ANDREW L. WATERHOUSE GAVIN L. SACKS DAVID W. JEFFERY

UNDERSTANDING WINE CHEMISTRY

I

Understanding Wine Chemistry

Understanding Wine Chemistry

Andrew L. Waterhouse

University of California Department of Viticulture and Enology Davis, CA, USA

Gavin L. Sacks

Cornell University Department of Food Science Ithaca, NY, USA

David W. Jeffery

The University of Adelaide Department of Wine and Food Science Urrbrae, SA, Australia

WILEY

This edition first published 2016 © 2016 Andrew L. Waterhouse, Gavin L. Sacks, and David W. Jeffery. All rights reserved.

Registered Office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the authors to be identified as the authors of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and authors have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the authors shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought

Library of Congress Cataloging-in-Publication Data

Names: Waterhouse, Andrew Leo, 1955- | Sacks, Gavin L., 1978- | Jeffery, David W., 1972-

Title: Understanding wine chemistry / by Andrew L. Waterhouse, University of California, Department of Viticulture and Enology,

USA, Gavin L. Sacks, Cornell University, Department of Food Science, USA, David W. Jeffery, The University of Adelaide,

Department of Wine and Food Science, Australia.

Description: Chichester, West Sussex : John Wiley & Sons, Inc., 2016. | Includes index.

Identifiers: LCCN 2016008931 | ISBN 9781118627808 (cloth)

Subjects: LCSH: Wine and wine making-Chemistry.

Classification: LCC TP548.5.A5 W38 2016 | DDC 663/.2-dc23

LC record available at http://lccn.loc.gov/2016008931

A catalogue record for this book is available from the British Library.

Set in 10/12pt Times by SPi Global, Pondicherry, India

1 2016

Contents

Foreword	xiii
Preface	XV
Introduction	xvii
The chemical diversity of wine	xvii
What is wine?	xvii
Chemical reactions in wine	XX
Chemistry as a historical record	xxi
The chemical senses and wine flavor	xxi
References	xxiv
Part A Wine Components and Their Reactions	1
1 Water and Ethanol	3
1.1 Introduction	3
1.2 Chemical and physical properties of water	3
1.3 Properties of ethanol and ethanol–water mixtures	4
1.4 Typical ethanol concentrations in wines	6
1.5 Sensory effects of ethanol	7
References	9
2 Carbohydrates	11
2.1 Introduction	11
2.2 Nomenclature, representation, and occurrence of sugars	11
2.3 Physical, chemical, and sensory properties of sugars	14
2.4 Polysaccharides	17
References	18
3 Acids	19
3.1 Introduction	19
3.2 Organic acids in wine	19
3.3 Organic acids, pH, and wine acidity	21
3.4 Acid adjustments	28
3.5 General roles of organic acids and pH in wine reactions	31
3.6 Sensory effects of acids	31
References	32

