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Foreword

Decision making is a pervasive part of life. Every day we are confronted with de-
ciding between multiple choices, in both our personal and professional lives. Any
decision, whether it is being made in the corporate board room, the situation room,
or simply in our breakfast room, is mired in uncertainty. Only an omnipotent being
has perfect knowledge to make optimal decisions. Everyone has to deal with un-
certainty when choosing between options. For instance, when deciding to accept a
job offer, there is always a chance that the job will turn out to be a poor fit, which
could hurt your career. Therefore, it is important to perform a thorough benefit ver-
sus risk analysis that accommodates uncertainty into the decision-making process.
The issue of uncertainty is exacerbated by the fact that one should not trust (in the
absolute sense) anything one hears or reads, whether it comes from social media, a
news outlet or even this book. We are all confronted with conflicting information,
and these conflicts add more uncertainty to the decision-making process. This book
introduces the formalism of subjective logic, which in my humble opinion will be-
come a critical tool in understanding and incorporating uncertainty into decision
making.

Subjective logic is an uncertain probabilistic logic that was initially introduced
by Audun Jøsang to address formal representations of trust. The evaluation and
exploitation of trust requires reasoning, and thus, subjective logic has blossomed
into a principled method for probabilistic reasoning under uncertainty. This book is
the first to provide a comprehensive view of subjective logic and all of its operations.
The field of subjective logic is still evolving, and I expect that this book will not be
the final word on the subject. The book presents a great opportunity to learn and
eventually participate in this exciting research field.

Uncertain reasoning is not new. For over forty years, it has been recognized that
first-order Bayesian reasoning is unable to accommodate conflicting information.
A number of great minds have developed belief theories over the years that gen-
eralize Bayesian reasoning in the face of conflicts. Other great minds argue that
Bayesian reasoning is actually suitable for reasoning in all situations, even when
conflicting information exists. For the purposes of full disclosure, I happen to side
with the Bayesian camp. This is partially due to my electrical engineering signal

vii



viii Foreword

processing background, and my experience working on target-tracking problems.
One nice thing about Bayesian approaches is that their performance can be veri-
fied. In as much as the models accurately represent the real-world environment, one
can verify that the Bayesian techniques are performing as expected through Monte
Carlo simulations. On the other hand, there has been no statistical verification of
belief theories that I am aware of. A belief theory is typically justified by anecdotal
examples, which is one reason why ideas within the theories are disputed.

I am personally intrigued by subjective logic because it provides a principled
way to connect beliefs to Dirichlet distributions. Furthermore, subjective logic offers
computationally efficient operators that approximate second-order Bayesian reason-
ing. In fact, I believe that there are ways to justify the use of subjective logic in a
statistical (and not just an anecdotal) sense. It might be the case that some of the op-
eration will need to be adjusted. After all, the field of subjective logic is very much
alive and evolving. I think the evolution of subjective logic could eventually dis-
pel the present-day disputes within the belief theory community. No one subjective
logic operator will be appropriate for every decision-making task, but I do believe
that subjective logic is evolving into a framework that will enable the decision maker
to select the most appropriate operator for his/her particular decision task.

There are many avenues of research left to explore. For instance, much work is
needed to further formalize the connection to second-order Bayesian reasoning, in-
cluding understanding under what conditions the efficient operations within subjec-
tive logic do or do not provide a good approximation to exact second-order Bayesian
reasoning. This area of exploration is necessary in the study and development of
subjective Bayesian networks. The area of trust determination and revision via rep-
utation systems is still evolving and must be connected to subjective Bayesian net-
works to eventually obtain rigorous methods for uncertain probabilistic reasoning
in the face of conflicts. To this end, one must also understand how to decompose
human-generated reports into a set of subjective opinions. These are just a sample
of interesting ideas worthy of exploration. If you want to understand and explore
these exciting topics of research, I strongly encourage you to study this book.

