

VDI-Wärmeatlas

Fachlicher Träger VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen

12. Auflage

Springer Reference Technik

VDI Springer Reference

Springer Reference Technik bietet Ingenieuren – Studierenden, Praktikern und Wissenschaftlern – zielführendes Fachwissen in aktueller, kompakter und verständlicher Form. Während traditionelle Handbücher ihre Inhalte bislang lediglich gebündelt und statisch in einer Printausgabe präsentiert haben, bietet "Springer Reference Technik" eine um dynamische Komponenten erweiterte Online-Präsenz: Ständige digitale Verfügbarkeit, frühes Erscheinen neuer Beiträge online first und fortlaufende Erweiterung und Aktualisierung der Inhalte.

Die Werke und Beiträge der Reihe repräsentieren den jeweils aktuellen Stand des Wissens des Faches, was z. B. für die Integration von Normen und aktuellen Forschungsprozessen wichtig ist, soweit diese für die Praxis von Relevanz sind. Reviewprozesse sichern die Qualität durch die aktive Mitwirkung von namhaften HerausgeberInnen und ausgesuchten AutorInnen.

Springer Reference Technik wächst kontinuierlich um neue Kapitel und Fachgebiete. Eine Liste aller Reference-Werke bei Springer – auch anderer Fächer – findet sich unter www.springerreference.de.

Weitere Bände in der Reihe http://www.springer.com/series/15071


Peter Stephan • Stephan Kabelac Matthias Kind • Dieter Mewes Karlheinz Schaber • Thomas Wetzel Hrsg.

VDI-Wärmeatlas

Fachlicher Träger VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen

12. Auflage

mit 1046 Abbildungen und 483 Tabellen

Hrsg.

Peter Stephan

Technische Universität Darmstadt Darmstadt, Deutschland

Matthias Kind

Karlsruher Institut für Technologie

Karlsruhe, Deutschland

Karlheinz Schaber

Karlsruher Institut für Technologie

Karlsruhe, Deutschland

Stephan Kabelac

Leibniz Universität Hannover Hannover, Deutschland

Dieter Mewes

Leibniz Universität Hannover Hannover, Deutschland

Thomas Wetzel

Karlsruher Institut für Technologie

Karlsruhe, Deutschland

ISSN 2522-8188 ISSN 2522-8196 (electronic)
Springer Reference Technik
VDI Springer Reference
ISBN 978-3-662-52988-1 ISBN 978-3-662-52989-8 (eBook)
ISBN 978-3-662-52990-4 (Bundle)
https://doi.org/10.1007/978-3-662-52989-8

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

1.-6. Aufl. © VDI-Verlag GmbH, Düsseldorf, 7.-11. Aufl. © Springer-Verlag Berlin Heidelberg

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 1953/1957, 1963, 1977, 1984, 1988, 1991, 1994, 1997, 2002, 2006, 2013, 2019

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von allgemein beschreibenden Bezeichnungen, Marken, Unternehmensnamen etc. in diesem Werk bedeutet nicht, dass diese frei durch jedermann benutzt werden dürfen. Die Berechtigung zur Benutzung unterliegt, auch ohne gesonderten Hinweis hierzu, den Regeln des Markenrechts. Die Rechte des jeweiligen Zeicheninhabers sind zu beachten.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag, noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Springer Vieweg ist ein Imprint der eingetragenen Gesellschaft Springer-Verlag GmbH, DE und ist ein Teil von Springer Nature

Die Anschrift der Gesellschaft ist: Heidelberger Platz 3, 14197 Berlin, Germany

Vorwort zur 12. Auflage

Der VDI-Wärmeatlas gilt als Standardwerk zur Auslegung von Wärmeübertragern und wärmetechnischen Apparaten. Er erscheint nun in seiner 12. deutschen Auflage und blickt auf eine mehr als 50-jährige Historie zurück. Unverändertes Ziel seit dem Erscheinen der 1. Auflage im Jahre 1963 ist es, Ingenieurinnen und Ingenieuren in einem übersichtlichen und umfassenden Werk verlässliche und aktuelle Methoden zur Berechnung von Wärmeübertragern und wärmetechnischen Apparaten zur Verfügung zu stellen. Dazu gehörte und gehört auch die Bereitstellung von Stoffdaten. Für die 12. Auflage wurden die Berechnungsmethoden und Stoffdatentabellen in den einzelnen Kapiteln sofern notwendig wieder aktualisiert. Aufgrund seiner zunehmenden Bedeutung für die Praxis und der Etablierung verlässlicher Berechnungsverfahren wurde ein Kapitel zu Latent-Wärmespeichern neu aufgenommen. Eine große Neuerung stellt auch die Einführung des VDI-Wärmeatlas als Web-basierte *living reference work* parallel zur gedruckten Version dar.

Möge die neue Auflage des VDI-Wärmeatlas seinen Nutzern auch weiterhin die bestmögliche Unterstützung bei ihren Berechnungsaufgaben bieten. Den Autoren der einzelnen Kapitel sei für ihr großes Engagement gedankt. Der VDI-Gesellschaft für Verfahrenstechnik und Chemieingenieurwesen danken wir für die stete Begleitung bei der Überarbeitung des Werkes. Dem Springer-Verlag gilt großer Dank für die sehr gute Zusammenarbeit, die Weiterentwicklung und Erweiterung des Formates sowie die gelungene Umsetzung.

Der Redaktionsausschuss der 12. Auflage Oktober 2018

Prof. Dr.-Ing. Peter Stephan, Darmstadt Prof. Dr.-Ing. Stephan Kabelac, Hannover Prof. Dr.-Ing. Matthias Kind, Karlsruhe Prof. Dr.-Ing. Dieter Mewes, Hannover Prof. Dr.-Ing. Karlheinz Schaber, Karlsruhe Prof. Dr.-Ing. Thomas Wetzel, Karlsruhe

programm für alle Anwendungen

Vertrauen Sie beim Thema Wärmeträger auf die ganzheitliche Kompetenz von KSB – und ein einzigartiges Leistungspaket. Es setzt sich zusammen aus Pumpen, Armaturen, bewährter Automations- und Antriebstechnik sowie umfassenden Serviceleistungen, die bis ins Detail überzeugen. Wir bieten für jegliche Anforderungen die passende Lösung. Das macht KSB für Sie zum Partner Nummer 1 für Wärmeträgeranwendungen. Mehr erfahren unter www.ksb.com

CADFEM

Das Simulationswerkzeug zur Auslegung und Validierung thermischer Aufgabenstellungen.

inside ANSYS®

CADFEM°

CADFEM GmbH T+49 (0) 80 92-70 05-0 info@cadfem.de | www.cadfem.net

Lauterbach Verfahrenstechnik GmbH T+49 721-97822-0 info@LV-soft.de | www.LV-soft.de

www.cadfem.net/waermeatlas

Analytik und numerische Simulation – eine perfekte Kombination

VDI-Wärmeatlas inside ANSYS® integriert die Berechnungssoftware LV-VDI-Wärmeatlas vollständig in die führende Simulationsplattform ANSYS® Workbench™. VDI-Wärmeatlas inside ANSYS® ist die perfekte Kombination der Vorteile analytischer Lösungen mit den Stärken der Finite-Elemente-Simulation.

Durchgehender Arbeitsprozess vom Entwurf bis zur Validierung

Höhere Produktivität, konsistente Daten und die Vermeidung von Eingabefehlern

Plausibilitätsprüfung und Einheitenumrechnung der verknüpften Parameter

Schnelle Variantenanalyse durch bidirektionalen Parameteraustausch zwischen ANSYS® Workbench™ und LV-VDI Wärmeatlas

Mit vielen druck- und temperaturabhängigen Materialdaten

Mit VDI-Wärmeatlas als eBook

© CADFEM GmbH, 2018 www.cadfem.net

Inhaltsverzeichnis

A Formelzeichen, Einheiten und dimensionslose Kenngrößen für die Berechnung von Wärmeübertragern und wärmetechnischen	
Apparaten	1
A1 Formelzeichen und Einheiten für die Berechnung von Wärmeübertragern und wärmetechnischen Apparaten	3
A2 Dimensionslose Kenngrößen für die Berechnung von Wärmeübertragern und wärmetechnischen Apparaten	11
B Grundlagen der Wärmeübertragung	15
B1 Die Energieform Wärme und verschiedene Arten der Wärmeübertragung Peter Stephan	17
B2 Grundlagen der Berechnungsmethoden für Wärmeleitung, konvektiven Wärmeübergang und Wärmestrahlung	23
C Grundlagen der Berechnung von Wärmeübertragern	37
C1 Wärmeübertrager: Berechnungsmethoden Wilfried Roetzel und Bernhard Spang	39
C2 Wärmeübertrager: Wärmedurchgang und Wärmedurchgangskoeffizienten Wilfried Roetzel und Bernhard Spang	79
C3 Wärmeübertrager: Verminderung der Ablagerungsbildung	99
C4 Wärmeübertragernetzwerke	135
C5 Wärmeübertrager: Kosten und Wirtschaftlichkeit	149
D Thermophysikalische Stoffeigenschaften	155
D1 Berechnungsmethoden für thermophysikalische Stoffeigenschaften	157