vi Contents

4.1 Introduction 34 4.2 Origins of metals in wine 35 4.3 Reactions involving metals 35 4.4 Sensory effects of metals 37 4.5 Sensory effects of metals 37 4.5 Metals and wine authenticity 37 7.5 Metals and wine authenticity 37 8.6 Amino Acids, and Proteins 40 5.1 Introduction 40 5.2 Chemistry of amines 41 5.3 Amino acids and related major nitrogenous compounds in wines 41 5.4 Nitrogenous compounds with health effects 44 5.5 Odor-active amines 45 6 Higher Alcohols 51 6.1 Introduction 51 6.2 Properties of higher alcohols 51 6.3 Origins and concentrations of higher alcohols 52 6.4 Size and the addition alcohols 52 7.1 Introduction 57 7.2 Chemistry of esters 57 7.3 Esters formed during winemaking and storage	4	Minerals	34
4.2 Origins of metals in wine 35 4.3 Reactions involving metals 35 4.4 Sensory effects of metals 37 4.5 Metals and wine authenticity 37 References 38 5 Amines, Amino Acids, and Proteins 40 5.1 Introduction 40 5.2 Chemistry of amines 40 5.3 Amino acids and related major nitrogenous compounds in wines 41 5.4 Mitrogenous compounds with health effects 44 5.5 Oddr-active amines 45 8 References 48 6 Higher Alcohols 51 6.1 Introduction 51 6.1 Introduction 51 6.2 Properties of higher alcohols 52 6.3 Origins and concentrations of higher alcohols 52 6.4 Six-carbon (C ₀) alcohols 53 6.5 Methanol 54 References 57 72 7.1 Introduction 57 7.2 Chemistry of esters <td< td=""><td>4.1</td><td>Introduction</td><td>34</td></td<>	4.1	Introduction	34
4.3 Reactions involving metals 35 4.4 Sensory effects of metals 37 4.5 Metals and wine authenticity 37 References 38 5 Amines, Amino Acids, and Proteins 40 5.1 Introduction 40 5.2 Chemistry of amines 40 5.3 Amino acids and related major nitrogenous compounds in wines 41 5.4 Nitrogenous compounds with health effects 44 5.5 Odor-active amines 45 6 Higher Alcohols 51 6.1 Introduction 51 6.2 Properties of higher alcohols 51 6.3 Origins and concentrations of higher alcohols 52 6.4 Six-carbon (C _Q) alcohols 53 6.5 Metanol 54 References 57 7.2 Chemistry of esters 57 7.3 Esters formed during winemaking and storage 60 7.4 Esters formed during winemaking and storage 65 8.1 Introduction 68 8.2 General chemical and sensory properties of isoprenoids 68 8.2 General chemical and sensory properties of isoprenoids 68	4.2	Origins of metals in wine	35
4.4 Sensory effects of metals 37 4.5 Metals and wine authenticity 37 References 38 5 Amines, Amino Acids, and Proteins 40 5.1 Introduction 40 5.2 Chemistry of amines 40 5.3 Amino acids and related major nitrogenous compounds in wines 41 5.4 Nitrogenous compounds with health effects 44 5.5 Odor-active amines 45 6 Higher Alcohols 51 6.1 Introduction 51 6.1 Introduction 51 6.2 Properties of higher alcohols 52 6.3 Origins and concentrations of higher alcohols 52 6.4 Six-carbon (C ₀) alcohols 53 6.5 Methanol 53 7.1 Introduction 57 7.2 Chemistry of setres 57 7.3 Esters formed during winemaking and storage 60 7.5 Sensory effects 66 8 Isoprenoids 68 8.1 Introduction 68 8.2 General chemical and sensory properties of isoprenoids 68 8.3 Monoterpenoids 69	4.3	Reactions involving metals	35
4.5 Metals and wine authenticity 37 References 38 5 Amino Acids, and Proteins 40 5.1 Introduction 40 5.2 Chemistry of amines 41 5.3 Amino acids and related major nitrogenous compounds in wines 41 5.4 Nitrogenous compounds with health effects 44 5.5 Odor-active amines 43 6 Higher Alcohols 51 6.1 Introduction 51 6.2 Properties of higher alcohols 51 6.3 Origins and concentrations of higher alcohols 52 6.4 Six-carbon (C ₀ alcohols 53 6.5 Methanol 54 References 55 7 Esters 57 7.1 Introduction 57 7.2 Chemistry of esters 57 7.3 Esters formed during winemaking and storage 60 7.5 Sensory effects 65 8 Isoprenoids 68 8.1 Introduction 68 8.2 General chemical and sensory properties of isoprenoids 68 8.3 Monoterpenoids 69 8.4 Sequireprenoids	4.4	Sensory effects of metals	37
References 38 5 Anines, Anino Acids, and Proteins 40 5.1 Introduction 40 5.2 Chemistry of amines 40 5.3 Amino acids and related major nitrogenous compounds in wines 41 5.4 Nitrogenous compounds with health effects 44 5.5 Odor-active amines 45 6 Higher Alcohols 51 6.1 Introduction 51 6.2 Properties of higher alcohols 51 6.3 Origins and concentrations of higher alcohols 52 6.4 Six-carbon (C ₀) alcohols 52 6.5 Methanol 53 7 Esters 57 7.1 Introduction 57 7.2 Chemistry of esters 57 7.3 Esters in grapes 60 7.4 Esters formed during winemaking and storage 60 7.5 Sensory effects 66 8 Isoprenoids 68 8.1 Introduction 68 8.2 General chemical and sensory properties of isoprenoids 68 8.3 Monoterpenoids 69 8.4 Sequiterpenoids 74 8.5 C ₁ -Norisoprenoids 74 8.5 C ₁ -Norisoprenoids 74 8.5 detrences 76 9 Aldehydes, Ketones, and Related Compounds 79 9.1 Introduction 79	4.5	Metals and wine authenticity	37
5 Amines, Amino Acids, and Proteins 40 5.1 Introduction 40 5.2 Chemistry of amines 40 5.3 Amino acids and related major nitrogenous compounds in wines 41 5.4 Nitrogenous compounds with health effects 44 5.5 Odor-active amines 45 References 45 6 Higher Alcohols 51 6.1 Introduction 51 6.2 Properties of higher alcohols 51 6.3 Origins and concentrations of higher alcohols 52 6.4 Six-carbon (C _Q) alcohols 53 6.5 Methanol 54 References 55 7 Esters 57 7.1 Introduction 57 7.2 Chemistry of esters 57 7.3 Esters in grapes 60 7.4 Esters formed during winemaking and storage 60 7.5 Sensory effects 65 8.1 Introduction 68 8.2 General chemical and sensory properties of isoprenoids 68 8.3 Monoterpenoids 69 8.4 Sequiterpenoids 74 8.5 Cu ₁₇ Norisoprenoids 74 8.4 Sequiterpenoids 74 </td <td>Refe</td> <td>erences</td> <td>38</td>	Refe	erences	38
5.1 Introduction 40 5.2 Chemistry of amines 40 5.3 Amino acids and related major nitrogenous compounds in wines 41 5.4 Nitrogenous compounds with health effects 44 5.4 Nitrogenous compounds with health effects 44 5.5 Odor-active amines 45 6 Higher Alcohols 51 6.1 Introduction 51 6.2 Properties of higher alcohols 51 6.3 Origins and concentrations of higher alcohols 52 6.4 Six-carbon (C _c) alcohols 53 6.5 Methanol 53 7.6 Sters 57 7.1 Introduction 57 7.2 Chemistry of esters 57 7.3 Esters formed during winemaking and storage 60 7.4 Esters formed during winemaking and storage 66 8.1 Introduction 68 8.2 General chemical and sensory properties of isoprenoids 68 8.3 Monoterpenoids 69 8.4 Sequiterpenoids <t< td=""><td>5</td><td>Amines, Amino Acids, and Proteins</td><td>40</td></t<>	5	Amines, Amino Acids, and Proteins	40
5.2 Chemistry of amines 40 5.3 Amino acids and related major nitrogenous compounds in wines 41 5.4 Nitrogenous compounds with health effects 44 5.5 Odor-active amines 45 References 48 6 Higher Alcohols 51 6.1 Introduction 51 6.2 Properties of higher alcohols 51 6.3 Origins and concentrations of higher alcohols 52 6.4 Six-carbon (C _o) alcohols 53 6.5 Methanol 54 References 55 7 Exters 57 7.1 Introduction 57 7.2 Chemistry of esters 57 7.3 Exters in grapes 60 7.4 Esters formed during winemaking and storage 60 7.5 Sensory effects 65 8.1 Introduction 68 8.2 General chemical and sensory properties of isoprenoids 68 8.3 Monoterpenoids 69 8.4 Sequiterpenoids 73	5.1	Introduction	40
5.3 Amino acids and related major nitrogenous compounds in wines 41 5.4 Nitrogenous compounds with health effects 44 5.5 Odor-active amines 45 References 48 6 Higher Alcohols 51 6.1 Introduction 51 6.2 Properties of higher alcohols 51 6.3 Origins and concentrations of higher alcohols 52 6.4 Six-carbon (C_{0}) alcohols 53 6.5 Methanol 54 References 57 7 Exters 57 7.1 Introduction 57 7.2 Chemistry of esters 57 7.3 Esters in grapes 60 7.4 Esters formed during winemaking and storage 60 7.5 Sensory effects 65 8 Introduction 68 8.1 Introduction 68 8.2 General chemical and sensory properties of isoprenoids 68 8.3 Monoterpenoids 64 8.4 Sequiterpenoids 73 8.5 C_{13} -Norisoprenoids 64 9.1 Introduction 79 9.1 Alchydes, Ketones, and Related Compounds 79 9.1 Introduction </td <td>5.2</td> <td>Chemistry of amines</td> <td>40</td>	5.2	Chemistry of amines	40
5.4 Nitrogenous compounds with health effects 44 5.5 Odor-active amines 45 References 48 6 Higher Alcohols 51 6.1 Introduction 51 6.2 Properties of higher alcohols 51 6.3 Origins and concentrations of higher alcohols 52 6.4 Six-carbon (C _o) alcohols 53 6.5 Methanol 54 References 57 7.1 Introduction 57 7.2 Chemistry of esters 57 7.3 Esters in grapes 60 7.4 Esters formed during winemaking and storage 60 7.5 Sensory effects 65 8 Isoprenoids 68 8.1 Introduction 68 8.2 General chemical and sensory properties of isoprenoids 68 8.3 Monoterpenoids 69 8.4 Sesquiterpenoids 73 8.5 Ci ₁₃ -Norisoprenoids 74 8.4 Sesquiterpenoids 73 8.5 Ci ₁₃ -Norisoprenoids 68 8.1 Introduction 73 9.4 Methydes, Ketones, and Related Compounds 79 9.1 Introduction 79 9.1 Introduction 80 9.3 Short and medium chain aldehydes 80 9.4 Complex carbonyts 84 9.5 Carbony	5.3	Amino acids and related major nitrogenous compounds in wines	41
5.5 Odor-active amines 45 References 48 6 Higher Alcohols 51 6.1 Introduction 51 6.2 Properties of higher alcohols 51 6.3 Origins and concentrations of higher alcohols 52 6.4 Six-carbon (C ₀) alcohols 53 6.5 Methanol 54 References 55 7 Esters 55 7.1 Introduction 57 7.2 Chemistry of esters 57 7.3 Esters formed during winemaking and storage 60 7.4 Esters formed during winemaking and storage 60 7.5 Sensory effects 65 References 65 65 8.1 Introduction 68 8.2 General chemical and sensory properties of isoprenoids 68 8.3 Monoterpenoids 69 8.4 Sequiterpenoids 79 9.1 Introduction 79 9.1 Introduction 79 9.1 Actaldehyde <td>5.4</td> <td>Nitrogenous compounds with health effects</td> <td>44</td>	5.4	Nitrogenous compounds with health effects	44
References 48 6 Higher Alcohols 51 6.1 Introduction 51 6.2 Properties of higher alcohols 51 6.3 Origins and concentrations of higher alcohols 52 6.4 Six-carbon (C ₀) alcohols 53 6.5 Methanol 53 7.6 Sters 57 7.1 Introduction 57 7.2 Chemistry of esters 57 7.3 Esters formed during winemaking and storage 60 7.4 Esters formed during winemaking and storage 60 7.5 Sensory effects 65 References 66 68 8.1 Introduction 68 8.2 General chemical and sensory properties of isoprenoids 68 8.3 Monoterpenoids 69 8.4 Sequiterpenoids 74 8.5 C ₁₃ -Norisoprenoids 68 8.6 General chemical and sensory properties of isoprenoids 68 8.3 Monoterpenoids 79 9.1 Introduction 79<	5.5	Odor-active amines	45
