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Preface

Ourmain aims in writing this book have been, as ever, to

aid students and other researchers in learning about

lipids, to help staff in teaching the subject and to encour­

age research in this field. Since the publication of the

Fifth Edition in 2002, there have been huge advances in

our knowledge of the many aspects of lipids, especially in

molecular biology. Far more is now known about the

genes coding for proteins involved in lipid metabolism

and already techniques of biotechnology are making use

of this knowledge to produce specialized lipids on an

industrial scale. The new knowledge has also had a far-

reaching influence on medicine by revealing the role of

lipids in disease processes to a much greater extent than

hitherto and allowing for advances in diagnosis and

disease prevention or treatment. We have endeavoured

to reflect as many of these advances as possible in this

new edition. Although modern textbooks of general

biochemistry or biology now cover lipids to a greater

extent thanwhen our first editionwas published in 1971,

a book devoted entirely to lipids is able to go into farmore

detail on all these diverse aspects of the subject and to

discuss exciting new developments with greater author­

ity. It should be emphasized here that we have referred to

a wide range of organisms – including archaea, bacteria,

fungi, algae, ‘higher’ plants and many types of animals

and not restricted ourselves to mammalian lipids.

Because of this research activity, we have rewritten

large parts of the book and have given it a new title that

reflects the fact that it is increasingly difficult to identify

old boundaries between subjects such as biochemistry,

physiology and medicine. This runs in parallel with

changes in university structure: away from narrow

‘departments’ of ‘biochemistry’, zoology’, ‘botany’ and

the like, towards integrated ‘schools’ of biological sci­

ences or similar structures. The increasing diversity of the

subject requires greater specialist expertise than is possi­

ble with one or two authors. Accordingly, we have

brought two new colleagues on board and one of the

original authors has been given the role of coordinating

editor to assure, as far as possible, consistency of style, so

that we could avoid identifying authors with chapters.

The authors have consulted widely among colleagues

working in lipids and related fields to ensure that each

chapter is as authoritative as possible. We are grateful for

their help, which is recorded in the acknowledgements

section. As a result, advances in such topics as enzymes of

lipid metabolism, lipids in cell signalling, lipids in health

and disease, molecular genetics and biotechnology have

been strengthened.

The need to include new material has had to be

balanced against the need to keep the book to amoderate

size, with a price within most students’ budgets. Some

things had to go! As in the Fifth Edition, we decided to

restrict some material of historical interest. Nevertheless,

we thought that the inclusion ofmany short references to

historical developments should remain, to add interest

and to put certain aspects of lipidology in context. We

have also removed some of the material that dealt with

analytical procedures so that we could focus more on

metabolic, physiological, clinical and biotechnological

aspects. Chapter 1 now summarizes lipid analytical

methods, with ample references to more specialist liter­

ature but has a section on lipidomics to highlight modern

approaches to lipid profiling inbiologicalfluids and tissues.

This introductory chapter also contains a guide to finding

your way around the book, which we hope students will

find useful. We shall appreciate comments and sugges­

tions so that future editions can be further improved.

MI Gurr

JL Harwood

KN Frayn

DJ Murphy

RH Michell
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CHAPTER 1

Lipids: definitions, naming, methods and a
guide to the contents of this book

1.1 Introduction

Lipids occur throughout the living world in microorgan­

isms, fungi, higher plants and animals. They occur in all

cell types and contribute to cellular structure, provide

energy stores and participate in many biological pro­

cesses, ranging from transcription of genes to regulation

of vital metabolic pathways and physiological responses.

In this book, they will be described mainly in terms of

their functions, although on occasion it will be conve­

nient, even necessary, to deal with lipid classes based on

their chemical structures and properties. In the conclud­

ing section of this chapter, we provide a ‘roadmap’ to

help students find their way around the book, so as to

make best use of it.

1.2 Definitions

Lipids are defined on the basis of their solubility propert­

ies, not primarily their chemical structure.

The word ‘lipid’ is used by chemists to denote a

chemically heterogeneous group of substances having

in common the property of insolubility in water, but

solubility in nonaqueous solvents such as chloroform,

hydrocarbons or alcohols. The class of natural substances

called ‘lipids’ thus contrasts with proteins, carbohydrates

and nucleic acids, which are chemically well defined.