X Inhaltsverzeichnis

D2.1 Thermophysikalische Stoffwerte von Wasser	201
D2.2 Thermophysikalische Stoffwerte von trockener Luft	219
D2.3 Thermophysikalische Stoffwerte von Stickstoff	239
D2.4 Thermophysikalische Stoffwerte von Kohlendioxid	259
D2.5 Thermophysikalische Stoffwerte von Sauerstoff	279
D2.6 Thermophysikalische Stoffwerte von Ammoniak	297
D2.7 Thermophysikalische Stoffwerte von R134a (1,1,1,2-Tetrafluorethan) Roland Span	317
D2.8 Thermophysikalische Stoffwerte von R1234yf	
(2,3,3,3-Tetrafluoroprop-1-ene)	335
D3.1 Thermophysikalische Stoffwerte sonstiger reiner Flüssigkeiten und Gase Michael Kleiber und Ralph Joh	355
D3.2 Thermophysikalische Stoffwerte sonstiger reiner Fluide bei Sättigung Roland Span	447
D4.1 Thermophysikalische Stoffwerte gebräuchlicher Kältemittel Felix Flohr	511
D4.2 Thermophysikalische Stoffwerte von Fluiden für Kältebäder, von wässrige Lösungen und Glykolen	531
D4.3 Thermophysikalische Stoffwerte von Wärmeträgern auf Mineralölbasis und von synthetischen Wärmeträgern	551
D5.1 Dampf-Flüssigkeits-Gleichgewichte von Mehrkomponenten-Gemischen Andreas Pfennig	603
D5.2 Dampf-Flüssigkeits-Gleichgewichte und Diffusionskoeffizienten von Polymerlösungen	621
D5.3 Dampfdrücke von wässrigen Salzlösungen	631
D6.1 Thermophysikalische Stoffwerte von Metallen und Metalllegierungen Christian Ullrich und Thomas Bodmer	645
D6.2 Thermophysikalische Stoffwerte fester Polymere Christof Hübner und Paul Bernd Kempa	659
D6.3 Thermophysikalische Stoffwerte von feuerfesten Materialien	665

Inhaltsverzeichnis XI

D6.4 Thermophysikalische Stoffwerte von Kälte- und Wärmedämmstoffen Andreas Kleiner und Günther Kasparek	679
D6.5 Wärmeleitfähigkeit von Erdreich, Holz, Holzwerkstoffen, allgemeinen Baustoffen und Mauerwerk Martin H. Spitzner	687
E Wärmeleitung	707
E1 Wärmeleitung – stationär	709
E2 Wärmeleitung – instationär Holger Martin, Thomas Wetzel und Benjamin Dietrich	729
F Wärmeübertragung durch freie Konvektion	757
F1 Wärmeübertragung bei freier Konvektion: Grundlagen	759
F2 Wärmeübertragung bei freier Konvektion: Außenströmungen André Thess und Robert Kaiser	763
F3 Wärmeübertragung bei freier Konvektion: Innenströmungen	773
F4 Wärmeübertragung bei freier Konvektion: Sonderfälle	785
F5 Wärmeabgabe von Heizkörpern beim Betrieb mit Warmwasser André Thess und Robert Kaiser	791
G Wärmeübertragung bei erzwungener Konvektion	801
G1 Wärmeübertragung bei erzwungener Konvektion: Durchströmte Rohre Volker Gnielinski	803
G2 Wärmeübertragung bei erzwungener Konvektion: Konzentrischer Ringspalt und ebener Spalt	813
G3 Wärmeübertragung bei erzwungener Konvektion: Durchströmte Rohrwendeln Volker Gnielinski	823
G4 Wärmeübertragung bei erzwungener Konvektion: Längsumströmte ebene Wände	827
G5 Wärmeübertragung bei erzwungener Konvektion: Bewegte Oberflächen mit paralleler Überströmung	831
G6 Wärmeübertragung bei erzwungener Konvektion: Querumströmte einzelne Rohre, Drähte und Profilzylinder	839

G7 Wärmeübertragung bei erzwungener Konvektion: Querdurchströmte Rohrreihen und Rohrbündel
G8 Wärmeübertragung bei erzwungener Konvektion: Außenraum von Rohrbündel-Wärmeübertragern mit Umlenkblechen
G9 Wärmeübertragung bei erzwungener Konvektion: Durchströmte Haufwerke
G10 Wärmeübertragung bei erzwungener Konvektion: Prallströmungen 893 Wilhelm Schabel und Holger Martin
H Wärmeübergang beim Sieden
H1 Entstehung von Dampfblasen bei Siedevorgängen
H2 Behältersieden reiner Stoffe und von Gemischen
H3.1 Strömungssieden – Einführung
H3.2 Strömungssieden – Strömungsformen in Verdampferrohren
H3.3 Strömungssieden – Druckverlust in durchströmten Verdampferrohren 973 Matthias Kind und Thomas Wetzel
H3.4 Strömungssieden unterkühlter Flüssigkeiten
H3.5 Strömungssieden gesättigter, reiner Flüssigkeiten
H3.6 Strömungssieden – Kritische Siedezustände
H3.7 Strömungssieden – Wärmeübergang nach der Siedekrise
H3.8 Strömungssieden von Gemischen
J Wärmeübergang bei der Kondensation
J1 Filmkondensation reiner Dämpfe
J2 Kondensation von Mehrstoffgemischen
J3 Tropfenkondensation
J4 Misch- und Sprühkondensation

Inhaltsverzeichnis XIII

J5 Spontane Kondensation und Aerosolbildung
K Wärmestrahlung
K1 Wärmestrahlung technischer Oberflächen
K2 Wärmestrahlung – Sichtfaktoren
K3 Wärmestrahlung von Gasen und Gasgemischen
K4 Wärmestrahlung von Gas-Feststoff-Gemischen
K5 Wärmestrahlung in Brennräumen
K6 Wärmestrahlung - Superisolierungen
L Strömungsdynamik und Druckverlust L1 Strömungsdynamik und Druckverlust: Einphasige Strömungen
L1.1 Druckverlust in einphasigen Strömungen
L1.2 Druckverlust in durchströmten Rohren
L1.3 Druckverlust in durchströmten Leitungen mit Querschnittsänderungen 1363 Hermann Nirschl
L1.4 Druckverlust in querumströmten Rohrbündeln
L1.5 Druckverlust in umströmten Rohrbündeln in Wärmeübertragern mit und ohne Umlenkbleche
L1.6 Druckverlust in durchströmten Schüttungen
L1.7 Druckverlust bei der Durchströmung von Lochplatten
L2 Strömungsdynamik und Druckverlust: Zweiphasige Gas- Flüssigkeitsströmungen
L2.1 Berechnung der Phasenanteile bei Gas-Flüssigkeitsströmungen
L2.2 Druckabfall von Gas-Flüssigkeitsströmungen in Rohren, Leitungselementen und Armaturen

L2.3 Auslegung von Schutzeinrichtungen für wärmeübertragende Apparate 1469 Jürgen Schmidt
L2.4 Kritische Massenströme durch Düsen, Ventile und Rohreinbauten
L2.5 Druckverlust und Flutgrenze bei vertikaler Gas-Flüssigkeit- Gegenströmung
L2.6 Druckverlust und Flutgrenze in berieselten Packungen
L2.7 Nasser Druckverlust und Leerblasen von Kolonnenböden
L3 Strömungsdynamik und Druckverlust: Zweiphasige Gas-Festkörper-Strömungen
L3.1 Bewegung fester Partikel in Gasen und Flüssigkeiten
L3.2 Strömungsformen und Druckverlust in Wirbelschichten
L3.3 Druckverlust in pneumatischen Transportanlagen
L3.4 Zyklone zum Abscheiden fester Partikel aus Gasen
L4 Strömungsdynamik und Druckverlust: Blasen und Tropfen in technischen Apparaten
L4.1 Bildung und Bewegung von Tropfen und Blasen in technischen Apparaten
L4.2 Entstehen und mechanisches Zerstören von Schäumen in technischen Apparaten
L4.3 Tropfenabscheidung in technischen Apparaten
L4.4 Zerstäuben von Flüssigkeiten mit Einstoff-Druckdüsen
M Sonderprobleme der Wärmeübertragung
M1 Wärmeübergang an berippten Rohren
M2 Wärmedurchgang durch Wände mit aufgeschweißten Rohrschlangen 1691 Wolfgang Heidemann
M3 Wärmeübergang an senkrechten Rieselfilmen

Inhaltsverzeichnis XV

M4 Wärmeübergang an nichtnewtonschen Flüssigkeiten
M5 Wärmeübergang in Wirbelschichten
M6 Wärmeübergang von einer Heizfläche an ruhende oder mechanisch durchmischte Schüttungen
M7 Wärmeleitung und Dispersion in durchströmten Schüttungen
M8 Be- und Entfeuchten von Luft
M9 Konvektive Wärmeübertragung bei hohen Strömungsgeschwindigkeiten 1795 Bernhard Weigand und Nimai-Kumar Mitra
M10 Wärmeübertragung und Strömung in verdünnten Gasen
M11 Wärmeleitfähigkeit von Schüttschichten
M12 Wärmeleitfähigkeit von Dämmstoffen in Abhängigkeit von Temperatur und Feuchtegehalt
N Spezielle Wärmeübertrager
N1 Wärmeübertragung in Regeneratoren
N2 Kombinierte Wärme- und Stoffübertragung in rotierenden Regeneratoren 1877 Gerd Gaiser
N3 Wärmeübertragung und Leistungsaufnahme in Rührkesseln
N4 Kühltürme
N5 Wärmerohre
N6 Druckverlust und Wärmeübergang in Plattenwärmeübertragern
N7 Phasenwechselmaterialien (PCM) für Latent-Wärmespeicher
O Konstruktion von Wärmeübertragern
O1 Konstruktive Hinweise für den Bau von Wärmeübertragern
O2 Schwingungen in Wärmeübertrager-Rohrbündeln