Adelphi, Maryland, March 2016 Lance Kaplan



Preface

The development of subjective logic has been a journey, on which this book repre-
sents a milestone.

The original idea of subjective logic came to my mind in 1996, while I was a
Ph.D. student at NTNU in Norway, visiting Queensland University of Technology
(QUT) in Australia. For my Ph.D. project I needed a formal representation of trust,
but could not find any adequate models in the literature, so I had to define my own
model, which became subjective logic.

The subtropical climate of southern Queensland is great for outdoor activities,
and the fundamental ideas of subjective logic were inspired by the sounds, smells
and colours of the Australian bush. This may seem strange to some, but I have
repeatedly found that being out in nature can be a catalyst for scientific inspiration.

After completing my Ph.D. in 1997, I worked on computer networks research at
Telenor for a couple of years, which was natural because of my previous job as a
telecommunications engineer at Alcatel Telecom. During that time, little progress in
the development of subjective logic was made, until I joined the Distributed Systems
Technology Centre (DSTC) in Australia in 2000. DSTC was a collaborative research
centre of excellence, mainly funded by the Australian Government. At DSTC, I
had the time and freedom to focus on subjective logic in combination with security
research, and also enjoyed an environment of highly skilled and inspiring colleagues
with whom it was fun to work. Free research jobs like that do not grow on trees.

In 2005 I moved to QUT, where some of the staff and Ph.D. students shared
my interest in reputation systems and subjective logic reasoning. While I was quite
busy with teaching and research in information security, the research on reputation
systems, trust modelling and subjective logic also progressed well in that period,
and still continues at QUT.

Then, in 2008, I joined the University of Oslo (UiO), where I have time to work
on subjective logic, in parallel with teaching duties and research on information
security. For the first time I have colleagues who work with me full time to advance
the theory and applications of subjective logic, thanks to generous funding from
the US Army’s Open Campus program, as well as from the Norwegian Research
Council.
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x Preface

The process of bringing subjective logic to its present state of maturity has thus
taken 20 years. I have been privileged to have time, and to have great collaboration
partners in this endeavour, for which I am grateful.

The name ‘subjective logic’ is short and elegant, but what is the intention be-
hind it? The adjective ‘subjective’ refers to the aspects: 1) that opinions are held
by individuals, and in general do not represent collective beliefs, and 2) that opin-
ions represent beliefs that can be affected by uncertainty. The noun ‘logic’ refers to
the aspect that subjective logic operators generalise both binary logic operators and
probabilistic logic operators.

The fundamental innovation of subjective logic is to generalise the aforemen-
tioned operators, by including second-order uncertainty in the form of uncertainty
mass. Concepts that are already described in Bayesian theory and probabilistic logic
must then be redefined in terms of subjective logic, by including the uncertainty
dimension. Explicit representation of uncertainty also opens up the possibility of
defining totally new formal reasoning concepts, such as trust fusion and transitivity.

The present book harmonises notations and formalisms of previously published
papers and articles. This book also improves, and corrects whenever appropriate,
descriptions of operators that have previously been published.

The advantages of using subjective logic are that real-world situations can be
realistically modelled with regard to how those situations are perceived, and that
conclusions more correctly reflect the ignorance and uncertainties that necessarily
result from partially uncertain input arguments. It is my wish that researchers and
practitioners will advance, improve and apply subjective logic to build powerful
artificial reasoning models and tools for solving real-world problems.

Oslo, March 2016 Audun Jøsang
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Chapter 1

Introduction

We can assume that an objective reality exists but our perception of it will always be
subjective. This idea is articulated by the concept of “das Ding an sich” (the thing-
in-itself) in the philosophy of Kant [64]. The duality between the assumed objective
world and the perceived subjective world is also reflected by the various logic and
probabilistic reasoning formalisms in use.

