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Preface

This volume contains the proceedings of the 18th International Conference on
Difference Equations and Applications held in Barcelona (Catalonia, Spain) from
July 23rd to 27th, 2012. The conference was organized by the Departament de
Matemàtiques of the Universitat Autònoma de Barcelona (UAB), under the aus-
pices of the International Society of Difference Equations (ISDE).

The purpose of the conference was to bring together experts and novices in the
theory and applications of difference equations and discrete dynamical systems. The
main theme of the meeting was the interplay between difference equations and
dynamical systems.

The plenary speakers were experts chosen from many different areas of differ-
ence equations, broadly defined, and discrete dynamical systems and their interplay
with nonlinear science.

There were 129 presentations which included 14 plenary talks (including the
Special talk of the winner of the “Best JDEA paper” prize), 39 contributed talks,
and 87 special sessions talks. The main topics of the meeting were represented by
the six special sessions which were organized during the conference. They cover
the theory of difference equations and discrete dynamical systems and their
applications to biology and economics and are described below.

• Combinatorial and Topological Dynamics (14 talks organized by S. Kolyada
and L’. Snoha);

• Complex Dynamics (23 talks organized by B. Devaney, N. Fagella and
X. Jarque);

• Applications of Difference Equations to Biology (10 talks organized by
J. Cushing, S. Elaydi and J. Li);

• Asymptotic Behavior and Periodicity of Difference Equations (20 talks orga-
nized by I. Győri and M. Pituk);

• Chaotic Linear Dynamics (9 talks organized by J.P. Bès, P. Oprocha and
A. Peris); and

• Economic Dynamics and Control (11 talks organized by A.A. Pinto and
A. Yannacopoulos).
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There were 157 participants (120 male and 37 female) from Austria, Belarus,
Belgium, Bosnia-Herzegovina, Brazil, Canada, Chile, Czech Republic, Denmark,
Finland, France, Germany, Greece, Hungary, India, Iran, Ireland, Israel, Italy,
Jamaica, Japan, Latvia, Mexico, Oman, Poland, Portugal, Russia, Serbia, Slovakia,
Spain, Sweden, Ukraine, United Kingdom, and USA.

We would like to acknowledge the financial support of the following institu-
tions: Centro Internacional de Matemática, Institut de Matemàtiques de la
Universitat de Barcelona, Centre de Recerca Matemàtica, Ministerio de Economía y
Competitividad, Generalitat de Catalunya, Grup de Sistemes Dinàmics de la
Universitat Autònoma de Barcelona. Also, we would like to thank the organizing
committee that ensured a good organization and the success of the conference as
well as the scientific committee that took care of the high scientific standards and
the quality of the conference.

We warmly thank all the speakers and participants of the meeting for their
contributions and helping to create a wonderful, friendly, and fruitful atmosphere.

All participants of ICDEA2012 were invited to submit a contribution to these
proceedings, and all papers that were accepted had to pass through a refereeing
process appropriate for a mathematical research journal.

Cerdanyola del Vallès, Spain Lluís Alsedà i Soler
Tucson, USA Jim M. Cushing
San Antonio, USA Saber Elaydi
Porto, Portugal Alberto A. Pinto
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On the Second Order Rational Difference
Equation xn+1 = β + 1

xnxn−1

Aija Anisimova

Abstract The author investigates the local and global stability character, the periodic
nature, and the boundedness of solutions of the second-order rational difference
equation

xn+1 = β + 1

xnxn−1
, n = 0, 1, . . . ,

with parameter β and with arbitrary initial conditions such that the denominator is
always positive. The main goal of the paper is to confirm Conjecture 8.1 and to
solve Open Problem 8.2 stated by A.M. Amleh, E. Camouzis and G. Ladas in On the
Dynamics of a Rational Difference Equations I (International Journal of Difference
Equations, Volume 3, Number 1, 2008, pp.1–35).