6Higher Alcohols516.1Introduction516.2Properties of higher alcohols516.3Origins and concentrations of higher alcohols526.4Six-carbon (C_0) alcohols536.5Methanol54References557Esters577.1Introduction577.2Chemistry of esters577.3Esters in grapes607.4Esters formed during winemaking and storage607.5Sensory effects65References668Isoprenoids688.1Introduction688.2General chemical and sensory properties of isoprenoids688.3Monoterpenoids698.4Sequiterpenoids748.5 C_{13} -Norisoprenoids748.4Sequiterpenoids748.5 C_{13} -Norisoprenoids799.1Introduction799.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyl reactivity858References86	Refe	erences	48
6.1Introduction516.2Properties of higher alcohols516.3Origins and concentrations of higher alcohols526.4Six-carbon (C_0) alcohols536.5Methanol54References557Esters577.1Introduction577.2Chemistry of esters577.3Esters in grapes607.4Esters formed during winemaking and storage607.5Sensory effects65References668Isoprenoids688.1Introduction688.2General chemical and sensory properties of isoprenoids688.3Monoterpenoids698.4Sequiterpenoids74References769Aldehydes, Ketones, and Related Compounds799.1Introduction799.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyl reactivity85References8680	6	Higher Alcohols	51
6.2Properties of higher alcohols516.3Origins and concentrations of higher alcohols526.4Six-carbon (C_o) alcohols536.5Methanol54References557Esters577.1Introduction577.2Chemistry of esters577.3Esters formed during winemaking and storage607.4Esters formed during winemaking and storage607.5Sensory effects65References668Isoprenoids688.1Introduction688.1Introduction688.3Monoterpenoids688.4Sequiterpenoids698.4Sequiterpenoids738.5 C_{13} -Norisoprenoids74References769Aldehydes, Ketones, and Related Compounds799.1Introduction799.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyl reactivity85References86	6.1	Introduction	51
6.3Origins and concentrations of higher alcohols526.4Six-carbon (C_{g}) alcohols536.5Methanol54References557Esters557Testers577.1Introduction577.2Chemistry of esters577.3Esters in grapes607.4Esters formed during winemaking and storage607.5Sensory effects65References668Isoprenoids688.1Introduction688.2General chemical and sensory properties of isoprenoids688.3Monoterpenoids698.4Sesquiterpenoids738.5 C_{13} -Norisoprenoids749.1Introduction799.1Introduction799.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyls849.5Carbonyls849.6Carbonyls849.7Carbonyls858References86	6.2	Properties of higher alcohols	51
6.4Six-carbon (C_0) alcohols536.5Methanol54References557Esters557Introduction577.1Introduction577.2Chemistry of esters577.3Esters in grapes607.4Esters formed during winemaking and storage607.5Sensory effects65References668Isoprenoids688.1Introduction688.2General chemical and sensory properties of isoprenoids688.3Monoterpenoids698.4Sesquiterpenoids738.5 C_{13} -Norisoprenoids74References769Aldehydes, Ketones, and Related Compounds799.1Introduction799.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyls849.5Carbonyls849.5Carbonyls849.5Carbonyl reactivity85References86	6.3	Origins and concentrations of higher alcohols	52
6.5 Methanol54References557 Esters577.1 Introduction577.2 Chemistry of esters577.3 Esters in grapes607.4 Esters formed during winemaking and storage607.5 Sensory effects65References668 Isoprenoids688.1 Introduction688.2 General chemical and sensory properties of isoprenoids688.3 Monoterpenoids698.4 Sesquiterpenoids738.5 C ₁₃ -Norisoprenoids74References769 Aldehydes, Ketones, and Related Compounds799.1 Introduction799.2 Acetaldehyde809.3 Short and medium chain aldehydes809.4 Complex carbonyls849.5 Carbonyl reactivity85References86	6.4	Six-carbon (C ₂) alcohols	53
References557Esters577.1Introduction577.2Chemistry of esters577.3Esters in grapes607.4Esters formed during winemaking and storage607.5Sensory effects65References668Isoprenoids688.1Introduction688.2General chemical and sensory properties of isoprenoids688.3Monoterpenoids698.4Sesquiterpenoids738.5C ₁₃ -Norisoprenoids74References769Aldehydes, Ketones, and Related Compounds799.1Introduction799.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyl reactivity85References8686	6.5	Methanol	54
7 Esters577.1 Introduction577.2 Chemistry of esters577.3 Esters in grapes607.4 Esters formed during winemaking and storage607.5 Sensory effects65References668 Isoprenoids688.1 Introduction688.2 General chemical and sensory properties of isoprenoids688.3 Monoterpenoids698.4 Sesquiterpenoids738.5 C_{13} -Norisoprenoids74References769 Aldehydes, Ketones, and Related Compounds799.1 Introduction799.2 Acetaldehyde809.3 Short and medium chain aldehydes809.4 Complex carbonyls849.5 Carbonyl reactivity85References86	Refe	erences	55
7.1Introduction577.2Chemistry of esters577.3Esters in grapes607.4Esters formed during winemaking and storage607.5Sensory effects65References668Isoprenoids688.1Introduction688.2General chemical and sensory properties of isoprenoids688.3Monoterpenoids698.4Sesquiterpenoids738.5 C_{13} -Norisoprenoids74References769Aldehydes, Ketones, and Related Compounds799.1Introduction799.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyl reactivity85References86	7	Esters	57
7.2Chemistry of esters577.3Esters in grapes607.4Esters formed during winemaking and storage607.5Sensory effects65References668Isoprenoids688.1Introduction688.2General chemical and sensory properties of isoprenoids688.3Monoterpenoids698.4Sesquiterpenoids698.4Sesquiterpenoids738.5 C_{13} -Norisoprenoids74References769Aldehydes, Ketones, and Related Compounds799.1Introduction799.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyl reactivity85References86	7.1	Introduction	57
7.3Esters in grapes607.4Esters formed during winemaking and storage607.5Sensory effects65References668Isoprenoids688.1Introduction688.2General chemical and sensory properties of isoprenoids688.3Monoterpenoids698.4Sesquiterpenoids698.5 C_{13} -Norisoprenoids738.5 C_{13} -Norisoprenoids74References769Aldehydes, Ketones, and Related Compounds799.1Introduction799.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyl reactivity85References86	7.2	Chemistry of esters	57
7.4Esters formed during winemaking and storage607.5Sensory effects65References668Isoprenoids688.1Introduction688.2General chemical and sensory properties of isoprenoids688.3Monoterpenoids698.4Sesquiterpenoids738.5C ₁₃ -Norisoprenoids74References769Aldehydes, Ketones, and Related Compounds799.1Introduction799.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyl reactivity85References86	7.3	Esters in grapes	60
7.5Sensory effects65References668Isoprenoids688.1Introduction688.2General chemical and sensory properties of isoprenoids688.3Monoterpenoids698.4Sesquiterpenoids738.5C ₁₃ -Norisoprenoids74References769Aldehydes, Ketones, and Related Compounds799.1Introduction799.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyl reactivity85References86	7.4	Esters formed during winemaking and storage	60
References668 Isoprenoids688.1 Introduction688.2 General chemical and sensory properties of isoprenoids688.3 Monoterpenoids698.4 Sesquiterpenoids738.5 C ₁₃ -Norisoprenoids74References769 Aldehydes, Ketones, and Related Compounds799.1 Introduction799.2 Acetaldehyde809.3 Short and medium chain aldehydes809.4 Complex carbonyls849.5 Carbonyl reactivity85References86	7.5	Sensory effects	65
8 Isoprenoids 68 8.1 Introduction 68 8.2 General chemical and sensory properties of isoprenoids 68 8.3 Monoterpenoids 69 8.4 Sesquiterpenoids 73 8.5 C ₁₃ -Norisoprenoids 74 References 76 9 Aldehydes, Ketones, and Related Compounds 79 9.1 Introduction 79 9.2 Acetaldehyde 80 9.3 Short and medium chain aldehydes 80 9.4 Complex carbonyls 84 9.5 Carbonyl reactivity 85 References 86 86	Refe	erences	66
8.1Introduction688.2General chemical and sensory properties of isoprenoids688.3Monoterpenoids698.4Sesquiterpenoids738.5C13-Norisoprenoids74References769Aldehydes, Ketones, and Related Compounds799.1Introduction799.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyl reactivity85References80	8	Isoprenoids	68
8.2General chemical and sensory properties of isoprenoids688.3Monoterpenoids698.4Sesquiterpenoids738.5C13-Norisoprenoids74References769Aldehydes, Ketones, and Related Compounds799.1Introduction799.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyl reactivity85References86	8.1	Introduction	68
8.3 Monoterpenoids 69 8.4 Sesquiterpenoids 73 8.5 C ₁₃ -Norisoprenoids 74 References 76 9 Aldehydes, Ketones, and Related Compounds 79 9.1 Introduction 79 9.2 Acetaldehyde 80 9.3 Short and medium chain aldehydes 80 9.4 Complex carbonyls 84 9.5 Carbonyl reactivity 85 References 86	8.2	General chemical and sensory properties of isoprenoids	68
8.4Sesquiterpenoids738.5C13-Norisoprenoids74References769Aldehydes, Ketones, and Related Compounds799.1Introduction799.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyl reactivity85References86	8.3	Monoterpenoids	69
8.5C13-Norisoprenoids74References769Aldehydes, Ketones, and Related Compounds799.1Introduction799.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyl reactivity85References86	8.4	Sesquiterpenoids	73
References769 Aldehydes, Ketones, and Related Compounds799.1 Introduction799.2 Acetaldehyde809.3 Short and medium chain aldehydes809.4 Complex carbonyls849.5 Carbonyl reactivity85References86	8.5	C.,-Norisoprenoids	74
9 Aldehydes, Ketones, and Related Compounds799.1 Introduction799.2 Acetaldehyde809.3 Short and medium chain aldehydes809.4 Complex carbonyls849.5 Carbonyl reactivity85References86	Refe	erences	76
9.1Introduction799.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyl reactivity85References86	9	Aldehydes, Ketones, and Related Compounds	79
9.2Acetaldehyde809.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyl reactivity85References86	9.1	Introduction	79
9.3Short and medium chain aldehydes809.4Complex carbonyls849.5Carbonyl reactivity85References86	9.2	Acetaldehyde	80
9.4 Complex carbonyls849.5 Carbonyl reactivity85References86	9.3	Short and medium chain aldehydes	80
9.5 Carbonyl reactivity85References86	9.4	Complex carbonyls	84
References 86	9.5	Carbonyl reactivity	85
	Refe	erences	86