In binary logic a proposition about the state of the world must be either true or
false, which fits well with an assumed objective world. Probability calculus takes
argument probabilities in the range [0,1], and hence to some extent reflects subjec-
tivity by allowing propositions to be partially true. However, we are often unable to
estimate probabilities with confidence because we lack the necessary evidence. A
formalism for expressing degrees of uncertainty about beliefs is therefore needed in
order to more faithfully reflect the perceived world in which we are all immersed.
In addition, whenever a belief about a proposition is expressed, it is always done by
an individual, and it can never be considered to represent a general and objective
belief. It is therefore necessary that the formalism also includes belief ownership in
order to reflect the fundamental subjectivity of all beliefs.

The expressiveness of reasoning frameworks depends on the richness in syntax
and interpretation that the arguments can express. The opinion representation which
is used to represent beliefs in subjective logic offers significantly greater expres-
siveness than Boolean truth values and probabilities. This is achieved by explicitly
including degrees of uncertainty and vagueness, thereby allowing an analyst to spec-
ify for example “I don’t know” or “I’m indifferent” as input arguments.

Definitions of operators used in a specific reasoning framework depend on the
argument syntax. For example, the AND, OR and XOR operators in binary logic are
traditionally defined by their respective truth tables, which have the status of being
axioms. Other operators, such as MP (Modus Ponens), MT (Modus Tollens) and CP
(contraposition) are defined in a similar way. Subjective logic and probabilistic logic
generalise these operators as algebraic expressions, and thereby make truth tables
obsolete.

The concept of probabilistic logic has multiple interpretations in the literature,
see e.g. [78]. The general aim of a probabilistic logic is to combine the capacity of

1© Springer International Publishing Switzerland 2016 
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2 1 Introduction

probability theory to handle likelihood with the capacity of binary logic to make in-
ference from argument structures. The combination offers a more powerful formal-
ism than either probability calculus or deductive logic can offer alone. The various
probabilistic logics attempt to replace traditional logic truth tables, whereby results
defined by them instead can be derived by algebraic methods in a general way.

In this book, probabilistic logic is interpreted as a direct extension of binary logic,
in the sense that propositions get assigned probabilities, rather than just Boolean
truth values, and formulas of probability calculus replace truth tables.

Assuming that Boolean TRUE in binary logic corresponds to probability p = 1,
and that Boolean FALSE corresponds to probability p= 0, binary logic (BL) simply
becomes an instance of probabilistic logic (PL), or equivalently, probabilistic logic
becomes a generalisation of binary logic. More specifically there is a direct cor-
respondence between many binary logic operators and probabilistic logic operator
formulas, as specified in Table 1.1.

Table 1.1 Correspondence between binary logic and probabilistic logic operators

Binary Logic Probabilistic Logic

AND: x∧ y Product: p(x∧ y) = p(x)p(y) (I)

OR: x∨ y Coproduct: p(x∨ y) = p(x)+ p(y)− p(x)p(y) (II)

XOR: x �≡ y Inequivalence: p(x �≡y) = p(x)(1−p(y))+(1−p(x))p(y) (III)

EQU: x≡ y Equivalence: p(x≡y) = 1− p(x �≡y) (IV)

MP: {(x→y), x} � y Deduction: p(y‖x) = p(x)p(y|x)+ p(x)p(y|x) (V)

MT: {(x→y), y} � x Abduction: p(x|y) =
a(x)p(y|x)

a(x)p(y|x)+a(x)p(y|x)
(VI)

p(x|y) =
a(x)p(y|x)

a(x)p(y|x)+a(x)p(y|x)
(VII)

p(x‖̃y) = p(y)p(x|y)+ p(y)p(x|y) (VIII)

CP: (x→y)⇔(y→x) Bayes’ theorem: p(x|y) = 1−
a(x)p(y|x)

a(x)p(y|x)+a(x)p(y|x)
(IX)
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Some of the correspondences in Table 1.1 might not be obvious and therefore
need some explanation for why they are valid. The parameter a(x) represents the
base rate of x, also called the prior probability of x. The negation, or complement
value, of x is denoted x.