Autorenverzeichnis

Klaus Anders Stuttgart, Deutschland

Wolfgang Bender Hülsenbusch Apparatebau GmbH & Co. KG, Kempen, Deutschland

Michele Bianchi Janetti Universität Innsbruck, Innsbruck, Österreich

Thomas Bodmer Uniper Technologies, Gelsenkirchen, Deutschland

Hans-Gerd Brummel Siemens AG, Berlin, Deutschland

Andreas Bück Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland

Ulrich Busweiler Darmstadt, Deutschland

Benjamin Dietrich Institut für Thermische Verfahrenstechnik, Karlsruher Institut für Technologie (KIT), Karlsruhe, Deutschland

Friedrich Ehrler Karlsbad, Deutschland

Klaus Elgeti Bergisch-Gladbach, Deutschland

Paul J. Erens Stellenbosch, Südafrika

Axel Eschner Osterode am Harz, Deutschland

Ludger Josef Fischer Hochschule Luzern, Horw, Schweiz

Felix Flohr Daikin Chemical Europe GmbH, Düsseldorf, Deutschland

Arnold Frohn Institut für Thermodynamik der Luft- und Raumfahrt, Universität Stuttgart, Stuttgart, Deutschland

Edward S. Gaddis Institut für Thermische Verfahrenstechnik (i. Ruhestand), Technische Universität Clausthal, Clausthal-Zellerfeld, Deutschland

Gerd Gaiser Eberspächer Exhaust Technology GmbH und Co. KG, Esslingen, Deutschland

Horst Gelbe Berlin, Deutschland

Andreas Glück heat 11 GmbH & Co. KG, Ebersbach, Deutschland

Volker Gnielinski Institut für Thermische Verfahrenstechnik, Karlsruher Institut für Technologie (KIT), Karlsruhe, Deutschland

Dieter Gorenflo Universität Paderborn, Paderborn, Deutschland

Klaus Görner Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik, Universität Duisburg-Essen, Essen, Deutschland

Harald Grave GEA Wiegand GmbH, Karlsruhe, Deutschland

XVIII Autorenverzeichnis

Erich Hahne Leonberg, Deutschland

Marwan Hassan School of Engineering, University of Guelph, Guelph, Ontario, Kanada

Wolfgang Heidemann Institut für Gebäudeenergetik, Thermotechnik und Energiespeicherung, Universität Stuttgart, Stuttgart, Deutschland

Oliver Herbst Thermal Hydraulics and Fluid Dynamics, Framatome GmbH, Erlangen, Deutschland

Ulrich Hochberg Hochschule Offenburg, Offenburg, Deutschland

Christof Hübner Fraunhofer-Institut für Chemische Technologie, Pfinztal, Deutschland

Dietmar Hunold heat 11 GmbH & Co. KG, Bielefeld, Deutschland

Ralph Joh Power and Gas, Siemens AG, Frankfurt am Main, Deutschland

Stephan Kabelac Institut für Thermodynamik, Leibniz Universität Hannover, Hannover, Deutschland

Robert Kaiser Löwenstein, Deutschland

Günther Kasparek Karlsfeld, Deutschland

Anastassios Katsaounis Berlin, Deutschland

Paul Bernd Kempa Fraunhofer-Institut für Chemische Technologie, Pfinztal, Deutschland

Matthias Kind Institut für Thermische Verfahrenstechnik, Karlsruher Institut für Technologie (KIT), Karlsruhe, Deutschland

Michael Kleiber thyssenkrupp Industrial Solutions AG, Bad Soden, Deutschland

Andreas Kleiner BSH Hausgeräte GmbH, Giengen an der Brenz, Deutschland

Gernot Krakat FRAGOL AG, Mülheim, Deutschland

Hans-Joachim Kretzschmar Hochschule Zittau/Görlitz, Zittau, Deutschland

Alfred Leipertz Lehrstuhl für Technische Thermodynamik, Universität Erlangen-Nürnberg, Erlangen, Deutschland

Andrea Luke Fachgebiet Technische Thermodynamik, Universität Kassel, Kassel, Deutschland

Xing Luo Institut für Thermodynamik, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Deutschland

Holger Martin Karlsruhe, Deutschland

Alfons Mersmann Technische Universität München, München, Deutschland

Dieter Mewes Leibniz Universität Hannover, Hannover, Deutschland

Nimai-Kumar Mitra Bochum, Deutschland

Jürgen Müller BASF SE, Ludwigshafen am Rhein, Deutschland

Ulrich Muschelknautz MK Engineering, Heidelberg, Deutschland

Markus Nickolay ASiRAL HiPUROX GmbH, Neustadt an der Weinstraße, Deutschland

Hermann Nirschl Institut für Mechanische Verfahrenstechnik und Mechanik, Karlsruher Institut für Technologie (KIT), Karlsruhe, Deutschland

Autorenverzeichnis XIX

Reiner Numrich Lehrstuhl für Fluidverfahrenstechnik, Universität Paderborn, Paderborn, Deutschland

Fabian Ochs Institut für Konstruktion und Materialwissenschaften, Universität Innsbruck, Innsbruck, Österreich

Andreas Pfennig Department of Chemical Engineering, Université de Liège, Liège, Belgien

Harald Reiss Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Deutschland

Hanno C. Reuter Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Stellenbosch, South Africa

Wilfried Roetzel Institut für Thermodynamik, Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg, Hamburg, Deutschland

Norbert Roth Institut für Thermodynamik der Luft- und Raumfahrt, Universität Stuttgart, Stuttgart, Deutschland

Yasushi Saito Research Reactor Institute, Department of Nuclear Energy Science, Kyoto University, Osaka, Japan

Wilhelm Schabel Institut für Thermische Verfahrenstechnik – Thin Film Technology, Karlsruher Institut für Technologie (KIT), Karlsruhe, Deutschland

Karlheinz Schaber Institut für Technische Thermodynamik und Kältetechnik ITTK, Karlsruher Institut für Technologie (KIT), Karlsruhe, Deutschland

Michael Schlüter Institut für Mehrphasenströmungen, Technische Universität Hamburg, Hamburg, Deutschland

Holger Schmidt Framatome GmbH, Erlangen, Deutschland

Jürgen Schmidt CSE Center of Safety Excellence gGmbH, Pfinztal, Deutschland

Klaus Gerhard Schmidt Institut an der Universität Duisburg-Essen, Institut für Energie und Umwelttechnik e.V. Duisburg, Duisburg, Deutschland

Günter Schnabel BIDECO Bio- und Pharmasysteme GmbH, Biberach, Deutschland

Martin Sommerfeld Institut für Mechanische Verfahrenstechnik, AG Mehrphasenströmungen, Otto-von-Guericke Universität Magdeburg, Halle (Saale), Deutschland

Roland Span Fakultät für Maschinenbau | Lehrstuhl für Thermodynamik, Ruhr-Universität Bochum, Bochum, Deutschland

Bernhard Spang BUCO Wärmeaustauscher International GmbH, Geesthacht, Deutschland

Martin H. Spitzner Hochschule Biberach, Biberach, Deutschland

Karl Stephan Institut für Technische Thermodynamik und Thermische Verfahrenstechnik, Universität Stuttgart, Stuttgart, Deutschland

Peter Stephan Institut für Technische Thermodynamik, Technische Universität Darmstadt, Darmstadt, Deutschland

Johann Stichlmair Technische Universität München, Garching, Deutschland

André Thess Institut für Technische Thermodynamik, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Stuttgart, Deutschland

XX Autorenverzeichnis

Evangelos Tsotsas Lehrstuhl für Thermische Verfahrenstechnik, Otto-von-Guericke-Universität, Magdeburg, Deutschland

Christian Ullrich VGB PowerTech Service GmbH, Essen, Deutschland

Dieter Vortmeyer Garching, Deutschland

Wolfgang Wagner Ruhr-Universität Bochum, Bochum, Deutschland

Manfred H. Wagner Polymertechnik/Polymerphysik, Technische Universität Berlin, Berlin, Deutschland

Peter Walzel Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, Dortmund, Deutschland

Bernhard Weigand Institut für Thermodynamik der Luft- und Raumfahrt, Universität Stuttgart, Stuttgart, Deutschland

Anton Wellenhofer Linde AG, Pullach, Deutschland

Thomas Wetzel Institut für Thermische Verfahrenstechnik, Karlsruher Institut für Technologie (KIT), Karlsruhe, Deutschland

Karl-Ernst Wirth Lehrstuhl für Grenzflächen und Feststoffverfahrenstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland

Hartwig Wolf General Electric GmbH, Department NUHX, Baden, Schweiz

Ralph Wunderlich BASF SE, Ludwigshafen, Deutschland

Manfred Zeller Lehrstuhl für Wärme- und Stoffübertragung, RWTH Aachen, Aachen, Deutschland

Hans Ulrich Zettler Heat Transfer Research, Inc. (HTRI), Guildford, Großbritannien

Samir Ziada Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Kanada

A Formelzeichen, Einheiten und dimensionslose Kenngrößen für die Berechnung von Wärmeübertragern und wärmetechnischen Apparaten

A1 Formelzeichen und Einheiten für die Berechnung von Wärmeübertragern und wärmetechnischen Apparaten

Matthias Kind

Inhalt

1	Einführung: Gesetzliche Einheiten	3
2	SI-Grundeinheiten der Basisgrößen	3
3	Abgeleitete SI-Einheiten mit eigenen Namen und Symbolen	4
4.1	Größen und Formelzeichen Größen Formelzeichen	5
5	Nicht-SI-Einheiten und Einheiten, die auf Grundkonstanten basieren	7
6	Andere Nicht-SI-Einheiten, die nicht zum Gebrauch empfohlen werden	8
7	SI-Vorsilben	9
Lite	pratur	c

2

1 Einführung: Gesetzliche Einheiten

"Das Internationale Komitee für Maße und Gewichte" (BIPM, Paris) veröffentlicht die SI Brochure: The International System of Units (SI), 8th edition, 2006; updated in 2014 [1], siehe auch [2, 3]. Die Mehrzahl der im VDI-Wärmeatlas verwendeten Grundeinheiten und abgeleiteten Einheiten sind SI-Einheiten, die hier aufgelistet werden. SI-Einheiten sind diejenigen Einheiten, die weltweit anerkannt werden, um einen globalen Dialog zu ermöglichen. Von der Vielzahl der in der Literatur verwendeten Nicht-SI-Einheiten für dieselbe Größe werden hier nur diejenigen genannt, die weiter verbreitet waren (oder noch sind). Im August 2016 waren 58 Staaten Mitglieder des BIPM und 41 Staaten und Wirtschaftsräume waren dem BIPM assoziiert.