The terms ‘fat’ and ‘lipid’ are often used interchange­

ably. The term fat is more familiar to the layman for

substances that are clearly fatty in nature, greasy in

texture and immiscible with water. Familiar examples

are butter and the fatty parts of meats. Fats are generally

solid in texture, as distinct from oils which are liquid at

ambient temperatures. Natural fats and oils are

composed predominantly of esters of the three-carbon

alcohol glycerol with fatty acids, often referred to as ‘acyl

lipids’ (or more generally, ‘complex lipids’). These are

called triacylglycerols (TAG, see Section 2.2: often called

‘triglycerides’ in older literature) and are chemically

quite distinct from the oils used in the petroleum indus­

try, which are generally hydrocarbons. Alternatively, in

many glycerol-based lipids, one of the glycerol hydroxyl

groups is esterified with phosphorus and other groups

(phospholipids, see Sections 2.3.2.1 & 2.3.2.2) or sugars

(glycolipids, see Section 2.3.2.3). Yet other lipids are

based on sphingosine (an 18-carbon amino-alcohol

with an unsaturated carbon chain, or its derivatives)

rather than glycerol, many of which also contain sugars

(see Section 2.3.3), while others (isoprenoids, steroids

and hopanoids, see Section 2.3.4) are based on the five-

carbon hydrocarbon isoprene.

Chapter 2 deals mainly with lipid structures, Chapters

3 and 4 with biochemistry and Chapter 5 with lipids in

cellular membranes. Aspects of the biology and health

implications of these lipids are discussed in parts of

Chapters 6–10 and their biotechnology in Chapter 11.

The term ‘lipid’ to the chemist thus embraces a huge and

chemically diverse range of fatty substances, which are

described in this book.

1.3 Structural chemistry and
nomenclature

1.3.1 Nomenclature, general
Naming systems are complex and have to be learned. The

naming of lipids often poses problems. When the subject

was in its infancy, research workers gave names to

substances that they had newly discovered. Often, these

Lipids: Biochemistry, Biotechnology and Health, Sixth Edition. Michael I. Gurr, John L. Harwood, Keith N. Frayn,
Denis J. Murphy and Robert H. Michell.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

1



2 Chapter 1

substanceswould turn out to be impuremixtures but as the

chemical structures of individual lipids became established,

rather more systematic naming systems came into being

and are still evolving. Later, these were further formalized

under naming conventions laid down by the International

Union of Pure and Applied Chemistry (IUPAC) and the

International Union of Biochemistry (IUB). Thus, the term

‘triacylglycerols’ (TAGs – see Index – the main constituents

ofmost fats and oils) is nowpreferred to ‘triglyceride’but, as

the latter is still frequently used especially by nutritionists

and clinicians, you will need to learn both. Likewise, out­

datednames for phospholipids (major componentsofmany

biomembranes), for example ‘lecithin’, for phosphatidyl­

choline (PtdCho) and ‘cephalin’, for an ill-defined mixture

of phosphatidylethanolamine (PtdEtn) and phosphatidyl-

serine (PtdSer) will be mostly avoided in this book, but you

should be aware of their existence in older literature.

Further reference to lipid naming and structures will be

given in appropriate chapters. A routine system for abbre­

viation of these cumbersome phospholipid names is given

below.

1.3.2 Nomenclature, fatty acids
The very complex naming of the fatty acids (FAs) is

discussed in more detail in Chapter 2, where their

structures are described. Giving the full names and

numbering of FAs (and complex lipids) at each mention

can be extremely cumbersome. Therefore a ‘shorthand’

system has been devised and used extensively in this

book and will be described fully in Section 2.1, Box 2.1.

This describes the official system for naming and num­

bering FAs according to the IUPAC/IUB, which we shall

use routinely. An old system used Greek letters to

identify carbon atoms in relation to the carboxyl carbon

as C1. Thus, C2 was the α-carbon, C3 the β-carbon and

so on, ending with the ω-carbon as the last in the chain,

furthest from the carboxyl carbon. Remnants of this

system still survive and will be noted as they arise.

Thus, we shall use ‘3-hydroxybutyrate’, not ‘β-hydroxy­
butyrate’ etc.

While on the subject of chain length, it is common to

classify FAs into groups according to their range of

chain lengths. There is no standard definition of these

groups but we shall use the following definitions in this

book: short-chain fatty acids, 2C–10C; medium-chain,

12C–14C; long-chain, 16C–18C; very long-chain

>18C. Alternative definitions may be used by other

authors.