For the CP (contraposition) equivalence, the term (y→x) represents the contra-
positive of the term (x→y). The CP equivalence of binary logic can be derived by
the application of Bayes’ theorem described in Section 9.2.1. To see how, first re-
call that p(x|y) = 1− p(x|y), where p(x|y) can be expressed as in Eq.(VII) which
is a form of Bayes’ theorem given in Eq.(9.9) in Section 9.2.1. Now assume that
p(y|x) = 1, then necessarily p(y|x) = 0. By inserting the argument p(y|x) = 0 into
Eq.(IX) it follows that p(x|y) = 1, which thereby produces the CP equivalence. Said
briefly, if p(y|x) = 1 then p(x|y) = 1, where the term p(x|y) is the contrapositive
of p(y|x). In other words, the CP equivalence in binary logic can be derived as a
special case of the probabilistic expression of Eq.(IX). It can be shown that Eq.(IX)
is a transformed version of Bayes’ theorem. Note that p(y|x) �= p(x|y) in general.

MP (Modus Ponens) corresponds to – and is a special case of – the probabilistic
conditional deduction of Eq.(V) which expresses the law of total probability de-
scribed in Section 9.2.3. MT (Modus Tollens) corresponds to – and is a special case
of – probabilistic conditional abduction. MP and MT are described in Section 9.1.
The notation p(y‖x) means that the probability of child y is derived as a function
of the conditionals p(y|x) and p(y|x), as well as of the evidence probability p(x)
on the parent x. Similarly, the notation p(x‖̃y) for conditional abduction denotes the
derived probability of target x conditionally abduced from the input conditionals
p(y|x) and p(y|x) as well as from the evidence probability p(y) of the child y.

For example, consider the probabilistic operator for MT in Table 1.1. Assume that
(x→ y) is TRUE, and that y is FALSE, which translates into p(y|x)= 1 and p(y)= 0.
Then it can be observed from Eq.(VI) that p(x|y) �= 0 because p(y|x) = 1. From
Eq.(VII) we see that p(x|y) = 0 because p(y|x) = 1− p(y|x) = 0. From Eq.(VIII)
it can finally be seen that p(x‖̃y) = 0, because p(y) = 0 and p(x|y) = 0. From the
probabilistic expressions, we just abduced that p(x) = 0, which translates into x
being FALSE, as MT dictates for this case.

EQU denoted with the symbol ‘≡’ represents equivalence, i.e. that x and y have
equal truth values. XOR denoted with the symbol ‘�≡’ represents inequivalence, i.e.
that x and y have different truth values.

The power of probabilistic logic is its ability to derive logical conclusions without
relying on axioms of logic in terms of truth tables, only on principles and axioms of
probability calculus.

When logic operators can simply be defined as special cases of corresponding
probabilistic operators, there is no need to define them in terms of truth tables. The
truth values of traditional truth tables can be directly computed with probabilistic
logic operators, which means that the truth-table axioms are superfluous. To have
separate independent definitions for the same concept, i.e. both as a truth table and
as a probability calculus operator, is problematic because of the possibility of in-
consistency between definitions. In the defence of truth tables, one could say that it
could be pedagogically instructive to use them as a look-up tool for Boolean cases,
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because a simple manual look-up can be quite fast. However, the truth tables should
be defined as being generated by their corresponding probabilistic logic operators,
and not as separate axioms.

A fundamental limitation of probabilistic logic (and of binary logic likewise) is
the inability to take into account the analyst’s levels of confidence in the probability
arguments, and the inability to handle the situation when the analyst fails to produce
probabilities for some of the input arguments.