ntents	VII
	ntents

 10 Thiols and Related Sulfur Compounds 10.1 Introduction 10.2 Varietal sulfur aroma compounds – polyfunctional thiols 10.3 Fermentative sulfur aroma compounds 10.4 Other sulfur-containing aroma compounds Chemical principles: nucleophiles and electrophiles References 	88 88 91 93 94 95 97
11 Introduction to Phenolics11.1 Introduction11.2 Non-flavonoids11.3 FlavonoidsReferences	99 99 102 103 104
 12 Volatile Phenols 12.1 Introduction 12.2 Structure and chemical properties 12.3 Concentrations in wine and sensory effects 12.4 Origins in wine and effects on volatile phenol profile References 	105 105 105 107 107 110
13Non-flavonoid Phenolics13.1Introduction13.2Hydroxycinnamates13.3Hydroxybenzoic acids13.4StilbenesReferences	112 112 112 113 114 115
 14 Flavan-3-ols and Condensed Tannin 14.1 Introduction 14.2 Monomeric catechins 14.3 Oligomeric proanthocyanidins and polymeric condensed tannins 14.4 Sensory effects Chemical principles: electrophilic aromatic substitution References 	117 117 117 119 122 123 125
 15 Flavonols 15.1 Introduction 15.2 Concentrations of flavonols 15.3 Effects of growing conditions and winemaking References 	127 127 127 129 129
 16 Anthocyanins 16.1 Introduction 16.2 Structures and forms 16.3 Non-covalent interactions: co-pigmentation 16.4 Bisulfite bleaching 16.5 Wine pigments References 	131 131 131 133 134 135 138

viii Contents

17 \$	Sulfur Dioxide	140
17.1	Introduction and terminology	140
17.2	Acid–base chemistry of SO ₂	141
17.3	Sulfonate adducts, "bound \overline{SO}_2 ," and antioxidant effects	143
17.4	Typical sources and concentrations of SO ₂ in wine	146
17.5	Measurement of molecular, free, and total SO_2	146
17.6	Sensory effects	147
Refer	rences	148
18	Taints, Off-flavors, and Mycotoxins	149
18.1	Introduction	149
18.2	Common wine taints	150
18.3	Off-flavors in wine	155
Refer	rences	156
Part 1	B Chemistry of Wine Production Processes	159
19 (Outline of Wine Production	161
19.1	Introduction	161
19.2	Basic workflow	161
19.3	Processes involved	164
19.4	Tanks and fermenters	166
19.5	Beyond fermentation	169
19.6	Specialty wines	169
Refer	ences	170
20	Grape Must Composition Overview	172
20.1	Sampling	172
20.2	Sugars	172
20.3	Acids	173
20.4	Phenolics	174
20.5	Nitrogen species	175
20.6	Lipids and waxes	175
20.7	Minerals and vitamins	176
20.8	Isoprenoids	176
20.9	Insoluble materials	I /6
Refer	ences	1//
21 I	Maceration and Extraction of Grape Components	179
21.1	Introduction	179
21.2	Pre-termentative treatments	183
21.3	Maceration treatments during termentation	186
21.4	Post-rementation maceration	189
Keler	ences	190

tents

22 The Biochemistry of Wine Fermentations	194
22.1 Glycolysis	195
22.1.1 Introduction	195
22.1.2 Glycolysis and alcoholic fermentation	196
22.1.3 Glyceropyruvic fermentation	198
22.1.4 Succinic acid and other Krebs cycle intermediates	200
22.1.5 Consequences of glycolysis on wine chemistry	202
References	204
22.2 Fatty Acid Metabolism	205
22.2.1 Introduction	205
22.2.2 Long-chain fatty acid metabolism	205
22.2.3 Mid-chain fatty acids (MCFAs) and ethyl esters	209
22.2.4 Increasing MCFA and their ethyl esters in winemaking	211
References	212
22.3 Amino Acid Metabolism	214
22.3.1 Introduction	214
22.3.2 Nitrogen uptake and catabolite repression	214
22.3.3 Amino acid anabolism, catabolism, and carbon skeletons	216
22.3.4 Higher alcohol formation	216
22.3.5 Acetate ester formation	218
22.3.6 YAN in the winery – requirements, approaches, and consequences	219
References	221
22.4 Sulfur Metabolism	223
22.4.1 Introduction	223
22.4.2 Sulfide production and assimilation	223
22.4.3 Nitrogen sources and H_2S formation	226
22.4.4 Timing of formation and residual H_2S	227
References	228
22.5 Bacterial Fermentation Products	230
22.5.1 Introduction	230
22.5.2 Lactic acid bacteria	230
22.5.3 Spoilage of wine by bacteria	235
References	237
23 Grape-Derived Aroma Precursors	239
23.1 Glycosidic Precursors to Wine Odorants	240
23.1.1 Introduction	240
23.1.2 Formation of glycosidic aroma precursors in grape berries	242
23.1.3 Glycosidic aroma precursors – extraction	245

x Contents	
23.1.4 Hydrolysis of glycosidic aroma precursors – mechanisms	246
23.1.5 Hydrolysis of glycosides under fermentation and aging conditions	249
References	252
23.2 S-Conjugates	256
23.2.1 Introduction	256
23.2.2 Formation of S-conjugate precursors in berries and juice	257
23.2.3 Conversion of <i>S</i> -conjugate precursors during fermentation	259
23.2.4 Mass balance and alternative pathways to volatile thiol formation	262
References	263
23.3 Conversion of Variety Specific Components, Other	265
23.3.1 Introduction	265
23.3.2 Polyunsaturated fatty acid precursors of C_6 compounds	265
23.3.3 Hydroxycinnamic acids, <i>Brettanomyces</i> , and volatile phenols	269
23.3.4 S-methylmethionine and dimethyl sulfide	273
Keterences	275
24 Wine Oxidation	278
24.1 Introduction	278
24.2 Redox reactions	278
24.3 The central tenets of wine oxidation	280
24.4 The central tenets of quinone reactions	283
24.5 The central tenets of the Fenton reaction and byproducts	288
Kelelences	291
25 Topics Related to Aging	294
25.1 Introduction	294
25.2 Reactions involving red wine pigments	294
25.3 Hydrolytic and pH-dependent reactions	298
25.4 Activation energy and temperature effects on aging	303
25.5 Effects of oak storage	304
Closure performance	309
References	312
26 The Chemistry of Post-fermentation Processing	318
26.1 Cold Stabilization	210
20.1 Cold Stabilization 26.1.1 Introduction	319
26.1.2 KHT crystal properties and solubility	319
26.1.3 Critical factors for KHT precipitation	320
26.1.4 Testing for KHT stability	325
26.1.5 Treatments for preventing KHT precipitation	327
26.1.6 CaT and related precipitates	330