1.3.3 Isomerism in unsaturated
fatty acids

An important aspect of unsaturated fatty acids (UFA) is

the opportunity for isomerism, which may be either

positional or geometric. Positional isomers occur when

double bonds are located at different positions in

the carbon chain. Thus, for example, a 16C mono­

unsaturated (sometimes called monoenoic, see below)

fatty acid (MUFA) may have positional isomeric forms

with double bonds at C7-8 or C9-10, sometimes written

Δ7 or Δ9 (see Box 2.1). (The position of unsaturation is

numbered with reference to the first of the pair of carbon

atoms between which the double bond occurs, counting

from the carboxyl carbon.) Two positional isomers of an

18C diunsaturated acid are illustrated in Fig. 1.1(c,d).

Fig. 1.1 Isomerism in fatty acids. (a) cis-double bond; (b) a trans-double bond; (c) c,c-9,12-18:2; (d) c,c-6,9-18:2.
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Geometric isomerism refers to the possibility that the

configuration at the double bond can be cis or trans.

(Although the convention Z/E is now preferred by chem­

ists instead of cis/trans, we shall use the more traditional

and more common cis/trans nomenclature throughout

this book.) In the cis form, the two hydrogen substituents

are on the same side of the molecule, while in the trans

form they are on opposite sides (Fig. 1.1a,b). Cis and trans

will be routinely abbreviated to c,t (see Box 2.1).

1.3.4 Alternative names
Students also need to be aware that the term ‘ene’

indicates the presence of a double bond in a FA. Conse­

quently, mono-, di-, tri-, poly- (etc.) unsaturated FAs

may also be referred to as mono-, di-, tri- or poly- (etc.)

enoic FAs (or sometimes mono-, di-, tri- or poly-enes).

Although we have normally used ‘unsaturated’ in this

book, we may not have been entirely consistent and

‘-enoic’ may sometimes be encountered! Furthermore it

is important to note that some terms are used in the

popular literature that might be regarded as too

unspecific in the research literature. Thus shorthand

terms such as ‘saturates’, ‘monounsaturates’, ‘polyunsa­

turates’ etc. will be avoided in much of this text but,

because some chapters deal with matters of more interest

to the general public, such as health (Chapter 10) and

food science or biotechnology (Chapter 11), we have

introduced them where appropriate, for example when

discussing such issues as food labelling.

1.3.5 Stereochemistry
Another important feature of biological molecules is their

stereochemistry. In lipids based on glycerol, for example,

there is an inherent asymmetry at the central carbon atom

of glycerol. Thus, chemical synthesis of phosphoglycerides

yields an equal mixture of two stereoisomeric forms,

whereas almost all naturally occurring phosphoglycerides

have a single stereochemical configuration, much in the

same way as most natural amino acids are of the L (or S)

series. Students interested in the details of the stereo­

chemistry of glycerol derivatives should consult previous

editionsof thisbook(seeGurr et al. (1971,1975,1980,1991,

2002) and other references in Further reading). The

IUPAC/IUB convention has now abolished the DL (or

even the more recent RS) terminology and has provided

rules for the unambiguous numbering of the glycerol car­

bon atoms. Under this system, the phosphoglyceride,

phosphatidylcholine, becomes 1,2-diacyl-sn-glycero-3­

phosphorylcholine or,more shortly, 3-sn-phosphatidylcho­

line (PtdCho; Fig. 1.2). The letters sn denote ‘stereochemical

numbering’ and indicate that this system is being used. The

stereochemical numbering system is too cumbersome to

use routinely in a book of this type and, therefore, we shall

normally use the terms ‘phosphatidylcholine’ etc. or their

relevant abbreviations, but introduce the more precise

name when necessary.

1.3.6 Abbreviation of complex lipid
names and other biochemical terms

Students will appreciate that the official names of complex

lipids (andmany other biochemicals) are cumbersome and

research workers have evolved different systems for abbre­

viating them. In this latest edition we have incorporated all

abbreviations into the index. At the first mention of each

term in the text, we shall give the full authorized name

followed by the abbreviation in parentheses. This will be

repeated at the first mention in each subsequent chapter. Stu­

dents should be aware that, unlike the IUB/IUPAC naming

system,which is nowgenerally accepted and expected to be

used, the abbreviation system is still very much a matter of

personal choice. Therefore students may expect to find

alternative phospholipid abbreviations in some publica­

tions, for example PC, PE, PS and PI for

Fig. 1.2 The stereochemical numbering of lipids derived from
glycerol.
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phosphatidylcholine, -ethanolamine, -serine and –inositol,

instead of the PtdCho, PtdEtn, PtdSer and PtdIns used here.