An analyst might for example want to give the input argument “I don’t know”,
which expresses total ignorance and uncertainty about some statement. However, an
argument like that can not be expressed if the formalism only allows input arguments
in the form of Booleans or probabilities. The probability p(x) = 0.5 would not be a
satisfactory argument because it would mean that x and x are exactly equally likely,
which in fact is quite informative, and very different from ignorance. An analyst
who has little or no evidence for providing input probabilities could be tempted
or even encouraged to set probabilities with little or no confidence. This practice
would generally lead to unreliable conclusions, often described as the problem of
‘garbage in, garbage out’. What is needed is a way to express lack of confidence in
probabilities. In subjective logic, the lack of confidence in probabilities is expressed
as uncertainty mass.

Another limitation of logic and probability calculus is that these formalisms are
not designed to handle situations where multiple agents have different beliefs about
the same statement. In subjective logic, subjective belief ownership can be explicitly
expressed, and different beliefs about the same statements can be combined through
trust fusion and discounting whenever required.

The general idea of subjective logic is to extend probabilistic logic by explicitly
including: 1) uncertainty about probabilities and 2) subjective belief ownership in
the formalism, as illustrated in Figure 1.1.

Fig. 1.1 The general idea of subjective logic

Arguments in subjective logic are called subjective opinions, or opinions for
short. An opinion can contain uncertainty mass in the sense of uncertainty about
probabilities. In the literature on statistics and economics, the type of uncertainty
expressed by uncertainty mass in subjective logic is typically called second-order
probability or second-order uncertainty. In that sense, traditional probability repre-
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sents first-order uncertainty [31, 95]. More specifically, second-order uncertainty is
represented in terms of a probability density function over first-order probabilities.

Probability density functions must have an integral of 1 to respect the additiv-
ity axiom of probability theory. Apart from this requirement, a probability density
function can take any shape, and thereby represent arbitrary forms of second-order
uncertainty. Uncertainty mass in subjective opinions represents second-order uncer-
tainty which can be expressed in the form of Dirichlet PDFs (probability density
functions).

A Dirichlet PDF naturally reflects random sampling of statistical events, which
is the basis for the aleatory interpretation of opinions as statistical measures of like-
lihood. Uncertainty mass in the Dirichlet model reflects vacuity of evidence. Inter-
preting uncertainty mass as vacuity of evidence reflects the property that “the fewer
observations the more uncertainty mass”.

Opinions can also reflect structural-knowledge evidence (i.e. non-statistical evi-
dence), which is the basis for the epistemic interpretation of opinions as knowledge-
based measures of likelihood. Uncertainty mass in epistemic opinions reflects vacu-
ity of structural knowledge about a specific event or outcome which might only
occur once, and which therefore can not be sampled statistically. The difference
between aleatory and epistemic opinions is described in Section 3.3.

Subjective opinion ownership is closely related to trust, because when different
agents have different opinions about the same statement, then an analyst needs to
specify or derive levels of trust in the different agents/sources before their opinions
can be integrated in a reasoning model.

In traditional Bayesian theory, the concept of base rate, also known as prior prob-
ability, is often not clearly distinguished from probability estimates. This confusion
is partially due to the fact that in formalisms of Bayesian theory, base rates and
probabilities are both denoted by the same mathematical symbol p. In contrast, sub-
jective logic clearly distinguishes between probabilities and base rates, by using the
symbol ‘p’ or ‘P’ for probabilities and the symbol ‘a’ for base rates.

The concept of belief functions, which is related to the concept of subjective
opinions, has its origin in a model for upper and lower probabilities, proposed by
Dempster in 1960. Shafer later proposed a model for expressing belief functions
[90]. The main idea behind belief functions is to abandon the additivity principle
of probability theory, i.e. that the sum of probabilities on all pairwise disjoint states
must add up to one. Instead a belief function gives analysts the ability to assign
belief mass to elements in the powerset of the state space. The main advantage of
this approach is that ignorance, i.e. the lack of evidence about the truth of the state
values, can be explicitly expressed by assigning belief mass to the whole state space.
Vagueness can also be expressed by assigning belief mass to subsets of the powerset.