References

 26.2 Fining 26.2.1 Introduction 26.2.2 Tannin fining with proteins 26.2.3 Protein fining with bentonite 26.2.4 Miscellaneous fining and related treatments References 	332 332 333 338 341 343
 26.3 Particle Filtration and Reverse Osmosis 26.3.1 Introduction 26.3.2 Definitions, principles, and characteristics of winery filtration 26.3.3 Filtration and fouling 26.3.4 Reverse osmosis 26.3.5 Sensory effects of filtration References 	346 346 347 350 354 355 357
26.4 Distillation 26.4.1 Introduction26.4.2 Vapor-liquid equilibria26.4.3 Batch and continuous distillation26.4.4 Spirit composition and cask maturationReferences	359 360 365 373 375
 27 Additives and Processing Aids 27.1 Introduction 27.2 Regulations and terminology 27.3 Additives and processing aids: functions and comparison across regions References 	377 377 377 379 382
 28 Authentication 28.1 Introduction 28.2 Fraud – categories and detection approaches 28.3 Stable isotope ratio analysis to detect glycerol adulteration 28.4 Future challenges in wine authentication References 	385 385 385 385 387 389 390
 29 Optimizing White Wine Aromas 29.1 Introduction 29.2 Enhancement of varietal thiols 29.3 Cofermentation and spontaneous fermentation References 	392 392 392 394 395
 30 Appearance of Reduced Aromas during Bottle Storage 30.1 Introduction 30.2 Potential latent sources of compounds responsible for reduced aromas References 	397 397 397 399

xii Contents

31 Grape Genetics, Chemistry, and Breeding	400
31.1 Introduction	400
31.2 Breeding new varieties	400
31.3 Genetics and selection	402
References	403
32 Analytical Innovations and Applications	404
32.1 Introduction	404
32.2 Typical approaches to wine analysis	405
32.3 Multivariate data analysis and chemometrics	408
32.4 Chemometrics in practice – rapid methods for wine analysis	409
32.5 Targeted and untargeted metabolomics of wine	413
References	414
33 New Approaches to Tannin Characterization	417
33.1 Introduction	417
33.2 The challenge of astringency subclasses	418
References	418
Index	420

Foreword

In vino, veritas... a Latin phrase meaning "in wine, truth." Its sentiments, however, are certainly not unique to Roman society. Indeed, numerous civilizations throughout history have similar phrasings given the prominence that wine has played, and continues to play, in diverse religious, cultural, and social events. Yet, despite its nearly seven millenia as part of the human experience, our understanding of this beverage and all of its truths remains woefully incomplete, even in light of the prowess of modern science. The reasons for this state of affairs are complicated, perhaps justifiably so given that it is the complexity of wine that draws many to its taste and to learning the art of its production.

At its most basic level, wine is a mixture of hundreds of different molecules in a constant state of flux, a feature that gives it the quality of being a living, breathing thing. The identity and concentration of these varied compounds at any given time depends on every factor conceivable, from the vine and the soil, to the weather that season, to the full production process, to how a bottle has been stored, to how long a poured glass or opened bottle has had a chance to breathe before being enjoyed. Our perception of its taste is equally fluid, dependent on its temperature, our mood, what else we have recently consumed, and how well our receptors can distinguish those hundreds of molecules in the first place. Thus, if we are even to consider how to unlock the complexity of wine, we must start by understanding this beverage from the standpoint of its chemistry, since it is molecules and what they can do that is at the heart of the matter.

This text by Waterhouse, Sacks, and Jeffery is an excellent starting point for such investigations. Chemistry on its own can seem hopelessly complex, but what these leading scholars have managed to accomplish seemlessly over the course of 33 chapters is the means not only to appreciate, but also to understand the relevant chemistry and chemical phenomena that impact every element of wine from an analytical, organic, and physical perspective. That success results from an approach that first details all of the different compound classes that are found in wine, their reactivities, and how they can contribute to its final taste profile. The text then moves on to the production process and explains, at an appropriately detailed chemical level, not only the fermentation and production process overall, but how each of its steps and certain decisions along the way can impact what molecules, and how much of them, end up in the final product. Finally, by presenting the latest scholarship, the authors highlight the frontiers of wine chemistry research, indicating opportunities for readers to pursue further avenues of discovery if so inclined.

Whether a neophyte, a connoisseur, a production hobbyist, or an aspiring professional, this carefully crafted text offers all readers an opportunity to enhance their knowledge of and appreciation for this wonderful beverage, along with the potential to contribute to enhancements in its future enjoyment. It is certainly hoped that these authors will continue to supplement and refine this already excellent work in the years to come through further editions as the knowledge of wine chemistry continues to grow. However, for now,

xiv Foreword

congratulations are due for their efforts in successfully distilling diverse knowledge drawn from many different disciplines of chemistry into a fully accessible, engaging, and pedagogically powerful approach to the science of wine.

Scott A. Snyder University of Chicago, Illinois, USA January 2016

Preface

Having backgrounds in traditional branches of chemistry (organic, analytical, physical), we now feel privileged to be writing about wine chemistry. Not only is wine chemistry a subject that inspires and challenges, it is also a wonderful vehicle for conversation – we often encounter colleagues, visitors and acquaintances who remark on how much they love wine and its complexity. That complexity can be intriguing but it can also be a barrier to further understanding, whether wine is a hobby or an occupation.

Wine chemistry is taught in a growing number of institutions as part of enology and viticulture curricula, as well as in traditional undergraduate chemistry departments as an elective course. Furthermore, there are many individuals in wine production and allied fields (e.g., suppliers) who expect to make science-based decisions or recommendations. With this in mind, we identified the need for a book that could demonstrate to a reader how to utilize a basic knowledge of chemistry to rationally explain – and, better yet, predict – the diversity observed among wines.

Rather than providing only a description of wine constituents, or focusing on sensory characteristics, analytical aspects, or processing issues, we tackle the types of chemical and biochemical reactions that commonly occur in wine – in other words, we interpret winemaking outcomes through the lens of chemical principles. In doing this, we aim to assist students, winemakers, and others in predicting the effects of wine treatments and processes, or interpreting experimental results, based on an understanding of the major reactions that can occur in wine. We assume only a minimal prior knowledge of wine and winemaking, but do expect basic chemistry knowledge including organic chemistry, though we anticipate that our readers may have forgotten a lesson (or three) from these courses. At times we have relied on recent reviews rather than providing extensive citations to the literature, so we encourage the reader to seek out the primary sources of information to enhance their knowledge of any of the topics we have covered.

We approach our objectives by segregating the book into three parts.

Part A, Wine Components

To begin, we review the compound classes found in wine, their typical concentrations, their basic chemical reactivities, and their contribution to wine stability or sensory characters. This first part also considers the types of reactions that components can undergo in a wine environment, and is designed to be used as a reference for subsequent sections. Key chemical concepts involving electrophiles and nucleophiles, and electrophilic aromatic substitution are featured in Chapters 10 and 14, respectively.

Part B, Chemistry of Winemaking

Following a brief overview of grape composition and wine production practices, we describe the key reactions that occur during and after fermentation. In particular, we highlight how decisions made during winemaking will favor or disfavor certain chemical reactions leading to differences in wine composition.

xvi Preface

We expect that this part can be used to generate hypotheses regarding the effect of unfamiliar winemaking processes or changes in juice components on final wine composition. A feature on different bottle closures appears in Chapter 25.

• Part C, Special Topics

To conclude, we present several case studies that relate the preceding sections to current or emerging areas of wine chemistry. With these examples we aim to demonstrate representative examples of the challenges – and opportunities – facing those who are interested in this amazing natural product called wine.

In preparing such a book we anticipate there will be gaps and errors, and we encourage the reader to send us comments with regard to anything. From simple typographical errors, to missing topics or citations, errors in data or interpretation, and even suggestions for new approaches to explaining wine chemistry, all suggestions are encouraged. We are planning to follow up with a second edition and any comments or ideas for improvement are most welcome. Please send your ideas to: winechem@ucdavis.edu.

In closing, we acknowledge the work of the many researchers in the international wine science community that we have drawn upon in formulating this book, and also appreciate the feedback from our students who helped shape the book by reading draft chapters along the way. We also thank the grapegrowers and winemakers of the world for producing wines in a breathtaking range of styles – and thus chemistries – without which this topic and book would not exist. Lastly, we are eternally grateful to our partners and families who put up with our absence, or absentmindedness, and supported us throughout the process of publishing this book.