SI-Grundeinheiten der Basisgrößen

Größe	Symbol der Größe	Einheit	Symbol
Globe	Grobe	Elillett	Symbol
Länge	l, x, y, z, r, \ldots	Meter	m
Masse	M, m	Kilogramm	kg
Zeit	t	Sekunde	s
Elektrische Stromstärke	I, i	Ampere	A
Thermodynamische	T	Kelvin	K
Temperatur			
Stoffmenge	N	Mol	mol
Lichtstärke	I_{ν}	Candela	cd

M. Kind (\boxtimes)

Institut für Thermische Verfahrenstechnik, Karlsruher Institut für Technologie (KIT), Karlsruhe, Deutschland

E-Mail: matthias.kind@kit.edu

4 M. Kind

3 Abgeleitete SI-Einheiten mit eigenen Namen und Symbolen

		Abgeleitete SI-Einheit ^a			
			Symbol	In anderen	In
	Formelzeichen		der	SI-Einheiten	SI-Basiseinheiten
Größe	der Größe	Einheit	Einheit	ausgedrückt	ausgedrückt
Winkel	$\alpha, \beta, \gamma, \dots$	Radian ^b	rad	1 ^b	m/m
Raumwinkel	$\alpha, \beta, \gamma, \ldots$	Steradian ^b	sr ^c	1 ^b	m^2/m^2
Frequenz	f	Hertz ^d	Hz		s^{-1}
Kraft	F	Newton	N		m kg s ⁻²
Druck, Spannung	p, P, σ, τ	Pascal	Pa	N/m ²	$m^{-1} kg s^{-2}$
Energie, Arbeit, Wärme	E, W, Q	Joule	J	N m	$\mathrm{m^2~kg~s^{-2}}$
Leistung, Wärmestrom	P, Q	Watt	W	J/s	$m^2 kg s^{-3}$
Elektrische Ladung	Q	Coulomb	С		s A
Elektrische Spannung	U	Volt	V	W/A	m ² kg s ⁻³ A ⁻¹
Kapazität	C	Farad	F	C/V	$m^{-2} kg^{-1} s^4 A^2$
Widerstand, elektrisch	R	Ohm	Ω	V/A	$m^2 kg s^{-3} A^{-2}$
Leitfähigkeit, elektrisch	G	Siemens	S	A/V	$m^{-2} kg^{-1} s^3 A^2$
Magnetischer Fluss	Φ	Weber	Wb	V s	$m^2 kg s^{-2} A^{-1}$
Magnetische Flussdichte	В	Tesla	T	Wb/m ²	kg s ⁻² A ⁻¹
Induktanz	L	Henry	Н	Wb/A	$m^2 kg s^{-2} A^{-2}$
Celsius Temperatur	9	Grad Celsius ^e	°C		K
Lichtstrom	I	Lumen	lm	cd sr ^c	cd
Beleuchtungsstärke	E	Lux	lx	lm/m ²	m^{-2} cd
Aktivität eines Radionuklids ^f		Becquereld	Bq		s^{-1}
Absorbierte Dosis, Spezifische übertragene Energie, Kerma		Gray	Gy	J/kg	$m^2 s^{-2}$
Äquivalentdosis, Umgebungsäquivalentdosis, Richtungsäquivalentdosis, Personendosis		Sievert ^g	Sv	J/kg	$m^2 s^{-2}$
Katalytische Aktivität		Katal	kat		s ⁻¹ mol

^aDie SI-Vorsilben (siehe Abschn. 7) können mit jedem der eigenen Namen und Symbole verwendet werden, aber die daraus resultierende Einheit ist dann nicht mehr kohärent

^bRadian und Steradian sind eigene Namen für die Zahl Eins, die verwendet werden können, um Information über die betrachtete Größe zu vermitteln. In der Praxis werden die Symbole rad und sr verwendet, wenn es angebracht ist, aber das Symbol für die abgeleitete Einheit Eins wird allgemein bei der Angabe der Werte dimensionsloser Größen weggelassen

^cIn der Photometrie werden der Name Steradian und das Symbol sr gewöhnlich im Ausdruck für Einheiten beibehalten

^dDas Hertz wird nur für periodische Phänomene gebraucht und das Becquerel wird nur für stochastische Prozesse für die Aktivität von Radionukliden verwendet

^eDas Grad Celsius ist der eigene Name für das Kelvin, um Celcius-Temperaturen auszudrücken. Das Grad Celsius und das Kelvin haben dieselbe Größe, so dass der Zahlenwert einer Temperaturdifferenz oder eines Temperaturintervalls derselbe ist, wenn er in Grad Celcius oder in Kelvin ausgedrückt wird

fAktivität eines Radionuklids wird manchmal unkorrekt als Radioaktivität bezeichnet

^gSiehe https://www.bipm.org/en/CIPM/db/2002/2/ zum Gebrauch des Sievert

4 Größen und Formelzeichen

Die folgenden, alphabetisch sortierten Größen und Formelzeichen werden allgemein im Wärmeatlas verwendet. Andere mehr spezifische Benennungen und Symbole, die von den hier aufgeführten abweichen können, werden nach Bedarf in den einzelnen Abschnitten definiert.

4.1 Größen

	Formelzeichen	Symbol der
Größe	der Größe	Einheit
Arbeit	W	J
Dampfdruck der Komponente j	p_{0j}	Pa; bar
Dichte	ρ	kg m ⁻³
Diffusionskoeffizient	D_{ij} , δ_{ij}	$m^2 s^{-1}$
Durchmesser	D	m
Dynamische Viskosität	η	Pa s
Emissionsverhältnis	ϵ	1
Energie	E	J
Enthalpie	H	J
Enthalpiestrom	\dot{H}	W
Entropie	S	$\mathrm{J}\mathrm{K}^{-1}$
Gesamtdruck	p	Pa; bar
Geschwindigkeit in x-Richtung	и	$\mathrm{m}~\mathrm{s}^{-1}$
Geschwindigkeit in y-Richtung	v	$m s^{-1}$
Geschwindigkeit in z-Richtung	w	$m s^{-1}$
Gibbssche Energie	F	J
Gibbssche Enthalpie	G	J
Hydraulischer Durchmesser,	d_h	m
$d_h = 4 \times Querschnittsfläche/$		
Umfang	-	71 -1 -1
Individuelle Gaskonstante	R	J kg ⁻¹ K ⁻¹
Innere Energie	U	J
Kinematische Viskosität	ν	$m^2 s^{-1}$
Koordinate in Strömungsrichtung	X	m
Koordinate quer zur Strömungsrichtung	y	m
Koordinate quer zur	Z	m
Strömungsrichtung		
Länge	L, l	m
Leistung	P	W
Masse	M, m	kg
Massenanteil der Komponente j in der Flüssig- bzw. Gasphase	x_j, y_j	kg kg ⁻¹
Massenbeladung der Komponente j in der Flüssig- bzw. Gasphase	X_j, Y_j	kg kg ⁻¹
Massenstrom	\dot{M}	kg s ⁻¹
Massenstromdichte	m	kg m ⁻² s ⁻¹
Molare Beladung der	\tilde{X}_j, \tilde{Y}_j	mol mol ⁻¹
Komponente j in der Flüssig- bzw. Dampfphase	21 j,1 j	
Molare Dichte	n	mol m ⁻³
		(E :)