The subjective opinion model extends the traditional belief function model of
belief theory in the sense that opinions take base rates into account, whereas belief
functions ignore base rates. An essential characteristic of subjective logic is thus
to include base rates, which also makes it possible to define a bijective mapping
between subjective opinions and Dirichlet PDFs.
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The definition of new operators for subjective opinions is normally quite simple,
and consists of adding the dimension of uncertainty to traditional probabilistic oper-
ators. Many practical operators for subjective logic have already been defined. The
set of operators offers a flexible framework for modelling a large variety of situa-
tions, in which input arguments can be affected by uncertainty. Subjective opinions
are equivalent to Dirichlet and Beta PDFs. Through this equivalence, subjective
logic also provides a calculus for reasoning with probability density functions.

Different but equivalent formal representations of subjective opinions can be de-
fined, which allow uncertain probabilities to be seen from different perspectives.
Analysts can then define models according to the formalisms and representations
that they are most familiar with, and that most naturally can be used to represent a
specific real-world situation. Subjective logic contains the same set of basic oper-
ators known from binary logic and classical probability calculus, but also contains
some non-traditional operators which are specific to subjective logic.

The aim of this book is to provide a general introduction to subjective logic,
to show how it supports decision making under vagueness and uncertainty, and to
describe applications in subjective trust networks and subjective Bayesian networks
which when combined form general subjective networks.

The advantage of subjective logic over traditional probability calculus and prob-
abilistic logic is that uncertainty and vagueness can be explicitly expressed so that
real-world situations can be modelled and analysed more realistically than is other-
wise possible with purely probabilistic models. The analyst’s partial ignorance and
lack of evidence can be explicitly taken into account during the analysis, and explic-
itly expressed in the conclusion. When used for decision support, subjective logic
allows decision makers to be better informed about the confidence in the assessment
of specific situations and possible future events.

Readers who are new to subjective logic should first study Chapters 2 and 3 in
order to get an understanding of the opinion representation. The sections describing
Beta and Dirichlet PDFs in Chapter 3 can be skipped to save time. The remaining
chapters do not have to be read in sequence. As long as the opinion representation
is well understood, readers can jump to specific chapters or sections of interest.



Chapter 2

Elements of Subjective Opinions

This chapter defines fundamental elements in the formalism of subjective logic. It
also introduces a terminology which is consistently used throughout this book.

2.1 Motivation for the Opinion Representation

Uncertainty comes in many flavours, where Smithson provides a good taxonomy
in [94]. In subjective logic, confidence and uncertainty relate to probabilities. For
example, let the probability of a future event x be estimated as p(x) = 0.5. In case
this probability represents the long-term likelihood of obtaining heads when flipping
a fair coin, then it would be natural to represent it as an opinion with a very high
confidence (low uncertainty), which is interpreted as an aleatory opinion. In case the
probability represents the perceived likelihood that a random person on the street has
a specific medical condition, then before any relevant test has been taken it would
be natural to represent it as a vacuous opinion (total uncertainty). The probability
estimate of an event is thus distinguished from the confidence/uncertainty of the
probability. With this explicit representation of confidence/uncertainty, subjective
logic can be applied to analysing situations where events get assigned probabilities
affected by uncertainty, i.e. where the analyst has relatively low confidence about
the probabilities of possible events. This is done by including uncertainty mass as
an explicit parameter in the input arguments. This uncertainty mass is then taken
into account during the analysis, and is explicitly represented in the output conclu-
sion. In other words, subjective logic allows levels of confidence in probabilities to
propagate through the analysis all the way to the output conclusions.

