equation would become fg(s) = g(f(s)), which is rather confusing.

Definition 1.53. Let f : S −→ T . A left inverse (relative to S and T ) for f
is a function g : T −→ S such that gf = 1S. A right inverse (relative to S
and T ) for f is a function g : T −→ S such that fg = 1T .

Theorem 1.54. Let f : S −→ T .
(i) f is a surjection if and only if f has a right inverse (relative to S and T ).
(ii) If S is nonempty, then f is an injection if and only if f has a left inverse

(relative to S and T ).

Proof. To prove the first part, suppose first that f : S −→ T is a surjection.
Define a function g : T −→ S as follows: For each y ∈ T , let g(y) be some
arbitrarily chosen element x ∈ S such that f(x) = y. (Such an x exists because
f is surjective.) Then, by definition, f(g(y)) = y for all y ∈ T , so g is a right
inverse for f . Conversely, suppose that f has a right inverse g. Let y ∈ T
and let x = g(y). Then, we have f(x) = f(g(y)) = 1T (y) = y. Thus, f is
surjective.

To prove the second part, first suppose that f : S −→ T is an injection
and S is nonempty. Let x0 be some fixed element of S. Define a function
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g : T −→ S as follows: If y ∈ Ran(f), then, since f is an injection, there
is a unique element x ∈ S such that f(x) = y. Define g(y) to be this x. If
y ∈ T − Ran(f), define g(y) = x0. Then, it is immediate from the definition
of g that, for all x ∈ S, g(f(x)) = x, so g is a left inverse for f . Conversely,
suppose that f has a left inverse g. For all x1, x2 ∈ S, if f(x1) = f(x2), we
have x1 = 1S(x1) = g(f(x1)) = g(f(x2)) = 1S(x2) = x2. Hence, f is an
injection. 	


We have used in this proof (without an explicit mention) an axiom of set
theory that we discuss in Section 1.4. For a proof that makes explicit use of
this axiom, see Supplement 38.

Theorem 1.55. Let f : S −→ T . Then, the following statements are equiva-
lent:
(i) f is a bijection.
(ii) There is a function g : T −→ S that is both a left and a right inverse for

f .
(iii) f has both a left inverse and a right inverse.

Further, if f is a bijection, then f−1 is the only left inverse that f has,
and it is the only right inverse that f has.

Proof. (i) implies (ii): If f : S −→ B is a bijection, then f−1 : T −→ S is both
a left and a right inverse for f .

(ii) implies (iii): This implication is obvious.
(iii) implies (i): If f has both a left inverse and a right inverse and S �= ∅,

then it follows immediately from Theorem 1.54 that f is both injective and
surjective, so f is a bijection. If S = ∅, then the existence of a left inverse
function from T to S implies that T is also empty; this means that f is the
empty function, which is a bijection from the empty set to itself.

Finally, suppose that f : S −→ T is a bijection and that g : T −→ S is a
left inverse for f . Then, we have

f−1 = 1Sf
−1 = (gf)f−1 = g(ff−1) = g1T = g.

Thus, f−1 is the unique left inverse for f . A similar proof shows that f−1 is
the unique right inverse for f . 	


To prove that f : S −→ T is a bijection one could prove directly that f
is both one-to-one and onto. Theorem 1.55 provides an alternative way. If we
can define a function g : T −→ S and show that g is both a left and a right
inverse for f , then f is a bijection and g = f−1.

The next definition provides another way of viewing a subset of a set S.

Definition 1.56. Let S be a set. An indicator function over S is a function
I : S −→ {0, 1}.

If P is a subset of S, then the indicator function of P (as a subset of S)
is the function IP : S −→ {0, 1} given by



1.3 Relations and Functions 19

IP (x) =

{
1 if x ∈ P
0 otherwise,

for every x ∈ S.

It is easy to see that

IP∩Q(x) = IP (x) · IQ(x),
IP∪Q(x) = IP (x) + IQ(x)− IP (x) · IQ(x),
IP̄ (x) = 1− IP (x),

for every P,Q ⊆ S and x ∈ S.
The relationship between the subsets of a set and indicator functions de-

fined on that set is discussed next.

Theorem 1.57. There is a bijection Ψ : P(S) −→ (S −→ {0, 1}) between the
set of subsets of S and the set of indicator functions defined on S.

Proof. For P ∈ P(S), define Ψ(P ) = IP . The mapping Ψ is one-to-one. Indeed,
assume that IP = IQ, where P,Q ∈ P(S). We have x ∈ P if and only if
IP (x) = 1, which is equivalent to IQ(x) = 1. This happens if and only if
x ∈ Q; hence, P = Q so Ψ is one-to-one.

Let f : S −→ {0, 1} be an arbitrary function. Define the set Tf = {x ∈
S | f(x) = 1}. It is easy to see that f is the indicator function of the set Tf .
Hence, Ψ(Tf ) = f , which shows that the mapping Ψ is also onto and hence it
is a bijection. 	


Definition 1.58. A simple function on a set S is a function f : S −→ R that
has a finite range.

Simple functions are linear combinations of indicator functions, as we show
next.

Theorem 1.59. Let f : S −→ R be a simple function such that Ran(f) =
{y1, . . . , yn} ⊆ R. Then,

f =
n∑

i=1

yiIf−1(yi).

Proof. Let x ∈ R. If f(x) = yj , then

If−1(y�)(x) =

{
1 if � = j,

0 otherwise.

Thus, (
n∑

i=1

yiIf−1(yi)

)
(x) = yj ,

which shows that f(x) =
(∑n

i=1 yiIf−1(yi)

)
(x). 	