Introduction

The chemical diversity of wine

How many choices does a consumer have when they buy a wine? In the United States, all wines sold must have a Certificate of Label Approval (COLA) from the Alcohol and Tobacco Tax and Trade Bureau (TTB), and in 2013 the TTB approved over 93 000 COLA requests.¹ Because many wines are vintage products, that is, a new label will be produced for each harvest year, the true number of wines available in wine stores throughout the United States may be closer to 250 000.² In contrast to commodity products where producers strive for homogeneity (e.g., soybeans, milk), variation in specialty products like wine is not only tolerated – it is appreciated and celebrated. Consumers expect that wines with different labels should smell different, taste different, and look different; from a chemist's perspective, consumers expect wines to have different chemical compositions. The study of wine chemistry is the study of these differences – explaining how there can be hundreds of thousands, if not millions, of different wine compositions, and contributing to a winemaker's understanding of how the myriad of choices they are faced with can lead to these differences.

What is wine?

To a first-order approximation, a dry table wine is a mildly acidic (pH 3–4) hydroalcoholic solution. The two major wine components are water and ethanol, typically accounting for about 97% on a weight-for-weight (w/w) basis. The remaining compounds – responsible for most of the flavor and color of wine – are typically present at <10 g/L (Figure I.1), and many key odorants are found at part-per-trillion (ng/L) concentrations! Notably, none of these compounds appear to be unique to wine – compounds present in wine can also be found in coffee, beer, bread, spices, vegetables, cheese, and other foodstuffs.³ What distinguishes different wines from other products (and each other) is differences in the relative concentrations of compounds, rather than the presence of unique components.

¹As a caveat, a COLA is a pre-approval process, and not all will become commercial wines.

²Furthermore, data based on TTB COLAs only captures those wines approved for sale in the US, which represents only a fraction of wines produced commercially – the wine-searcher.com database reports tracking over 400 000 wines available for sale worldwide as of April 2016.

³One compound that is somewhat unique to grape juice and wine is tartaric acid, which is undetectable in most other fruits and vegetables (although it is at a very high concentration in tamarind). Tartaric acid also belongs to the short list of compounds that was first discovered in wine or grapes, and later discovered elsewhere; the monoterpenes wine lactone and Riesling acetal are also on this list, as are some anthocyanin-derived pigments (vitisins and pinotins).

Figure 1.1 Composition of a representative dry red table wine (a) on a % w/w basis and (b) typical concentrations (mg/L) of major wine components excluding water and ethanol, that is, the main contributors to "Everything Else." Key trace components (0.1 ng/L–10 mg/L) would not be visible and are therefore not included

Wine is produced by the alcoholic fermentation of grape juice or must (juice and solids), which results in the complete or partial transformation of grape sugars to ethanol and CO_2 . However, winemaking and wine storage result in many chemical changes beyond simply the consumption of sugars and formation of alcohol. This is readily exemplified by the volatile composition of a wine, which is far more complex than that of grape juice (Figure I.2). These volatile components can contribute to the aroma of wine and such odorants are often classified based on when they are formed; that is, in the grape (*primary*), during fermentation (*second-ary*), or during storage (*tertiary*) (Table I.1).

The number of compounds identified in wine follows advances in analytical technology. A survey from 1969 reported that wine and other alcoholic beverages contained 400 volatiles, while a later book from 1983

Figure 1.2 Comparison of GC-MS chromatograms for (a) a grape juice and (b) a wine produced from that grape juice. Every peak in the chromatograms represents at least one unique volatile compound

Compound classification	Description	Examples (Part and Chapter)
Primary	Compounds present in the grape that persist unchanged into wine	Methoxypyrazines (A.5), rotundone (A.8)
Secondary	Compounds formed as a result of alcoholic or malolactic fermentation due to either i) Normal metabolism of sugars, amino acids, etc. ii) Transformation of grape-specific precursors	i) Ethyl esters (B.22.2), fusel alcohols (B.22.3)ii) Varietal thiols (B.23.2)
Tertiary	 Compounds formed during wine storage, for example, as a result of i) Extraction from oak ii) Microbial spoilage or chemical tainting iii) Abiotic transformation of precursor compounds in wine 	i) Oak lactones (B.25)ii) Trichloroanisole (A.18)iii) TDN (B.23.1)

Table 1.1 Primary, secondary, and tertiary classifications of wine odorants

reported over 1300 volatiles [1]. A more recent analysis of wines using a state-of-the-art mass spectrometry system (FT-ICR-MS) was able to detect tens of thousands of unique chemical signals across a set of wines, and assign chemical formulae to almost 9000 components [2]. However, the advanced instrumentation in this last report would not distinguish structural isomers – for which there may be billions for a condensed tannin

xx Introduction

Compound functions	Description	Examples (Part and Chapter)
Organoleptic	Compounds that contribute to the taste, odor, or tactile sensations of a wine Compounds that affect wine color or cause a visible baze	Acids (A.3), monoterpenes (A.8), tannins (A.14) Anthocyanins (A.16), proteins
	Compounds that act as precursors of organoleptically active compounds	(B.20.2) Glycosides (B.23.1), S-conjugates (B.23.2)
Stability	Compounds that inhibit or promote microbial or abiotic changes during storage	Organic acids (A.3), sulfur dioxide (A.17)
Bioactive	Compounds that may positively or negatively affect human health	Phenolic compounds (A.11), biogenic amines (A.5), ethyl carbamate (A.5)
Matrix	Compounds that affect the speciation or activity of other compounds, usually through non-covalent interactions	Water and ethanol (A.1)
Authenticity	Markers that help distinguish authentic products from fraudulent products	Artificial colors (C.28)

Table 1.2Summary of major functional classes of interest to wine chemists. Note that compounds may fit intomore than one category

consisting of 30 monomers (Chapter 15). Thus, the number of chemical compounds in wine, like most natural products, is essentially uncountable.

With this in mind, the goal of a wine chemist is not to enumerate every compound, but rather to identify compounds, or in many cases classes of compounds, that will directly or indirectly control key quality aspects of the wine such as organoleptic properties (aroma, flavor, appearance), safety, and stability. Alternatively, compounds may be of interest because they can be used to detect the presence of fraud. These categories, and examples, are summarized in Table I.2.

Chemical reactions in wine

The complexity of its composition would suggest that the range of chemical reactions in wine is limitless. However, as noted above, wine is ~97% ethanol and water, which precludes the large number of reactions in introductory organic chemistry texts that require the absence of protic solvents (e.g., no Grignard reactions). Similarly, the mildly acidic conditions of wines (typically, pH ~3.5) mean that base-catalyzed reactions are usually of low importance (e.g., aldol condensations are unlikely).

As with all chemistry, the key to predicting reactions is to define the components of wine that can react with each other. Many of these reactions will be familiar to students of organic chemistry, and include:

- Reactions between nucleophiles and electrophiles, for example, bisulfite and carbonyls
- Hydrolytic reactions, usually acid-catalyzed, for example, of esters, interflavan bonds, and glycosides
- Addition and elimination reactions, again usually acid-catalyzed.

These reactions and many more are the very essence of this book, and are presented in detail throughout the following chapters. One uniquely challenging aspect of wine chemistry as compared to the organic chemistry lab (and most other foodstuffs) is that reactions are allowed to take place for months, years, or even

decades, often at ambient temperatures and in a reductive environment. These conditions can lead to unexpected reaction products – this is especially important since a part-per-trillion of certain compounds may be enough to affect flavor.

Chemistry as a historical record

Many chapters of this text, particularly in Part A, contain tables of "typical concentrations" of various wine components, usually from peer-reviewed reports published since 2000.⁴ However, grapegrowing and winemaking practices are not static [3], and typical values may change dramatically with changes in fashion or technology – not to mention climate [4]. In some cases, the analysis of aged wine reveals changes in typical wine composition and lends insight to changes in production practices. For instance, in the nineteenth century, wine drinkers used to prefer much sweeter wines – premium Champagnes would have over 140 g/L of sugars, as compared to <10 g/L in most modern versions [5]. Control of spoilage organisms like acetic acid bacteria through the use of sulfur dioxide and anaerobic storage during this period was still primitive – a survey of Greek wines from 1872 reported acetic acid concentrations in the range of 1.5 to 3.6 g/L [6], all in excess of modern legal limits. Wine tanks from this era also typically had lead-containing bronze valves (no longer used today), which could be leached under acidic conditions to result in relatively high lead concentrations in wine [5]. Differences in mineral content could also arise from viticulture practices – grapegrowers in the nineteenth and early twentieth century routinely used arsenic to ward off insects and mold [7].⁵

In summary, the values provided in this text should be seen as a snapshot of wine composition circa the early twenty-first century, rather than as fundamental constants. A modern consumer's expectation of a highquality wine is a reflection of both improved technical capacities as well as accumulated traditions, which in the year 2016 means (for the majority of internationally known premium wines) fermenting with selected strains of *Saccharomyces cerevisiae*, aging in oak barrels, and storing wine in glass bottles with corks. Presumably, the pursuit of different options in the past might have led to alternative perspectives on the idea of wine "perfection" and target chemical compositions. Similar statements can be made about the future of wine, and we expect that the numbers provided here will provide some amusement to the wine chemists of the year 2100.