	1	1
Größe	Formelzeichen der Größe	Symbol der Einheit
Molare Gibbssche Enthalpie	\tilde{g}	J mol ⁻¹
Molare innere Energie	\tilde{u}	J mol ⁻¹
Molare Wärmekapazität bei	\tilde{c}_p, \tilde{c}_v	J mol ⁻¹ K ⁻¹
konstantem Druck oder Volumen	- p,- v	
Molenbruch der Komponente j in Flüssig- bzw. Dampfphase	\tilde{x}_j, \tilde{y}_j	mol mol ⁻¹
Molmasse	\tilde{M}	kg kmol ⁻¹
Oberfläche, Phasengrenzfläche	A	m ²
Oberflächenspannung, spezifische Grenzflächenenergie	σ	N m ⁻¹ , J m ⁻²
Partialdruck der Komponente j	p_j	Pa; bar
Porosität,	Ψ	1
Hohlraumvolumenanteil		
Querschnittsfläche	A, S	m ²
Radius	r	m
Schallgeschwindigkeit	С	m s ⁻¹
Schwerebeschleunigung, Fallbeschleunigung	g	m s ⁻²
Spezifische innere Energie	u	J kg ⁻¹
Spezifische molare Enthalpie	\tilde{h}	J mol ⁻¹
Spezifische Wärmekapazität bei konstantem Druck, bei	c_p, c_v	J kg ⁻¹ K ⁻¹
konstantem Volumen		2 1
Spezifisches molares Volumen	\tilde{v}	m ³ mol ⁻¹
Spezifisches Volumen	v	$m^3 kg^{-1}$
Stoffdurchgangskoeffizient	k'	m s ⁻¹
Stoffmenge	N	mol
Stoffmengenstrom	Ň	mol s ⁻¹
Stoffmengenstromdichte	'n	mol m ⁻² s ⁻¹
Stoffübergangskoeffizient einer Komponente <i>i</i>	β_i	m s ⁻¹
Strahlungskoeffizient	C	${ m W} { m m}^{-2} { m K}^{-4}$
Strömungsdampfgehalt	\dot{x}	1
Temperaturdifferenz	θ	K
Temperaturleitfähigkeit	a oder κ	$m^2 s^{-1}$
Thermischer Ausdehnungskoeffizient	β	K ⁻¹
Thermodynamische Temperatur	T	K
Universelle Gaskonstante	\tilde{R}	J mol ⁻¹ K ⁻¹
Volumen	V	m ³
Volumenstrom	\dot{V}	$m^{3} s^{-1}$
Wandstärke	S	m
Wärme	Q	J
Wärmedurchgangskoeffizient	k	$W m^{-2} K^{-1}$
Wärmeleitfähigkeit	λ	$W m^{-1} K^{-1}$
Wärmestrom	Q	W
Wärmestromdichte	\dot{q}	W m ⁻²
Wärmeübergangskoeffizient	α	W m ⁻² K ⁻¹
Zeit	t	S
	1	1

(Fortsetzung)

4.2 Formelzeichen

Lateinische Buchstaben

- I : I	1	1	
Formelzeichen der Größe	Einheit	Größe	
A	m ²	Oberfläche, Phasengrenzfläche	
$\frac{A}{A, S}$	m^2	Ouerschnittsfläche	
$\frac{11, S}{a \text{oder} \kappa}$	$m^2 s^{-1}$	Temperaturleitfähigkeit	
C	W m ⁻² K ⁻⁴	Strahlungskoeffizient	
c_p, c_v	J kg ⁻¹ K ⁻¹	Spezifische Wärmekapazität bei	
		konstantem Druck oder Volumen	
\tilde{c}_p, \tilde{c}_v	J mol ⁻¹ K ⁻¹	Molare Wärmekapazität bei konstantem Druck oder Volumen	
$D_{\rm ij}$	$m^2 s^{-1}$	Diffusionskoeffizient	
D	m	Durchmesser	
$d_{ m h}$	m	Hydraulischer Durchmesser $d_h = 4 \times \text{Querschnittsfläche/}$ Umfang	
E	J	Energie	
$\frac{L}{G}$	J	Gibbssche Enthalpie, Freie	
<u> </u>	ľ	Enthalpie	
g	$\mathrm{m}~\mathrm{s}^{-2}$	Fallbeschleunigung,	
0		Schwerebeschleunigung	
Н	J	Enthalpie	
\dot{H}	W	Enthalpiestrom	
h	J kg ⁻¹	Spezifische Enthalpie	
$\frac{\tilde{h}}{\tilde{h}}$	J mol ⁻¹	Spezifische molare Enthalpie	
$\frac{n}{k}$	W m ⁻² K ⁻¹	Wärmedurchgangskoeffizient	
<i>k'</i>	m s ⁻¹	Stoffdurchgangskoeffizient	
$\frac{\kappa}{W}$	J	Arbeit	
$\frac{n}{L, l}$	m	Länge	
$\frac{L, \iota}{M}$	kg	Masse	
$\frac{M}{\tilde{M}}$	kg kmol ⁻¹	Molmasse	
	kg s ⁻¹		
\dot{M}		Massenstrom	
<u>m</u>	kg m ⁻² s ⁻¹	Massenstromdichte	
N	mol	Stoffmenge	
\dot{N}	mol s ⁻¹	Stoffmengenstrom	
n	mol m ⁻³	Molare Dichte	
'n	mol m ⁻² s ⁻¹	Stoffmengenstromdichte	
P	W	Leistung	
p, P	Pa; bar	Gesamtdruck	
p_{j}	Pa; bar	Partialdruck der Komponente j	
p_{0j}	Pa; bar	Dampfdruck der Komponente j	
	J	Wärme	
ġ	W	Wärmestrom	
$ \frac{Q}{\dot{Q}} $ $ \frac{\dot{q}}{R} $ $ \tilde{R} $	$\mathrm{W}~\mathrm{m}^{-2}$	Wärmestromdichte	
		Individuelle Gaskonstante	
\tilde{R}	J kg ⁻¹ K ⁻¹ J mol ⁻¹ K ⁻¹	Universelle Gaskonstante	
		Radius	
$\frac{r}{S}$	J K ⁻¹	Entropie	
		Spezifische Entropie	
$\frac{s}{\tilde{s}}$	J kg ⁻¹ K ⁻¹ J mol ⁻¹ K ⁻¹	Spezifische molare Entropie	
<u>.</u>	J 11101 K	Spezinsene moiare Entropie	

Formelzeichen		
der Größe	Einheit	Größe
S	m	Wandstärke
T	K	Thermodynamische Temperatur
t	s	Zeit
\overline{U}	J	Innere Energie
ũ	J mol ⁻¹	Molare innere Energie
u	m s ⁻¹	Geschwindigkeit in x-Richtung
\overline{V}	m ³	Volumen
\dot{V}	$m^{3} s^{-1}$	Volumenstrom
\overline{v}	$m^3 kg^{-1}$	Spezifisches Volumen
\tilde{v}	m ³ mol ⁻¹	Spezifisches molares Volumen
v	m s ⁻¹	Geschwindigkeit in y-Richtung
w	$\mathrm{m}~\mathrm{s}^{-1}$	Geschwindigkeit in z-Richtung
X_{j}, Y_{j}	kg kg ⁻¹	Massenbeladung in der Flüssig- bzw. Gasphase
$\overline{ ilde{X}_j, ilde{Y}_j}$	mol mol ⁻¹	Molare Massenbeladung der Komponente j in der Flüssig- bzw. Dampfphase
x_{j}, y_{j}	kg kg ⁻¹	Massenanteil der Komponente j in der Flüssig- bzw. Dampfphase
\tilde{x}_j, \tilde{y}_j	mol mol ⁻¹	Molenbruch der Komponente j in der Flüssig- bzw. Dampfphase
\dot{x}	1	Strömungsdampfgehalt
x	m	Koordinate in Strömungsrichtung
у	m	Koordinate quer zur Strömungsrichtung
Z	m	Koordinate quer zur Strömungsrichtung

Griechische Buchstaben

Formelzeichen		
der Größe	Einheit	Größe
α	${ m W} { m m}^{-2} { m K}^{-1}$	Wärmeübergangskoeffizient
$\beta_{\rm i}$	$\mathrm{m}~\mathrm{s}^{-1}$	Stoffübergangskoeffizient der
		Komponente i
β	K^{-1}	Thermischer
		Ausdehnungskoeffizient
$\delta_{ m ij}$	$m^2 s^{-1}$	Diffusionskoeffizient
ϵ	1	Emissionsverhältnis
η	Pa s	Dynamische Viskosität
θ	K	Temperaturdifferenz (oder
		Celsius-Temperatur)
κ	$m^2 s^{-1}$	Temperaturleitfähigkeit (siehe
		auch: a)
λ	$W m^{-1} K^{-1}$	Wärmeleitfähigkeit
ν	$m^2 s^{-1}$	Kinematische Viskosität
ρ	kg m ⁻³	Dichte
σ	$N m^{-1}$	Oberflächenspannung, spezifische
		Grenzflächenenergie
Ψ	1	Porosität, Hohlraumvolumenanteil

(Fortsetzung)

Indizes für die Phase

F	Fluidphase
G	Gasphase
L	Flüssigphase
S	Feste Phase

Zeit

A	Anfang
t	Momentanwert
Е	Ende

Position

a	außen
aus	am Austritt
ein	am Eintritt
i	innen
loc	lokal
o, (O)	an der Oberfläche
w	an der Wand

Zustand

С	am kritischen Punkt
p	bei konstantem Druck
r	reduziert (auf den Wert am kritischen Punkt bezogen)
v	bei konstantem Volumen
',",	an den Phasegrenzkurven (hochgestellt)

Für den Vorgang

lam	bei laminarer Strömung
turb	bei turbulenter Strömung
rev	reversibel

andere

ges	gesamt
LM	logarithmisches Mittel
m	mittel

5 Nicht-SI-Einheiten und Einheiten, die auf Grundkonstanten basieren

	Formelzeichen	Name der	Symbol der	
Größe	der Größe	Einheit	Einheit	Wert in SI-Einheiten
Zeit	t	Minute	min	1 min = 60 s
		Stunde	h	1 h = 60 min = 3600 s
		Tag	d	1 d = 24 h = 86.400 s
Winkel	$\alpha, \beta, \gamma, \ldots$	Grad ^{b,c}	0	$1^{\circ} = (\pi/180) \text{ rad}$
		Minute	•	$1' = (1/60)^{\circ}$
		Sekunde ^d	"	$= (\pi/10.800)$ rad
				1" = (1/60)'
				$= (\pi/648.000)$ rad
Fläche	A, S	Hektar ^e	ha	$\begin{vmatrix} 1 \text{ ha} = 1 \text{ hm}^2 \\ = 10^4 \text{ m}^2 \end{vmatrix}$
Volumen	V	Liter ^f	L, 1	$\begin{vmatrix} 1 L = 1 1 = 1 \text{ dm}^3 \\ = 10^3 \text{ cm}^3 = 10^{-3} \text{ m}^3 \end{vmatrix}$
Masse	M, m	Tonneg	t	$1 t = 10^3 kg$