Keywords Boundedness · Periodicity · Rational difference equations · Stability

AMS Subject Classifications 39A10 · 39A20 · 39A30

1 Introduction and Preliminaries

The author investigates the local and global stability character, the periodic nature,
and the boundedness of solutions of the second-order rational difference equation in
the form

xn+1 = β + 1

xnxn−1
, n = 0, 1, . . . , (1)

with parameter β and with arbitrary initial conditions such that the denominator is
always positive.

A. Anisimova (B)
University of Latvia, Zellu 8, Riga, Latvia
e-mail: aija-anisimova@inbox.lv
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2 A. Anisimova

In the paper [1] have been given several open problems and conjectures about
such equations:

Conjecture 8.1 ([1]) Every positive solution of (1) has a finite limit.

Open Problem 8.2 ([1]) Assume that β is a real number. Determine the set G of
real initial values x−1, x0 for which the equation (1) is well defined for all n ≥ 0, and
investigate the character of solutions of (1) with x−1, x0 ∈ G.

In this paper the author investigates the local and global stability character of the
difference equation (1), describes the periodic nature of the difference equation (1),
investigates the boundedness of solutions of (1) and poses some ideas how to confirm
Conjecture 8.1 and to solve Open Problem 8.2.

Equation (1) is a special case of the second-order quadratic rational difference
equation

xn+1 = α + βxnxn−1 + γ xn−1

A + Bxnxn−1 + Cxn−1
, n = 0, 1, 2, . . . (2)

with non-negative parameters and with arbitrary non-negative initial conditions such
that the denominator is always positive.

Related non-linear second order rational difference equations have been investi-
gated in [1, 2, 5–9].

Now we give well-known results, which will be useful in the investigation of (1).

For the next results, we consider the difference equation defined by

xn+1 = f (xn, xn−1), n = 0, 1, . . . . (3)

Let I be some interval of real numbers and let

f : I × I → I

be a continuously differentiable function.
Then for every set of initial conditions x−1, x0 ∈ I , the difference equation (3)

has a unique solution {xn}∞n=−1.

A point x ∈ I is called an equilibrium point of (3) if

x = f (x, x)

that is,
xn = x, ∀n ≥ 0

is a solution of (3), or equivalently, x is a fixed point of f .
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Let Dom( f ) be a domain of function f of (1). The Forbidden set (denote
with F) of function f is a set such that:

F := {(c, d) ∈ R2 : ∃n ∈ N : (x0, x−1) = (c, d), (xk , xk−1) ∈ Dom( f ) ∀k = 0, 1 . . . , n,

and (xn, xn+1) /∈ Dom( f )}.
Let p = ∂ f

∂u (x, x) and q = ∂ f
∂v (x, x) denote the partial derivatives of f (u, v) eval-

uated at the equilibrium x of (3). Then the equation

yn+1 = pyn + qyn−1, n = 0, 1, . . . (4)

is called the linearized equation associated with (3) about the equilibrium point x
and the equation

λ2 − pλ − q = 0 (5)

called the characteristic equation of (4) about x .

Theorem 1 ([7])

1. If both roots of quadratic equation (5) lie in the open unit disk |λ| < 1, then the
equilibrium x of (3) is locally asymptotically stable.

2. If at least one of the roots of (5) has absolute value greater than one, then the
equilibrium x of (3) is unstable.

3. A necessary and sufficient condition for both roots of (5) to lie in the open unit
disk |λ| < 1, is

|p| < 1 − q < 2. (6)

In the next theorem we make use of the following notation associated with a
function f (z1, z2), which is monotonic in both arguments. For each pair of numbers
(m, M) and for each i ∈ {1, 2}, define

Mi (m, M) =
{
M, if f is increasing in zi
m, if f is decreasing in zi

and

mi (m, M) = Mi (M,m).

Theorem 2 ([4, 7]) Let [a, b] be a closed and bounded interval of real numbers
and let f ∈ C([a, b]2, [a, b]) satisfy the following conditions:

1. f (z1, z2) is monotonic in each of its arguments.
2. If (m,M) is a solution of the system

{
M = f (M1(m, M), M2(m, M))

m = f (m1(m, M),m2(m, M))
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then M = m.