For decision makers it can make a big difference whether probabilities are con-
fident or uncertain. For example, it is risky to make important decisions based on
probabilities with low confidence. Decision makers should instead request addi-
tional evidence so the analysts can produce more confident conclusion probabilities
about hypotheses of interest.
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2.2 Flexibility of Representation

There can be multiple equivalent formal representations of subjective opinions. The
traditional opinion expression is a composite function consisting of belief masses,
uncertainty mass and base rates, which are described separately below. An opinion
applies to a variable which takes its values from a domain (i.e. from a state space).
An opinion defines a sub-additive belief mass distribution over the variable, mean-
ing that the sum of belief masses can be less than one. Opinions can also have an
attribute that identifies the belief owner.

An important aspect of opinions is that they are equivalent to Beta or Dirichlet
PDFs (probability density functions) under a specific mapping. This equivalence is
based on natural assumptions about the correspondence between evidence and belief
mass distributions. More specifically, an infinite amount of evidence leaves no room
for uncertainty, and produces an additive belief mass distribution (i.e. the sum is
equal to one). A finite amount of evidence gives room for uncertainty and produces
a sub-additive belief mass distribution (i.e. the sum is less than one). In practical sit-
uations, the amount of evidence is always finite, so practical opinions should always
have sub-additive belief mass that is complemented by some uncertainty. The basic
features of subjective opinions are defined in the sections below.

2.3 Domains and Hyperdomains

In subjective logic, a domain is a state space consisting of a set of values which
can also be called states, events, outcomes, hypotheses or propositions. A domain
represents the possible states of a variable situation.

The values of the domain can be observable or hidden, just like in traditional
Bayesian modelling. The different values of a domain are assumed to be exclusive
and exhaustive, which means that the variable situation can only be in one state at
any moment in time, and that all possible state values are included in the domain.

Domains can be binary (with exactly two values) or n-ary (with n values) where
n> 2. A binary domain can e.g. be denoted X= {x, x}, where x is the complement
(negation) of x, as illustrated in Figure 2.1.

Fig. 2.1 Binary domain

Binary domains are typically used when modelling situations that have only two
alternatives, such as a light switch which can be either on or off.



2.3 Domains and Hyperdomains 9

Situations with more than two alternatives have n-ary domains where n> 2. The
example quaternary domain Y= {y1, y2, y3, y4} is illustrated in Figure 2.2.

Fig. 2.2 Example quaternary domain

Domains are typically specified to reflect realistic situations for the purpose of
being practically analysed in some way. The values of an n-ary domain are called
singletons, i.e. they are considered to represent a single possible state or event. It is
possible to combine singletons into composite values, as explained below.

Assume a ternary domain X= {x1, x2, x3}. The hyperdomain of X is the reduced
powerset denoted R(X) illustrated in Figure 2.3, where the solid circles denoted x1,
x2 and x3 represent singleton values, and the dotted oval shapes denoted (x1 ∪ x2),
(x1∪ x3) and (x2∪ x3) represent composite values.

Fig. 2.3 Example hyperdomain

Definition 2.1 (Hyperdomain). Let X be a domain, and let P(X) denote the pow-
erset of X. The powerset contains all subsets of X, including the empty set { /0}, and
the domain {X} itself. The hyperdomain denoted R(X) is the reduced powerset of
X, i.e. the powerset excluding the empty-set value { /0} and the domain value {X}.
The hyperdomain is expressed as

Hyperdomain: R(X) = P(X)\{{X},{ /0}}. (2.1)

��

The composite set C (X) defined in Definition 2.2 can be expressed as C (X) =
R(X)\X. A composite value x∈C (X) is the union of a set of singleton values from
X. The interpretation of a composite value being TRUE, is that one and only one
of the constituent singletons is TRUE, and that it is unspecified which singleton is
TRUE in particular.
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Singletons represent real possible states in a situation to be analysed. A com-
posite value on the other hand does not reflect a specific state in the real world,
because otherwise we would have to assume that the world can be in multiple dif-
ferent states at the same time, which contradicts the assumption behind the original
domain. Composites are only used as a synthetic artifact to allow belief mass to ex-
press that one of multiple singletons is TRUE, but not which singleton in particular
is TRUE.