^aDas Symbol dieser Einheit ist in "Resolution 7" der 9. CGPM (1948) enthalten

^bISO 31 empfiehlt den Grad dezimal zu teilen, statt die Minute und die Sekunde zu verwenden. Für Navigation und Beobachtung hat die Minute aber den Vorteil, dass eine Minute eines Längengrads auf der Erdoberfläche (näherungsweise) einer Seemeile entspricht

°Das Gon (oder Grad(e), wo Grad ein alternativer Name für das Gon ist) ist eine zum Grad alternative Winkeleinheit, definiert als $(\pi/200)$ rad. Daher sind 100 Gon in einem rechten Winkel. Weil der Abstand vom Pol zum Äquator der Erde annähernd 10.000 km beträgt, läge ein potenzieller Vorteil des Gon in der Navigation darin, dass 1 km auf der Erdoberfläche einem Winkel von einem Centigon im Erdmittelpunkt entspräche. Das Gon wird allerdings selten verwendet

 $^{
m d}$ Für Anwendungen in der Astronomie werden kleine Winkel in Bogensekunden oder in Millibogensekunden, Mikrobogensekunden und Picobogensekunden gemessen (Bogen = arcus), bezeichnet als mas, μ as und pas, wobei Bogensekunde (arcsecond) ein alternativer Name für Winkelsekunde ist

^eDie Einheit Hektar und ihr Symbol ha wurden 1879 von der CIPM angenommen (PV, 1879,41). Das Hektar wird benutzt, um Grundflächen zu quantifizieren

^fDer Liter, und das Symbol klein 1, wurden 1879 von der CIPM angenommen (PV, 1879,41). Das alternative Symbol, groß L, wurde von der 16th CPGM (1979, "Resolution 6") angenommen, um das Risiko der Verwechslung von klein 1 (el) und der Zahl 1 (eins) zu vermeiden

^gDie Tonne und ihr Symbol t wurden 1879 von der CIPM angenommen (PV, 1879,41). In englischsprachigen Ländern wird diese Einheit üblicherweise "metric ton" genannt

8 M. Kind

6 Andere Nicht-SI-Einheiten, die nicht zum Leistung Gebrauch empfohlen werden

Fettgedruckte Werte sind exakt.

Druck oder Spannung (Kraft pro Fläche)

Atmosphäre, standard, 1 atm	$= 1,01325 \cdot 10^5$	Pa
Atmosphäre, technisch(*2), 1 at	$= 9,80665 \cdot 10^4$	Pa
Bar, 1 bar	$= 1.0 \cdot 10^5$	Pa
Millimeter Quecksilber, konventionell ^(*3) , 1 mmHg	$= 1,333224 \cdot 10^2$	Pa
Millimeter Wasser, konventionell ^(*3) , 1 mm H ₂ O	= 9,80665	Pa
psi ("pound-force per square inch", lbf/in²), 1 psi	$= 6,894757 \cdot 10^3$	Pa
Torr, 1 Torr	$= 1,333224 \cdot 10^2$	Pa

Elektrizität und Magnetismus

Biot, 1 Bi	$= 1.0 \cdot 10^{1}$	A
Franklin, 1 Fr	$= 3,335641 \cdot 10^{-10}$	С
Gamma, 1 γ	$= 1.0 \cdot 10^{-9}$	T

Energie (inklusive Arbeit)

Britisch Thermal Unit, 1 BTU	= 1055,056	J
Kalorie (15 °C), 1 cal ₁₅	= 4,18580	J
Kalorie (20 °C), 1 cal ₂₀	= 4,18190	J
Elektronenvolt, 1 eV	$= 1,602177 \cdot 10^{-19}$	J
Erg, 1 erg	$=1.0\cdot 10^{-7}$	J

Geschwindigkeit

Meile pro Stunde, 1 mi/h	$=4,4704\cdot 10^{-1}$	m/s
--------------------------	------------------------	-----

Kraft

Dyn, 1 dyn	$= 1.0 \cdot 10^{-5}$	N
Kilogramm-Kraft, 1 kgf	= 9,80665	N

Länge

Ångström, 1 Å	$= 1.0 \cdot 10^{-10}$	m
Fuß, 1 ft	= 0,3048	m
Micron, 1 μ	$= 1.0 \cdot 10^{-6}$	m
mil (0,001 in), 1 mil	$= 2,54 \cdot 10^{-5}$	m
Meile, 1 mi	$= 1,609344 \cdot 10^3$	m
Yard, 1 yd	= 0,9144	m

Pferdestärke, 1 PS	$= 7,354988 \cdot 10^2$	W
Horsepower (U.K.), 1 hp	$= 7,4570 \cdot 10^2$	W
Horsepower (electric), 1 hp	$= 7.46043 \cdot 10^2$	W

Licht

Candela pro Quadratzoll, 1 cd/in ²	$= 1,550003 \cdot 10^3$	cd/m ²
Lumen pro Quadratfuß, 1 lm/ft ²	$= 1,076391 \cdot 10^{1}$	1x

Masse und Trägheitsmoment

Grain, 1 gr	$= 6,479891 \cdot 10^{-5}$	kg
Unze (Avoirdupois-System), 1 oz	$= 2,834952 \cdot 10^{-2}$	kg
Unze (Troy- oder Apotheken-	$= 3,110348 \cdot 10^{-2}$	kg
System), 1 oz		
Pfund (Avoirdupois-System) ^(*1) , 1 lb	$= 4,535924 \cdot 10^{-1}$	kg
Pfund (Troy- oder Apotheken-	$=3,732417\cdot 10^{-1}$	kg
System), 1 lb		
Tonne, assay, 1 AT	$= 2,916667 \cdot 10^{-2}$	kg
Tonne, metrisch, 1 t	$= 1.0 \cdot 10^3$	kg

Radiologie

Curie, 1 Ci	$=3,7\cdot 10^{10}$	Bq
Rad (absorbierte Dosis), 1 rad	$= 1.0 \cdot 10^{-2}$	Gy
Rem, 1 rem	$= 1.0 \cdot 10^{-2}$	Sv
Roentgen, 1 R	$= 2,58 \cdot 10^{-4}$	C/kg

Temperatur

Grad Celsius, 1 °C	$T/K = t/^{\circ}C + 273,15$	K
"degree centigrade"(*4), 1 degree centigrade	$t/^{\circ}C \approx t/deg.$ cent.	°C
Grad Fahrenheit, 1 °F	$t/^{\circ}C = (t/^{\circ}F - 32)/1,8$	°C
Grad Fahrenheit, 1 °F	$T/K = (t)^{\circ}$ F + 459,67)/ 1,8	K
Grad Rankine, 1 °R	$T/K = (T/^{\circ}R)/1,8$	K

Viskosität, dynamisch

Centipoise, 1 cP	$= 1.0 \cdot 10^{-3}$	Pa · s
Poise, 1 P	$= 1.0 \cdot 10^{-1}$	Pa · s

Viskosität, kinematisch

Centistokes, 1 cSt	$= 1,0 \cdot 10^{-6}$	m ² /s
Stokes, 1 St	$=1.0\cdot 10^{-4}$	m ² /s

Volumen

Kubikfuß, 1 ft ³	$= 2,831685 \cdot 10^{-2}$	m ³
Liter(*5), 1 L	$= 1.0 \cdot 10^{-3}$	m ³
Gallone (U.S.), 1 gal	$= 3,785412 \cdot 10^{-3}$	m ³

Winkel

1 mil	$= 5,625 \cdot 10^{-2}$	0
1 revolution (r)	= 6,283185	rad

Zeit

Tag, 1 d	$= 8,64 \cdot 10^4$	S
Jahr (365 Tage), 1 Jahr	$= 3,1536 \cdot 10^7$	s

- (*1) Der exakte Umrechnungsfaktor ist 4,535923700 · 10⁻¹. Alle Einheiten, die das pound enthalten, beziehen sich auf das avoirdupois pound.
- (*2) Eine technische Atmosphäre ist ein Kilogramm-Kraft pro Quadratcentimeter (1 at $= 1 \text{ kgf/cm}^2$).
- (*3) Umrechnungsfaktoren für Druckeinheiten von Quecksilbermanometern sind mit dem Standardwert der Schwerebeschleunigung und der Dichte von Quecksilber bei der angegebenen Temperatur berechnet. Weitere Kommastellen sind nicht gerechtfertigt, da die Definitionen der Einheiten weder die Kompressibilität von Quecksilber noch die Änderungen der (berechneten) Dichte berücksichtigen, die sich durch die revidierte praktische Temperatur Skala, ITS-90 ergeben. Ähnliches gilt auch für Druckeinheiten für Wassermanometer.
- (*4) Die Centigrad-Temperatur-Skala ist obsolet; das "degree centigrade" gleicht dem Grad Celsius nur näherungsweise.
- (*5) 1964 führte die General Conference on Weights and Measures den Name "Liter" als einen eigenen Namen für den Kubikdezimeter wieder ein. Von 1901 bis 1964 war der Liter etwas größer (1,000028 dm³); wenn hochgenaue Volumendaten aus dieser Zeit benutzt werden, muss diese Tatsache berücksichtigt werden.

7 SI-Vorsilben

Dezimale Vielfache und Teile von Einheiten können mittels der Vorsilben vor den Namen der Einheiten ausgedrückt werden.