Then the difference equation (3) has a unique equilibrium point x ∈ [a, b] and every
solution of (3), with initial conditions in [a, b], converges to x.

A solution {xn}∞n=−1 of (3) is said to be periodic with period p if

xn+p = xn f or all n ≥ −1. (7)

A solution {xn}∞n=−1 of (3) is said to be periodic with prime period p, or a p-cycle
if it is periodic with period p and p is the least positive integer for which (7) holds.

With the change of variables

xn = 1

yn
√

β
(8)

difference equation (1) can be transformed to the difference equation in the form

yn+1 = α

1 + yn yn−1
, n = 0, 1, . . . , (9)

where

xn = 1

yn
√

β
, xn−1 = 1

yn−1
√

β
, xn+1 = 1

yn+1
√

β

and by these equalities we obtain that

1

yn+1
√

β
= β + yn

√
β yn−1

√
β ⇒

⇒ yn+1

√
β = 1

β(1 + yn yn−1)
⇒ yn+1 =

1
β
√

β

1 + yn yn−1
,

where

α = 1

β
√

β
. (10)

Equality (10) and transformation to the difference equation (9) are true for all β > 0
(or α > 0).

In paper [1] had been proved that:

1. Every solution of (9) is bounded by positive constants, precisely

α

1 + α2
≤ yn+1 = α

1 + yn yn−1
≤ α, ∀n ≥ 1; (11)
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2. Assume that
0 < α ≤ 2. (12)

Then the positive equilibrium of (9) is globally asymptotically stable.
These characteristics of (9) can be useful in the investigation of (1).

2 Boundedness

In this section we investigate the boundedness of (1).

Theorem 3 Every positive solution of (1) is bounded from above and below by
positive constants.

Proof Obviously we can estimate equation (1) from below by

xn+1 = β + 1

xnxn−1
≥ β ∀n ≥ 1.

Set that β ≤ xn and in equation (1) replacing it with a smaller value, the fraction
increases and we get the estimation from above

xn+1 = β + 1

xnxn−1
≤ β + 1

β2
, ∀n ≥ 1.

Finally we obtain

β ≤ xn+1 = β + 1

xnxn−1
≤ β + 1

β2
, ∀n ≥ 1. � (13)

3 Local and Global Asymptotic Stability

In this section we investigate the local and global stability of the solutions of the
difference equation (1) where the parameter β and the initial values x−1, x0 are arbi-
trary real numbers, such that denominator is not equal to zero.

Assume x−1, x0 ∈ I , where I is the set of all real initial values x−1, x0 for which
the difference equation (1) is well defined for all n ≥ 0.

The Equilibrium equation of (1)

x3 − βx2 − 1 = 0 (14)
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Fig. 1 Graph of function β

can be easily considered as a function of x :

β = x3 − 1

x2 . (15)

Equilibrium equation (14) has three roots, the real roots can be obtained from the
graph of the function (15) (see Fig. 1). From Fig. 1 we see that the parameter β is
related to the equilibrium point and the function β has one local maximum point
(− 3

√
2 ≈ −1.26;− 3

3√4
≈ −1.89), and behaviour of function β is as follows:

1. If β > 0 the function β is increasing and difference equation (1) has an unique
real equilibrium point;

2. In the interval − 3
3√4

< β < 0 function is increasing. In this interval difference
equation (1) has only one real equilibrium point;

3. In case β < − 3
3√4

function β is decreasing and difference equation (1) has three
real equilibrium points;

4. There exists vertical asymptote at zero (x = 0).

We can make an assertion that the only local maximum point of function β is a
very important point of reference when analysing character of solutions of differ-
ence equation (1), so further we will investigate behaviour of (1) depending on the
different values of the parameter β.
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Looking at many different examples and analysing the equilibrium equation for
different values of the parameter β and investigating the function of β it can be
concluded that the behaviour of solutions of (1) is very sensitive to different values
of parameter β, and if we take arbitrary initial conditions such that the denominator
is not equal to zero we can make the following hypotheses:

1. If β > 0, then the equilibrium equation has one real root and two complex con-
jugate roots. The solution of difference equation (1) converges to the unique real
equilibrium point.