With very few exceptions we have not defined abbrevia­

tions forwell-known substances in the general biochemical

literature, such as ATP, ADP, NAD(H), NADP(H), FMN,

FAD etc.

Another field in which nomenclature has grown up

haphazardly is that of the enzymes of lipid metabolism.

This has now been formalized to some extent under the

Enzyme Commission (EC) nomenclature. The system is

incomplete and not all lipid enzymes have EC names and

numbers. Moreover, the system is very cumbersome for

routine use and we have decided not to use it here. You

will find a reference to this nomenclature in Further

reading should you wish to learn about it.

Since the last edition was published in 2002, there

have been huge advances in molecular biology and, in

particular, in identifying the genes for an ever-increasing

number of proteins. Where appropriate, we have

referred to a protein involved in human lipid metabo­

lism, of which the gene has been identified and have

placed the gene name in parentheses after it (protein

name in Roman, gene name in Italic script).

1.4 Lipidomics

1.4.1 Introduction
Since the last edition of this book in 2002, there have been

very considerable advances in analysing and identifying

natural lipids. Much modern research in this field is con­

cerned with the profiling of lipid molecular species in cells,

tissues and biofluids. This has come to be known as ‘lip­

idomics’, similar to the terms ‘genomics’ for profiling the

gene complement of a cell or ‘proteomics’ for its proteins.

Some older methods of lipid analysis, presented in

previous editions, will be described only briefly here

and the student is referred to Further reading for

books, reviews and original papers for more detail.

Before describing the modern approach to lipidomics,

we describe briefly the steps needed to prepare lipids for

analysis and the various analytical methods, many of

which are still widely used.

1.4.2 Extraction of lipids from
natural samples

This is normally accomplished by disrupting the tissue

sample in the presence of organic solvents. Binary

mixtures are frequently used, for example chloroform

and methanol. One component should have some water

miscibility and hydrogen-bonding ability in order to split

lipid-protein complexes in the sample, such as those

encountered in membranes (Chapter 5). Precautions

are needed to avoid oxidation of, for example, UFAs.

Control of temperature is important, as well as steps to

inhibit breakdown of lipids by lipases (see Sections 4.2 &

4.6). The extract is finally ‘cleaned up’ by removingwater

and associated water-soluble substances (see Further

reading).

1.4.3 Chromatographic methods for
separating lipids

Once a sample has been prepared for analysis, chroma­

tography can be used to separate its many lipid constitu­

ents. A chromatograph comprises two immiscible phases:

one is kept stationary by being held on a microporous

support; the other (moving phase) percolates continu­

ously through the stationary phase. The stationary phase

may be located in a long narrow bore column of metal,

glass or plastic (column chromatography), coated onto a

glass plate or plastic strip (thin layer chromatography,

TLC, see Fig. 1.3) or it may simply be a sheet of absorbent

paper (paper chromatography).

The principle of chromatography is that when a lipid

sample (often comprisingavery largenumberofmolecular

species) is applied to a particular location on the stationary

phase (the origin) and the moving phase percolates

through, the different components of themixture partition

differently between the two phases according to their

differing chemical and physical properties. Some will

tend to be retained more by the stationary phase, while

others tend to move more with the moving phase. Thus,

the components will move apart as the moving phase

washes through the system (see Christie, 1997; Christie &

Han 2010; and Hammond 1993 in Further reading for

more details of the theory of chromatography).

Many types of adsorbent solid can be used as the

stationary phase (e.g. silica, alumina). The moving phase

may be a liquid (liquid chromatography, LC) or a gas (gas

chromatography, GC – the original term gas-liquid chro­

matography, GLC, is now less used). Particularly good

separations may now be achieved by GC (see Fig. 1.4)

with very long thin columns packed with an inert sup­

port for the stationary phase or in which the stationary

phase is coated on the wall of the column. This is useful

for volatile compounds or those that can be converted
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Fig. 1.3 Separation of lipid classes by thin-layer chromatography (TLC).