Faktor	Vorsilbe	Abkürzung
10 ²⁴	yotta	Y
10 ²¹	zetta	Z
10 ¹⁸	exa	Е
10 ¹⁵	peta	P
10 ¹²	tera	T
109	giga	G
10 ⁶	mega	M
10 ³	kilo	k
10 ²	hecto	h
101	deca	da
10^{-1}	deci	d
10^{-2}	centi	С
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a
10 ⁻²¹	zepto	z
10^{-24}	yocto	у

Literatur

- 1. http://www.bipm.org/
- Physikalisch Technische Bundesanstalt Braunschweig und Berlin.: Das internationale Einheitensystem (SI). PTB Mitteilungen 117(2), 145–180 (2007)
- German, S.: Begriffs- und Einheitensysteme. In: Kose, V., Wagner, S. (Hrsg.) Kohlrausch – Praktische Physik, Bd. 3, 24. Aufl, S. 3–58. Teubner Verlag (1996)

A2 Dimensionslose Kenngrößen für die Berechnung von Wärmeübertragern und wärmetechnischen Apparaten

Matthias Kind

Die im VDI-Wärmeatlas aufgeführten Gleichungen werden in vielen Fällen in dimensionsloser Schreibweise angegeben. Die dabei verwendeten dimensionslosen Kenngrößen sind im Folgenden zusammengestellt und jeweils mit einem Zahlenbeispiel erläutert.

	T= .	
Kurzzeichen	Bedeutung	Definition
Ar	Archimedes-Zahl	$gl^3\Delta\rho/(\rho\nu^2)$
Bi	Biot-Zahl	$\alpha_{\rm a} l/\lambda_{\rm i}$
Fo	Fourier-Zahl	at/l^2
Fr	Froude-Zahl	$w^2/(gl)$
Ga	Galilei-Zahl	$g l^3/v^2$
Gr	Grashof-Zahl	$g\beta\Delta T l^3/v^2$
Gz	Graetz-Zahl	$l^2/(a t_{\rm v})$
Hg	Hagen-Zahl	$(\Delta p/\Delta L)l^3/(\rho \nu^2)$
Ka	Kapitza-Zahl	$g\eta^4/(\rho\sigma^3)$
Le	Lewis-Zahl	a/δ
Nu	Nusselt-Zahl	$\alpha l/\lambda$
Pe	Péclet-Zahl	w l/a
Pr	Prandtl-Zahl	ν/a
Ra	Rayleigh-Zahl	$g\beta\Delta Tl^3/(\nu a)$
Re	Reynolds-Zahl	$\rho w l / \eta$
Sh	Sherwood-Zahl	β 1/δ
Sc	Schmidt-Zahl	ν/δ
St	Stanton-Zahl	$\alpha/(\rho c_{\rm p} w)$
We	Weber-Zahl	$w^2 l \rho / \sigma$

Die Archimedes-Zahl Ar dient häufig zur Beschreibung von Partikel-, Tropfen- oder Blasenbewegungen in Gasen und Flüssigkeiten (Kap. ▶ "L3.2 Strömungsformen und Druckverlust in Wirbelschichten" und Kap. ▶ "M5 Wärmeübergang in Wirbelschichten"). Sie tritt meist zusammen mit der *Reynolds*-Zahl Re auf. Der Ausdruck Ar/Re² kann als

(Bearbeitung einer Vorlage von Holger Martin)

M. Kind (\boxtimes)

Institut für Thermische Verfahrenstechnik, Karlsruher Institut für Technologie (KIT), Karlsruhe, Deutschland

E-Mail: matthias.kind@kit.edu

Verhältnis von Gewichtskraft minus Auftriebskraft zur Trägheitskraft gedeutet werden:

$$\frac{Ar}{Re^2} = \frac{\Delta \rho / \rho}{Fr} = \frac{gl^3 \Delta \rho}{\rho w^2 l^2}.$$

Als charakteristische Länge *l* wird in der Regel der Durchmesser eines Teilchens, eines Tropfens oder einer Blase eingesetzt.

Beispiel

Für Quarzsand mit der mittleren Korngröße $d=500~\mu m$ und der Dichte $\rho_{\rm S}=2610~{\rm kg/m^3}$, der in Luft von $p=1~{\rm bar}$ und $\vartheta=300~{\rm ^{\circ}C}$ aufgewirbelt werden soll, findet man mit $\rho_{\rm g}=0,6072~{\rm kg/m^3}$ und $\nu_{\rm g}=48,09\cdot 10^{-6}~{\rm m^2/s}$ (Kap. \blacktriangleright ,,D2.2 Thermophysikalische Stoffwerte von trockener Luft") gemäß der Definition für Ar

$$\begin{split} l &= 500 \cdot 10^{-6} \text{m}, \quad \rho = 0,6072 \, \text{kg/m}^3, \\ v &= 48,09 \cdot 10^{-6} \text{m}^2/\text{s} \\ \Delta \rho &= (2610 - 0,6) \, \text{kg/m}^3 = 2609 \, \text{kg/m}^3; \\ \text{Ar} &= \frac{9,81 \cdot \left(500 \cdot 10^{-6}\right)^3 \cdot 2609}{0,6072 \cdot \left(48,09 \cdot 10^{-6}\right)^2} = 2278. \end{split}$$

Die **Biot-Zahl Bi** kann als Verhältnis zweier hintereinandergeschalteter Wärmeübergangswiderstände betrachtet werden: $(l/\lambda_i)/(1/\alpha_a)$. Sie wird beispielsweise bei Berechnungen benötigt, die sich auf die Erwärmung oder Kühlung fester Körper in einem Flüssigkeits- oder Gasstrom beziehen (Kap. \triangleright "E2 Wärmeleitung – instationär").

Beispiel

Kugeln aus PVC mit der Wärmeleitfähigkeit $\lambda_i=0,15$ W/m K und dem Radius R=2 cm sollen in einem Luftstrom gekühlt werden. Der äußere Wärmeübergangskoeffizient betrage $\alpha_a=60$ W/m² K.

12 M. Kind

Es gilt $l = R = 2 \cdot 10^{-2}$ m. Die *Biot*-Zahl beträgt

$$Bi = \frac{60 \cdot 2 \cdot 10^{-2}}{0.15} = 8,00.$$

Die **Fourier-Zahl Fo** ist als dimensionslose Kenngröße für die Zeit bei instationären Wärmeleitungsproblemen gebräuchlich (Kap. ▶ "B2 Grundlagen der Berechnungsmethoden für Wärmeleitung, konvektiven Wärmeübergang und Wärmestrahlung" und Kap. ▶ "E2 Wärmeleitung – instationär").

Beispiel

Eine Stahlkugel mit der Temperaturleitfähigkeit $a = 7.0 \cdot 10^{-6}$ m²/s und dem Radius R = 1 cm wird 1 min lang in einem Wasserbad gekühlt.

Mit den Werten t = 1 min = 60 s und $l = R = 10^{-2}$ m errechnet sich die *Fourier*-Zahl zu

Fo =
$$\frac{7,0 \cdot 10^{-6} \cdot 60}{10^{-4}}$$
 = 4,2.

Die **Froude-Zahl Fr**, die als Verhältnis von Trägheitskraft zu Schwerkraft gedeutet werden kann, tritt bei der Beschreibung von Bewegungsvorgängen im Schwerefeld auf, z. B. bei freien Flüssigkeitsoberflächen und bei der Mehrphasenströmung.

Beispiel

In einem waagerechten Rohr mit dem Durchmesser $d_{\rm i}=25$ mm ströme ein Wasser-Wasserdampf-Gemisch mit einer mittleren Geschwindigkeit der flüssigen Phase von $w_{\rm l}=5$ m/s. Wählt man als charakteristische Länge $l=d_{\rm i}=25\cdot 10^{-3}$ m, so beträgt die *Froude-*Zahl für die flüssige Phase

$$Fr = \frac{5^2}{9,81 \cdot 25 \cdot 10^{-3}} = 102.$$

Die Galilei-Zahl Ga lässt sich durch die Kenngrößen Re und Fr ausdrücken: Ga = Re^2/Fr . Sie ist auch in Ar und Gr enthalten:

$$Ar = Ga \frac{\Delta \rho}{\rho}; \quad Gr = Ga\beta \Delta T.$$

Beispiel

In dem Beispiel für die *Archimedes*-Zahl ist Ga = 0,5302 und $\Delta \rho/\rho = 4297$.

Die **Grashof-Zahl Gr** ist ähnlich wie die *Archimedes*-Zahl Ar gebildet. Der Term $\Delta\rho/\rho$, der bei Ar die relative Dichtedifferenz zwischen zwei verschiedenen Phasen, z. B. Feststoff-Gas, bedeutet, ist bei der *Grashof-*Zahl durch den Ausdruck

$$eta \ \Delta T = -rac{1}{
ho} \left(rac{\partial
ho}{\partial T}
ight)_{
m P} \ \Delta T,$$

d. h. durch eine relative Dichtedifferenz innerhalb einer Phase (flüssig oder gasförmig) aufgrund eines Temperaturunterschiedes ΔT , ersetzt. Für ein ideales Gas gilt $\beta = 1/T$. Die *Grashof-*Zahl ist die wichtigste Kenngröße zur Beschreibung des Wärmeüberganges bei freier Konvektion (Kap. \triangleright "B2 Grundlagen der Berechnungsmethoden für Wärmeleitung, konvektiven Wärmeübergang und Wärmestrahlung" und Kap. \triangleright "F2 Wärmeübertragung bei freier Konvektion: Außenströmungen").