2. If β = 0, then the equilibrium equation has one real root and two complex conju-
gate roots. The solution of difference equation (1) is periodic with prime period
3.

3. If − 3
3√4

< β < 0, then the equilibrium equation has one real root and two com-
plex conjugate roots, but solution of difference equation (1) is with oscillating
character.

4. If β = − 3
3√4

, then the equilibrium equation has three real equilibrium points (two
equal and one different). The solution of difference equation (1) converges to the
double root x2 = − 3

√
2 of the equilibrium equation.

5. If β < − 3
3√4

, then the equilibrium equation has three real roots. The solution of
difference equation (1) converges to the root that is greatest by the absolute value.

In numerical calculations we have observed that in these four situations behaviour
of solutions of difference equations (1) is similar with arbitrary initial values such
that difference equation (1) is well defined.

In our investigation we have established the following results.

Theorem 4 Assume x−1, x0 ∈ I , where I is the set of all real initial values x−1, x0 for
which the difference equation (1) is well defined for all n ≥ 0. If β ∈ (−∞;− 3

3√4
] ∪

[ 1
3√4

;∞), then the solution of difference equation (1) is locally asymptomatically
stable.

Proof The proof is based on the theorem of linearized stability of second order
difference equation (see Theorem 1). Let write the characteristic equation of (1)
about x :

f = β + 1

uv

u := xn, v := xn−1

f
′
u = (β + (uv)−1)

′
u = − v

(uv)2
⇒ p = f

′
u(x, x) = − 1

x3

f
′
v = (β + (uv)−1)

′
v = − u

(uv)2
⇒ q = f

′
v(x, x) = − 1

x3

p = q = − 1

x3
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zn+1 = pzn + qzn−1, n = 0, 1, . . .

zn+1 = − 1

x3 zn − 1

x3 zn−1. (16)

Equation (16) is the linearized equation associated with (1) about the equilibrium
point x . The characteristic equation of (1) about x is in the form:

λ2 + 1

x3 λ + 1

x3 = 0 (17)

By Condition 1 of Theorem 1 if both roots of (17) lie in the open unit disk |λ| < 1
then the equilibrium x of (1) is locally asymptotically stable. Roots of (17) lie in the
open unit disk if Condition 3 of Theorem 1 holds, that is,

∣∣∣∣− 1

x3

∣∣∣∣ < 1 − 1

x3 < 2.

If x > 0, we have ⎧⎨
⎩

1
x3 < 1 − 1

x3

1
x3 > −1 + 1

x3

1 − 1
x3 < 2

⇒ x >
3
√

2.

Since β can be expressed from (15) we obtain that

β = x − 1

x2 >
3
√

2 − 1
3
√

4
= 1

3
√

4
.

We have established Condition 3 of Theorem 1 when β > 1
3√4

and this means that in
this case the equilibrium point x is locally asymptotically stable.
If x < 0, we have

⎧⎨
⎩

1
x3 < 1 − 1

x3

1
x3 > −1 + 1

x3

1 − 1
x3 < 2

⇒ x < − 3
√

2

and by Eq. (15) we get that

β = x − 1

x2 < − 3
√

2 − 1
3
√

4
= − 3

3
√

4
.

In this case we see that Condition 3 of Theorem 1 holds, that is, the equilibrium point
x is locally asymptotically stable when β < − 3

3√4
. �
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Theorem 5 Assume x−1, x0 ∈ I , where I is the set of all real initial values x−1, x0

for which the difference equation (1) is well defined for all n ≥ 0 and β ∈ [ 1
3√4

;∞).

Then every positive solution {xn}∞n=−1 of difference equation (1) has a finite limit.