Fig. 1.4 Separation of fatty acid methyl esters by gas chromatography (GC). The figure shows the FA composition of a lipid extract of
heart tissue as measured by GC on a capillary column. To the right of the chromatogram is depicted the conversion of a complex
lipid into FA methyl esters in preparation for chromatography. The peaks on the chromatogram are labelled with shorthand
abbreviations for FAs (see Box 2.1 for details). Detection is by a flame ionization detector. From JL Griffin, H Atherton, J Shockcor &
L Atzori (2011) Metabolomics as a tool for cardiac research. Na Rev Cardiol 8: 630–43; p. 634, Fig. 3a. Reproduced with permission of
Nature Publishing Group.
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into more volatile ones, such as the methyl esters of FAs

(see Sections 2.1.8.1 & 11.2.4.2 for further details of the

preparation of FA methyl esters). For less volatile com­

plex lipids, LC in thin columns through which the mov­

ing phase is passed under pressure can produce superior

separations: this is called high performance liquid chro­

matography (HPLC).

Once the components have been separated, they can

be collected as they emerge from the column for further

identification and analysis (see Section 1.4.4). Com­

pounds separated on plates or strips can be eluted

from the stationary phase by solvents or analysed

in situ by various means. (Further information on meth­

ods of detection can be found in Christie & Han (2010)

and Kates (2010) in Further reading.)

The power of modern lipidomics has been made pos­

sible by the combination of GC or LC with improved

methods of mass spectrometry (MS) to provide detailed

and sophisticated analyses of complex natural lipid mix­

tures and this is the subject of the next section.

1.4.4 Modern lipidomics employs a
combination of liquid
chromatography or gas
chromatography with mass
spectrometry to yield detailed
profiles of natural lipids – the
‘lipidome’

While individual FAs can be readily measured by gas

chromatography-mass spectrometry (GC-MS), the com­

monestmethod to perform this analysis relies on cleaving

FAs from the head groups that they are associated with

and converting them into methyl esters by transester­

ification. This process is used to make the FAs volatile at

the temperature used by GC-MS, but during this process

information is lost, particularly about which lipid species

are enriched in a given FA.

An alternative is to use LC-MS. In this approach, lipid

extracts from biofluids and tissues can be analysed

directly. The lipids are dissolved in an organic solvent

and injected directly onto the HPLC column. Columns

can contain a variety of chemicals immobilized to form a

surface (stationary phase) that the analytes interact with.

For the analysis of lipids, columns containing long chains

of alkyl groups are most commonly used, in particular 8C

and 18C columns, which have side-chain lengths of 8

and 18 carbons, respectively. The most commonly used

HPLC method is referred to as ‘reverse phase’, whereby

lipids are initially loaded onto a HPLC column and then

the HPLC solvent is varied from something that is pre­

dominantly aqueous to a solvent that is predominantly

organic, across what is termed a gradient. The solvents

are referred to as the mobile phases. During this process,

lipids are initially adsorbed on to the stationary phase,

until their solubility increases to the point that they begin

to dissolve in themobile phase. In this manner, polar and

nonpolar lipids can readily be separated and typically, in

a lipid extract, lipid molecular species would elute in the

order of nonesterified fatty acids (NEFAs), phospholipids,

cholesteryl esters and TAGs. The chromatography serves

two important purposes. Firstly, it reduces the complex­

ity of the subsequent mass spectra generated by the mass

spectrometer, making metabolite identification more

convenient. Secondly, some metabolites can ionize

more readily than others and this can produce an effect

called ‘ion suppression’ where one metabolite ionizes

more easily and reduces the energy available for the

ionization of other species. As a result, the mass spec­

trometer may detect only the metabolite that ionizes

readily and miss the other metabolites that do not readily

form ions.

LC-MS is most commonly used with ‘electrospray ion­

ization’ where the analytes are introduced to the mass

spectrometer in the form of a spray of solvent. They are

accelerated over an electric field across the capillary that

introduces them into the mass spectrometer and the

nebulization of the spray is often assisted by the flow of

an inert gas. The inert gas causes the solvent to evaporate

(desolvate), producing a fine spray of droplets. As the

solvent evaporates, charges build up in the droplets until

they explode into smaller droplets, finally producing an

ion that is introduced into the mass spectrometer. While

this may sound relatively destructive, this form of ioniza­

tion is relatively ‘soft’, ensuring that the molecule itself or

an adduct (a combination of the molecule and another

charged species such as H+, Na+, K+ or other ions present

in the solvent) is formed. The ions are then detected by the

mass spectrometer (Fig. 1.5).

While there are numerous designs of mass spectrome­

ter, two common methods are often used in lipidomics.

In high resolutionMS, the mass accuracy achievable is so

great that chemical formulae can be determined with

reasonable precision. This is because only carbon-12 has

a mass of exactly 12 atomic mass units, while other

nuclides all have masses that slightly differ from a whole

number. These mass deficits can be used to predict what