Beispiel

Ein plattenförmiger, senkrecht angeordneter Heizkörper mit der Höhe l=60 cm habe bei einer Raumtemperatur von $\vartheta_{\infty}=20$ °C eine Oberflächentemperatur von $\vartheta_0=60$ °C. Wählt man als Bezugstemperatur für die Stoffwerte $\vartheta_{\rm m}=(\vartheta_0+\vartheta_{\infty})/2=40$ °C, so erhält man aus Kap. \blacktriangleright "D2.2 Thermophysikalische Stoffwerte von trockener Luft, für Luft

$$\begin{split} \beta_{40\,^{\circ}\text{C}} &= 1/313,15 \text{ K} = 3,1 \cdot 10^{-3}\text{K}^{-1}, \\ \nu_{40\,^{\circ}\text{C}} &= 16,92 \cdot 10^{-6}\text{m}^2/\text{s}, \\ \text{Gr} &= \frac{9,81 \cdot 3,2 \cdot 10^{-3} \cdot 40 \cdot (0,6)^3}{\left(16,92 \cdot 10^{-6}\right)^2} = 9,474 \cdot 10^8. \end{split}$$

Die **Graetz-Zahl Gz** ist der Kehrwert der *Fourier-*Zahl Fo. Sie wird hauptsächlich in Berechnungen bei stationär strömenden Medien verwendet, in denen die Zeit t_v (z. B. als Verweilzeit in einem beheizten oder gekühlten Rohrstück) in der Regel durch die Länge L und die mittlere Strömungsgeschwindigkeit w ausgedrückt wird. Die charakteristische Länge l ist in diesem Fall der Kanaldurchmesser d:

Gz
$$=\frac{d^2}{aL} = \frac{wd^2}{aL} = \frac{wd}{v} \frac{v}{aL} = \operatorname{Pe_d} \frac{d}{L} = \operatorname{Re_d} \operatorname{Pr} \frac{d}{L}$$

Beispiel

Ein Rohr mit dem Innendurchmesser $d_i = 18$ mm sei von Wasser mit einer mittleren Temperatur von 30 °C mit der Strömungsgeschwindigkeit von w = 1,5 m/s durchströmt und auf einer Länge von L = 3,0 m beheizt. Mit a_{30} °C = 0,148 · 10^{-6} m²/s, $t_v = L/w = 2$ s und $l = d_i = 18 \cdot 10^{-3}$ m erhält man

$$Gz = \frac{(18 \cdot 10^{-3})^2}{0.148 \cdot 10^{-6} \cdot 2} = 1095.$$

Die **Hagen-Zahl Hg** ist eine Kennzahl, die den Druckgradienten ($\Delta p/\Delta L$) als Antrieb einer erzwungenen Strömung enthält. Ersetzt man diesen Antrieb durch den statischen Druckgradienten g $\Delta \rho$ oder $g\rho\beta\Delta T$ im Schwerefeld, so geht

diese Kennzahl in die *Archimedes*-Zahl Ar bzw. in die *Grashof*-Zahl Gr für die freie Auftriebsströmung über. Das Hagen-Poiseuille-Gesetz der voll ausgebildeten laminaren Rohrströmung (Re ≤ 2300) schreibt sich mit dieser Kennzahl in der Form Hg = 32 Re, wenn man den Rohrinnendurchmesser als charakteristische Länge l verwendet.

Beispiel

An einer Rohrleitung des Innendurchmessers d=0,022 m wird über die Länge $\Delta L=10$ m ein Druckverlust von $\Delta p=10^3$ Pa gemessen. Wasser bei 20 °C fließt hindurch: $\rho=998,21$ kg/m³, $v=1,004\cdot 10^{-6}$ m²/s. Wählt man als charakteristische Länge l den Rohrinnendurchmesser d, so erhält man als Hagen-Zahl

$$Hg = \frac{10^3}{10} \cdot \frac{0,022^3}{998,21 \cdot \left(1,004 \cdot 10^{-6}\right)^2} = 1.058.227.$$

Man kann also eine voll turbulente Rohrströmung erwarten, denn die kritische Hagen-Zahl für den Umschlag von der laminaren in die turbulente Rohrströmung ist $Hg_{crit} = 73.600$ ($Hg = 32 \cdot Re$, entsprechend einer kritischen Reynolds-Zahl von $Re_{crit} = 2300$).

Die **Kapitza-Zahl Ka** enthält außer der Fallbeschleunigung g nur Stoffgrößen, nämlich die Viskosität, die Dichte und die Oberflächenspannung. Sie spielt bei Filmströmungen, wie z. B. bei der Filmkondensation, eine Rolle. Der Kehrwert der *Kapitza-*Zahl $\varrho\sigma^3/(g\eta^4)$ wird gelegentlich auch als Filmkennzahl K_F bezeichnet. Ka lässt sich auch durch die Kenngrößen We, Fr und Re ausdrücken: Ka = We³/ (Fr Re⁴).

Beispiel

Mit den Daten für Wasser von 20 °C im Sättigungszustand aus Kap. ▶ "D2.1 Thermophysikalische Stoffwerte von Wasser" ergibt sich

Ka =
$$\frac{9,81 \cdot (1002 \cdot 10^{-6})^4}{998,19 \cdot (72,74 \cdot 10^{-3})^3} = 2,574 \cdot 10^{-11}$$
.

Die **Lewis-Zahl Le** ist das Verhältnis zweier Stoffwerte, nämlich der Quotient aus Temperaturleitfähigkeit und Diffusionskoeffizient. Bei gekoppeltem Wärme- und Stofftransport, wie z. B. bei der Trocknung oder der Verdunstungskühlung, tritt diese Kenngröße auf. Sie lässt sich auch durch Pr und Sc ausdrücken: Le = Sc/Pr.

Beispiel

Für die Verdunstung von Wasser in (trockene) Luft bei p=1 bar und T=273,15 K gilt mit $\delta_{\text{Wasser-Luft}}=22,6 \cdot 10^{-6} \,\text{m}^2/\text{s}$ und $a=19,1\cdot 10^{-6} \,\text{m}^2/\text{s}$

$$Le = \frac{19,1}{22.6} = 0.845.$$

Die Nusselt-Zahl Nu ist ein dimensionsloser Wärmeübergangskoeffizient. Bildet man bei stationärer Wärmeleitung durch eine ruhende Schicht mit der Dicke l und der Wärmeleitfähigkeit λ mit $\alpha = \dot{q}/\Delta T$ die Nusselt-Zahl $\alpha l/\lambda$, so ist deren Zahlenwert definitionsgemäß gleich eins. Als charakteristische Länge l wird z. B. der Durchmesser eines durchströmten Kanals (Kap. >,G1 Wärmeübertragung bei erzwungener Konvektion: Durchströmte Rohre"), die Länge einer überströmten Platte (Kap. ▶, G4 Wärmeübertragung bei erzwungener Konvektion: Längsumströmte ebene Wände"), aber auch die Größe $\sqrt[3]{v^2/g}$, die die Dimension einer Länge hat (Kap. ▶ "B1 Die Energieform Wärme und verschiedene Arten der Wärmeübertragung", Kap. ▶ "B2 Grundlagen der Berechnungsmethoden für Wärmeleitung, konvektiven Wärmeübergang und Wärmestrahlung" und Kap. ▶ "J1 Filmkondensation reiner Dämpfe"), verwendet. In jedem Einzelfall sind die Definition von α , die Wahl der charakteristischen Länge l und die Bezugstemperatur für die Stoffwerte anzugeben.

Beispiel

Für einen quer von Luft überströmten Zylinder mit dem Außendurchmesser d=25 mm sei nach Kap. \blacktriangleright "G6 Wärmeübertragung bei erzwungener Konvektion: Querumströmte einzelne Rohre, Drähte und Profilzylinder" die Nusselt-Zahl Nu₁ = 126,3 ermittelt. Die Bezugstemperatur sei $\vartheta_{\rm m}=100\,^{\circ}{\rm C}$, d. h. $\lambda=31,81\cdot10^{-3}$ W/m K. Die charakteristische Länge für quer angeströmte (lange) Zylinder ist nach Kap. \blacktriangleright "G6 Wärmeübertragung bei erzwungener Konvektion: Querumströmte einzelne Rohre, Drähte und Profilzylinder" $l=(\pi/2)$ $d=39,27\cdot10^{-3}$ m. Somit erhält man den Wärmeübergangskoeffizienten

$$\alpha = \frac{\lambda}{l} \text{ Nu}_{l} = \frac{31,81}{39,27} \cdot 126,3 \text{ W/m}^{2}\text{K}$$

= 102,3 W/m²K.

Die **Péclet-Zahl Pe** kann nach Erweitern mit der kinematischen Viskosität ν als Produkt von Re und Pr geschrieben werden: Pe = Re Pr. Sie wird für die Lösung von Problemen bei der Wärmeübertragung durch erzwungene Konvektion benötigt (s. a. die Kenngrößen Gz, Re und Pr).

Beispiel

Bei einer Reynolds-Zahl Re = 1400 hat die Péclet-Zahl für Luft bei 0 °C (Pr = 0,7) den Wert Pe = 1400 \cdot 0,7 = 980; für Wasser bei 0 °C (Pr = 13,0) ergibt sich Pe = 1400 \cdot 13,0 = 18 .200.

Die **Prandtl-Zahl Pr** ist wie die Kenngrößen Le und Sc ein Stoffwert-Verhältnis; mit $\nu = \eta/\varrho$ und $a = \lambda/(\varrho c_p)$ lässt sie sich auch in der Form $Pr = \eta c_p/\lambda$ schreiben.