The chemical senses and wine flavor

The majority of compounds discussed in this text have a role in wine flavor. Because the lexicon used to discuss flavor in scientific publication differs from that used in casual conversation, this introduction will conclude with a brief review of key flavor terminology.

Flavor is defined as the "perception resulting from stimulating a combination of the taste buds, the olfactory organs, and chemesthetic receptors within the oral cavity" [10] – in other words, everything a taster can perceive in the mouth, for example, olfaction, taste, and chemesthesis.

⁴These surveys also predominantly consider wines from countries with scholarly activity in enology and viticulture – several European countries, the United States and Canada, South Africa, Australia and New Zealand.

⁵Certain chemical features of wine can also be useful to understanding its use and spread in antiquity. For example, the presence of tartaric acid in a pottery container is considered near-certain evidence that a container held wine [8]. Similarly, the presence of syringic acid was used as evidence that King Tutankhamen drank wine made from red grapes instead of pomegranates. The former contains the pigment malvidin-3-glucoside, which will degrade to the relatively stable syringic acid, while the latter does not [9].

xxii Introduction

Olfaction, or smell, involves the detection of odorants by olfactory receptors (ORs) located within the nasal cavity. Humans have approximately 700 OR, of which half are usually functioning in any individual [11]. Although each specific OR demonstrates some selectivity towards compound classes, odorants (or mixtures of odorants) typically stimulate combinations of OR, and these combinatorial patterns are associated with particular smells [12]. Olfaction requires that the odorant be volatile to reach the nasal cavity, a process that may occur through two routes:

- Orthonasal olfaction involves the detection of odorants without tasting, for example, by smelling the headspace of the wine. The perceptions arising from orthonasal olfaction are often referred to as *aroma*.
- Retronasal olfaction involves detection of odorants that travel from the oral cavity to the nasal cavity. Most commonly, this occurs following swallowing, after which exhalation drives a small amount of odorants through the nostrils [13].

Although olfaction is selective for volatile compounds, most food volatiles appear to be unimportant to odor. A recent meta-analysis estimated that of the ~10 000 volatiles detected in foodstuffs, <3% were important to food aroma [12]. The same review noted that the aromas of specific foods or beverages (including wine) could be simulated with between 4 and 44 odorants.

Taste involves the detection of small molecules by taste receptors located in the taste buds. Five classes of taste receptors have been established – "sweet," "sour," "bitter," "salty," and "umami" [14], of which only the first three appear to be routinely experienced in wine [15].

Chemesthesis involves the chemical activation of receptors responsible for sensations of pain, temperature, and touch, for example, the "heat" caused by capsaicin in hot chili peppers [16]. There are several critical distinctions between taste and chemesthesis, the most important being that taste is only sensed by the taste receptors of the tongue, while chemesthesis can be detected throughout the oral cavity – and for that matter, throughout the body.⁶ The chemesthetic sensations most important to wine are those that cause:

- Pungency and irritation, which can be due to ethanol and CO₂.
- Astringency, or the perceived loss of lubrication in the mouth, which can be triggered by condensed tannins and other phenolic compounds [17].

The perception of "body" is also likely a result of chemesthesis, although the specific compounds responsible for this sensation are still unclear [18].

Classic papers on food analysis (grapes, wine, and otherwise) often focused on identifying or measuring the compounds found in high concentrations, with little emphasis on the sensory relevance of the compounds [19].⁷ Since the 1990s, it has been increasingly common to identify organoleptically important compounds through the use of bioassays, for example, using a human sniffer to identify key odorants through GC-olfactometry. Candidate compounds can then be quantified and their relevance evaluated through reconstitution and omission experiments [20].

Perception of flavors. Although the eventual goal of bioassay-based approaches is to recreate the organoleptic property in a model system, a key feature is the use of activity values as a rough estimate of a compound's

⁶As an example, the "cooling" sensation of menthol is chemesthetic – the perception of coolness can be felt not only on the tongue but throughout the mouth, in the nose, or on tissue on to which menthol is rubbed. In contrast, a sodium chloride solution would not be perceived as salty anywhere except for the tongue.

⁷As described in Chapter 32, improvements in analytical methodology have renewed interests in using general "non-targeted" approaches to identify potentially important compounds.

Compound	Typical aromas	Concentration range (mg/L) ^a	Odor threshold (mg/L) ^b	Odor activity value, OAV
Water 3-Methylbutanol (Isoamyl alcohol)	– Solvent, burnt	~850 000 200–250	_ 30	0 6–8
1-Hexanol	Grassy	1.5-2.5	8	0.2-0.3
3-Mercaptohexanol	Passionfruit, grapefruit	0.0005–0.0038	0.000060	9–65
3-IsobutyI-2-methoxypyrazine	Bell pepper	0.000008-0.000023	0.000002	4–11

Table 1.3 Concentrations, odor thresholds, and calculated OAVs for five representative compounds in Sauvignon Blanc wines

^aRange of average values observed across 7 wine regions for 2004 and 2005 vintages [23]. ^bFrom References [24] to [26].

importance. Activity values are calculated as the ratio of a compound's concentration to its sensory threshold in an appropriate matrix:

Activity value = $\frac{\text{Concentration}}{\text{Detection threshold}}$

Typically, compounds with higher activity values have more intense flavors, but the concentration–response function varies among compounds. In simple solutions, the intensity of most taste compounds (sugars, acids) scales as a linear function of their concentration, but the intensity of most odorants increases as roughly the square root of concentration [16].

Use of activity values in evaluating the relevance of odorants to a given foodstuff dates to at least the 1960s [21, 22], and even earlier examples exist for other flavor compounds.⁸ As a general rule, compounds with activity values <1 are expected to have a negligible effect on a particular sensory attribute [20]. The utility of the activity value concept can be appreciated from representative data for Sauvignon Blanc wines in Table I.3. Based strictly on concentrations, 1-hexanol appears to be a very important contributor to wine. However, conversion to odor activity values (OAVs) reveals that the "grapefruit" aroma of 3-mercaptohexanol and the "herbaceous" notes of 3-isobutyl-2-methoxypyrazine are far more likely to contribute to Sauvignon Blanc aroma – and, in fact, they do.

Activity values are useful as an initial screen to determine the likely relevance of a given compound. However, simply knowing whether a flavor compound is or is not present at suprathreshold concentrations (activity value > 1) is insufficient to determine if the compound is important to the foodstuff for several reasons:

⁸The first widespread use of activity values in food science is probably the eponymous "Scoville Unit" to describe the pungency of hot chili peppers. Originally, the Scoville value of a pepper was determined by preparing an ethanol extract and determining the dilution necessary before the heat was no longer detectable – a value of 4000 Scovilles, typical of a jalapeño, meant that the extract had to be diluted 4000-fold before the pungency was no longer detectable. Currently, Scovilles are determined indirectly by measuring capsaicin and related compounds using HPLC rather than sensory testing.

xxiv Introduction

- *Masking*. The perceived intensity of a flavorant can be decreased by the presence of other flavor compounds. For example, addition of herbaceous smelling methoxypyrazines to red wine decrease the intensity of fruity aromas [27].
- Additive or synergistic effects. Groups of homologous compounds, that is, series of alkyl esters or ketones, can reach sensory threshold through additive effects even if all compounds individually have activity values <1 [28]. Synergism, that is, an increase in stimulus intensity beyond what is predicted for simple additive effects, can also occur, most often for taste and tactile sensations [16].
- *Matrix effects*. Differences in the matrix (pH, temperature, ethanol concentration, non-covalent interactions with macromolecules) can change the activity of flavor compounds, and particularly the volatility of odorants [29].
- Synesthesia and confirmation bias. The different chemosensory modalities (taste, smell, tactile) do not operate in isolation; information from these senses is integrated together. For example, panelists report that increasing the sweetness of a fruity beverage increases the intensity of fruit flavor [30]. A related concept is confirmation bias, in which prior knowledge of a product affects a panelist's perceptions; for example, white wines dyed with tasteless red food coloring are perceived as having fuller body [31].
- *Emergent properties*. Combinations of flavor compounds (particularly odorants) often elicit different percepts than individual compounds. For example, no specific wine compound has a smell exactly like wine, but the combination of odorants at appropriate concentrations allows a sniffer to know that they are smelling wine and not another beverage [32].