Proof With the change of variables xn = 1
yn

√
β

difference equation can be trans-
formed to the difference equation (1) in the form

yn+1 = α

1 + yn yn−1
, n = 0, 1, . . . ,

where xn = 1
yn

√
β
, xn−1 = 1

yn−1
√

β
, xn+1 = 1

yn+1
√

β
and α = 1

β
√

β
.

In the paper [1] it has been shown that every positive solution of (9) converges to
ȳ for all values of 0 < α ≤ 2. Since α = 1

β
√

β
then

0 <
1

β
√

β
≤ 2 ⇒ ∞ > β

√
β ≥ 1

2
⇒ β3 ≥ 1

4
⇒ β ≥ 1

3
√

4
. �

4 Periodicity

In this section we discuss the periodicity of equation (1). We will show that difference
equation (1) has no periodic solutions with period 2 and difference equation (1) has
periodic solution with period 3 if and only if β = 0.

Assume x−1, x0 ∈ I , where I is the set of all real initial values x−1, x0 for which
the difference equation (1) is well defined for all n ≥ 0 then that next two results are
true.

Theorem 6 Difference equation (1) has no periodic solutions with period 2.

Proof Assume that x−1, x0 are initial conditions such that difference equation (1)
is well defined and solution of difference equation (1) is periodic with period 2
(x−1 �= x0), that is,

. . . x−1, x0, x−1, x0, . . . .

Then it must be that

x1 = β + 1

x0x−1
= x−1

x2 = β + 1

x1x0
= β + 1

x−1x0
= x−1 ⇒ x0 = x−1

which is a contradiction from which follows that equation (1) has no periodic solu-
tions with period 2. �
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Theorem 7 Difference equation (1) has periodic solution with period 3 if and only
if β = 0.

Proof Assume that x−1, x0 are well defined initial conditions and the solution of
difference Eq. (1) is periodic with period 3, that is,

. . . x−1, x0, x1, x−1, x0, x1, . . . .

1. Assume β �= 0. Then it must be that

x1 = β + 1

x0x−1

x2 = β + 1

x1x0
= x−1

x3 = β + 1

x2x1
= x0

x4 = β + 1

x3x2
= x1

From which follows that

x2 = β + 1

x1x0
= β + 1

(β + 1
x0x−1

)x0
= x−1 ⇒

⇒ β(βx0x−1 + 1) + x−1

βx0x−1 + 1
= x−1 ⇔ β = 0,

which is a contradiction from which follows that if β �= 0 then (1) has no periodic
solutions with period 3.

2. Assume β = 0. Then we can write that

x1 = 1

x0x−1

x2 = 1

x1x0
= x0x−1

x0
= x−1

x3 = 1

x2x1
= x−1x0

x−1
= x0

x4 = 1

x3x2
= 1

x0x−1
= x1
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...

xn−1 = 1

xn−2xn−3

xn = 1

xn−1xn−2
= xn−2xn−3

xn−2
= xn−3

xn+1 = 1

xnxn−1
= xn−2xn−3

xn−3
= xn−2

xn+2 = 1

xn+1xn
= 1

xn−2xn−3
= xn−1

xn+3 = 1

xn+2xn+1
= 1

xn−1xn−2
= xn−3

...

From which follows that if β = 0, then (1) has a periodic solution with period 3. �

After these two last results we obtain the following conclusions.

Corollary 1 1. If β ≥ 1
3√4

and β ≤ − 3
3√4

then (1) has no periodic solutions with
period p > 1, because in these cases can be obtained that the solution of (1) is
locally asymptotically stable.

2. If β = 0, x−1, x0 > 0, x−1 �= x0 then (1) has a periodic solution with period 3
and solution is bounded in interval [ 1

x0x−1
; max {x−1, x0}].