The property that all proper subsets of X are values of R(X), but not {X} or
{ /0}, is in line with the hyper-Dirichlet model [33]. The cardinality of the hyperdo-
main is κ = |R(X)| = 2k− 2. Indexes can be used to identify specific values in a
hyperdomain, and a natural question is how these values should be indexed.

One simple indexing method is to index each composite value as a function of
the singleton values that it contains, as illustrated in Figure 2.3. While this is a very
explicit indexing method, it can be complex to use in mathematical expressions.

A more compact indexing method is to use continuous indexing, where indexes
in the range [1, k] identify singleton values in X, and indexes in the range [k+
1, κ ] identify composites. The values contained in the hyperdomain R(X) are thus
the singletons of X with index in the range [1, k], as well as the composites with
index in the range [k+1, κ ]. The indexing according to this method is illustrated in
Figure 2.4, which is equivalent to the indexing method illustrated in Figure 2.3

Fig. 2.4 Example of continuous indexing of composite values in a hyperdomain

The continuous indexing method is described next. Assume X to be a domain of
cardinality k, and then consider how to index the values of the hyperdomain R(X)
of cardinality κ . It is practical to define the first k values of R(X) as having the same
index as the corresponding singletons of X. The remaining values of R(X) can be
indexed in a simple and intuitive way.

The values of R(X) can be grouped in cardinality classes according to the num-
ber of singletons from X that they contain. Let j denote the number of singleton
values of a specific cardinality class, then call it ‘cardinality class j’. By definition
then, all values belonging to cardinality class j have cardinality j. The actual number
of values belonging to each cardinality class is determined by the Choose Function
C(κ , j) which determines the number of ways that j out of κ singletons can be
chosen. The Choose Function, equivalent to the binomial coefficient, is defined as
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C(κ , j) =
(

κ
j

)
=

κ!
(κ− j)! j!

. (2.2)

Within a given hyperdomain, each value can be indexed according to the order
of the lowest-indexed singletons from X that it contains. As an example, Figure 2.2
above illustrates domain X of cardinality k = 4. Let us consider the specific com-
posite value xm = {x1,x2,x4} ∈R(X).

The fact that xm contains three singletons identifies it as a value of cardinality
class 3. The two first singletons x1 and x2 have the lowest indexes that are possible
to select, but the third singleton x4 has the second lowest index that is possible to
select. This particular value must therefore be assigned the second relative index
in cardinality class 3. However, its absolute index depends on the number of val-
ues in the inferior cardinality classes. Table 2.1 specifies the number of values of
cardinality classes 1 to 3, as determined by Eq.(2.2).

Table 2.1 Number of values per cardinality class

Cardinality class: 1 2 3
Number of values in each cardinality class: 4 6 4

In this example, cardinality class 1 has four values, and cardinality class 2 has six
values, which together makes 10 values. Because ym represents the second relative
index in cardinality class 3, its absolute index is 10+ 2 = 12. The solution is that
m= 12, so we have x12 = {x1,x2,x4}. To complete the example, Table 2.2 specifies
the index and cardinality class of all the values of R(X) according to this scheme.

Table 2.2 Index and cardinality class of values of R(X) in case |X|= 4.

Singleton selection per value

Si
ng

le
to

ns x4 ∗ ∗ ∗ ∗ ∗ ∗ ∗
x3 ∗ ∗ ∗ ∗ ∗ ∗ ∗
x2 ∗ ∗ ∗ ∗ ∗ ∗ ∗
x1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Value index: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Cardinality class: 1 2 3

By definition, the values of cardinality class 1 are singletons and are the original
values from X. The domain X= {x1,x2,x3,x4} does not figure as a value of R(X) in
Table 2.2, because excluding X is precisely what makes R(X) a reduced powerset
and a hyperdomain. A value of R(X) which contains multiple singletons is called
a composite value, because it represents the combination of multiple singletons.
In other words, when a value is a non-singleton, or equivalently is not a value in