Finally, the use of a single value for a sensory threshold obscures the fact that individuals show considerable variation in their sensitivities to different flavor compounds, particularly odorants. One author estimated that a typical 96% confidence interval for odorant thresholds across a population spans a concentration factor of 256 [33], and individuals' thresholds and descriptors may change with repeated experiences [34]. Although this variation does not preclude studies of organoleptic properties, it does necessitate appropriate sensory practices and rigorous statistical analysis of the data (as with other studies involving human subjects). A full discussion of sensory techniques is beyond the scope of this text, but its omission should not be interpreted as trivialization of sensory science. Collecting and interpreting sensory data can be laborious and often represents a limiting step in wine chemistry. We strongly encourage the reader to consult one of the many excellent texts available on sensory science to learn more (e.g., Reference [16]).

References

- 1. Nykänen, L. and Suomalainen, H. (1983) Aroma of beer, wine, and distilled alcoholic beverages, D. Reidel, Dordrecht, Holland.
- 2. Roullier-Gall, C., Witting, M., Gougeon, R.D., Schmitt-Kopplin, P. (2014) High precision mass measurements for wine metabolomics. *Frontiers in Chemistry*, **2**, 102.
- 3. McGovern, P.E. (2003) Ancient wine: the search for the origins of viniculture. Princeton University Press, Princeton, NJ.
- 4. Mira de Orduña, R. (2010) Climate change associated effects on grape and wine quality and production. *Food Research International*, **43** (7), 1844–1855.
- Jeandet, P., Heinzmann, S.S., Roullier-Gall, C., *et al.* (2015) Chemical messages in 170-year-old champagne bottles from the Baltic Sea: revealing tastes from the past. *Proceedings of the National Academy of Sciences of the United States of America*, **112** (19), 5893–5898.

- 6. Thudichum, J.L.W. and Dupré, A. (1872) *A treatise on the origin, nature, and varieties of wine; being a complete manual of viticulture and oenology*, Macmillan, London.
- 7. Parascandola, J. (2012) King of poisons: a history of arsenic, Potomac Books, Herndon, VA.
- 8. Michel, R.H., McGovern, P.E., Badler, V.R. (1993) The first wine & beer. Analytical Chemistry, 65 (8), 408A-413A.
- 9. Guasch-Jane, M.R., Andres-Lacueva, C., Jauregui, O., Lamuela-Raventos, R.M. (2006) The origin of the ancient Egyptian drink Shedeh revealed using LC/MS/MS. *Journal of Archaeological Science*, **33** (1), 98–101.
- 10. Anonymous (2009) *E253-09a, Standard terminology relating to sensory evaluations of materials and products,* ASTM International, West Conshohocken, PA.
- 11. DeMaria, S. and Ngai, J. (2010) The cell biology of smell. The Journal of Cell Biology, 191 (3), 443-452.
- 12. Dunkel, A., Steinhaus, M., Kotthoff, M., *et al.* (2014) Nature's chemical signatures in human olfaction: a foodborne perspective for future biotechnology. *Angewandte Chemie International Edition*, **53** (28), 7124–7143.
- 13. Buettner, A., Beer, A., Hannig, C., Settles, M. (2001) Observation of the swallowing process by application of videofluoroscopy and real-time magnetic resonance imaging consequences for retronasal aroma stimulation. *Chemical Senses*, **26** (9), 1211–1219.
- 14. Chandrashekar, J., Hoon, M.A., Ryba, N.J.P., Zuker, C.S. (2006) The receptors and cells for mammalian taste. *Nature*, **444** (7117), 288–294.
- 15. Hufnagel, J.C. and Hofmann, T. (2008) Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine. *Journal of Agricultural and Food Chemistry*, **56** (4), 1376–1386.
- 16. Lawless, H.T. and Heymann, H. (2010) Sensory evaluation of food principles and practices. Springer, New York.
- 17. Schöbel, N., Radtke, D., Kyereme, J., *et al.* (2014) Astringency is a trigeminal sensation that involves the activation of G protein–coupled signaling by phenolic compounds. *Chemical Senses*, **39** (6), 471–487
- 18. Runnebaum, R.C., Boulton, R.B., Powell, R.L., Heymann, H. (2011) Key constituents affecting wine body an exploratory study. *Journal of Sensory Studies*, **26** (1), 62–70.
- 19. Schreier, P., Drawert, F., Junker, A. (1976) Identification of volatile constituents from grapes. *Journal of Agricultural and Food Chemistry*, **24** (2), 331–336.
- 20. Grosch, W. (2001) Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. *Chemical Senses*, **26** (5), 533–545.
- 21. Guadagni, D.G., Buttery, R.G., Harris, J. (1966) Odour intensities of hop oil components. *Journal of the Science of Food Agriculture*, **17** (3), 142–144.
- 22. Rothe, M. and Thomas, B. (1963) Aromastoffe des brotes. *Zeitschrift für Lebensmittel-Untersuchung und Forschung*, **119** (4), 302–310.
- Benkwitz, F., Tominaga, T., Kilmartin, P.A., *et al.* (2012) Identifying the chemical composition related to the distinct aroma characteristics of New Zealand Sauvignon Blanc wines. *American Journal of Enology and Viticulture*, 63 (1), 62–72.
- 24. Guth, H. (1997) Quantitation and sensory studies of character impact odorants of different white wine varieties. *Journal of Agricultural and Food Chemistry*, **45** (8), 3027–3032.
- 25. Tominaga, T., Baltenweck-Guyot, R., Des Gachons, C.P., Dubourdieu, D. (2000) Contribution of volatile thiols to the aromas of white wines made from several *Vitis vinifera* grape varieties. *American Journal of Enology and Viticulture*, **51** (2), 178–181.
- Buttery, R.G., Seifert, R.M., Guadagni, D.G., Ling, L.C. (1969) Characterization of some volatile constituents of bell peppers. *Journal of Agricultural and Food Chemistry*, **17** (6), 1322–1327.
- 27. Hein, K., Ebeler, S.E., Heymann, H. (2009) Perception of fruity and vegetative aromas in red wine. *Journal of Sensory Studies*, **24** (3), 441–455.
- Guadagni, D.G., Buttery, R.G., Okano, S., Burr, H.K. (1963) Additive effect of sub-threshold concentrations of some organic compounds associated with food aromas. *Nature*, 200 (4913), 1288–1289.
- Pozo-Bayón, M.Á. and Reineccius, G. (2009) Interactions between wine matrix macro-components and aroma compounds, in *Wine chemistry and biochemistry* (eds Moreno-Arribas, M.V. and Polo, M.C.), Springer, New York, pp. 417–436.

xxvi Introduction

- King, B.M., Duineveld, C.A.A., Arents, P., et al. (2007) Retronasal odor dependence on tastants in profiling studies of beverages. Food Quality and Preference, 18 (2), 286–295.
- 31. Delwiche, J. (2004) The impact of perceptual interactions on perceived flavor. *Food Quality and Preference*, **15** (2), 137–146.
- Ferreira, V., Ortin, N., Escudero, A., et al. (2002) Chemical characterization of the aroma of Grenache rosé wines: aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies. Journal of Agricultural and Food Chemistry, 50 (14), 4048–4054.
- 33. Amoore, J.E. (1980) Properties of the olfactory system, in *Odorization* (eds Suchomel, F.H. and Weatherly, J.W.), Institute of Gas Technology, Chicago, IL, pp. 31–35.
- 34. Stevens, J.C., Cain, W.S., Burke, R.J. (1988) Variability of olfactory thresholds. *Chemical Senses*, 13 (4), 643–653.

Part A

Wine Components and Their Reactions