3. If β = 0, x−1 = x0 > 0, x−1 = x0 �= 1 then the solution of (1) is periodic with
period 3 and bounded in interval [ 1

x2−1
; x−1]. If x−1 = x0 = 1 then the solution of

(1) is xn = {1}n≥−1 and it is periodic with period 1.
4. If β = 0, x−1, x0 < 0, x−1 �= x0 then the solution of (1) is periodic with period 3

and bounded from below by min {x−1, x0} and from above by 1
x0x−1

.
5. If β = 0, x−1 = x0 < 0 then the solution of (1) is periodic with period 3 and

bounded in interval [x−1,
1
x2−1

].
6. If β = 0, x−1 > 0, x0 < 0 or x−1 < 0, x0 > 0 then the solution of (1) is peri-

odic with period 3 and bounded from below by min {x−1, x0} and from above by
max {x−1, x0}.

7. If β = 0, then difference equation (1) can be written in the form

xn+1 = 1

xnxn−1
, n = 0, 1, . . . , (18)
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and the positive solution of difference equation (18) can be written in the form

xn = ec1 sin ( 2π
3 n)+c2 cos ( 2π

3 n), c1, c2 ∈ R (19)

and it is periodic with prime period 3 for all positive well defined initial conditions.

5 Forbidden Set

Open Problem 8.2 ([1]) Assume that β is a real number. Determine the set I of
real initial values x−1, x0 for which the difference equation (1) is well defined for
all n ≥ 0, and investigate the character of solutions of difference equation (1) with
x−1, x0 ∈ I .

Let Dom( f ) be domain of function f (xn, xn−1) = β + 1
xn xn−1

of difference equa-
tion (1).

If there exist initial values (x0, x−1) and such n ∈ N for which difference equation
(1) is well defined and in iteration n + 1 difference equation (1) becomes equal to
zero then initial values (x0, x−1) belong to forbidden set (F). This holds if

β = − 1

xnxn−1
, n = 0, 1, . . . ., xn, xn−1 �= 0 ⇒ βxnxn−1 + 1 = 0. (20)

If initial values (x0, x−1) belong to the forbidden set then holds one of these
conditions:

1. β ∈ R and x−1 or x0 is equal to zero;
2. β ∈ R and x−1 = x0 = 0;
3. β < −1 and xnxn−1 ∈ (0; 1);
4. β = −1 and xnxn−1 = 1;
5. −1 < β < 0 and xnxn−1 ∈ (1;+∞);
6. β = 0 and xnxn−1 = 0;
7. 0 < β < 1 and xnxn−1 ∈ (−∞;−1);
8. β = 1 and xnxn−1 = −1;
9. β > 1 and xnxn−1 ∈ (−1; 0).

Let β �= 0, x−1x0 �= 0. Now we determine the forbidden set in each iteration.

1. n = 0 : x1 = 0 ⇔ βx0x−1 + 1 = 0 ⇒ x0 = − 1
βx−1

In this step initial conditions (x−1,− 1
βx−1

) ∈ F .

2. n = 1 : x2 = 0 ⇔ β2x0x−1 + β + x−1 = 0 ⇒ x0 = −β−x−1

β2x−1

(x−1,
−β−x−1

β2x−1
) ∈ F .

3. n = 2 : x3 = 0 ⇔ β3x0x−1 + β2 + βx−1 + x0x−1 = 0 ⇒ x0 = −β2−βx−1

β3x−1+x−1

(x−1,
−β2−βx−1

β3x−1+x−1
) ∈ F .
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4. n = 3 : x4 = 0 ⇔ β4x0x−1 + β3 + β2x−1 + 2βx0x−1 + 1 = 0 ⇒ x0 =
−β3−β2x−1−1
β4x−1+2βx−1

(x−1,
−β3−β2x−1−1
β4x−1+2βx−1

) ∈ F .

5. n = 4 : x5 = 0 ⇔ β5x0x−1 + β4 + β3x−1 + 3β2x0x−1 + 2β + x−1 = 0 ⇒
x0 = −β4−β3x−1−2β−x−1

β5x−1+3β2x−1

(x−1,
−β4−β3x−1−2β−x−1

β5x−1+3β2x−1
) ∈ F .

6. n = 5 : x6 = 0 ⇔ β6x0x−1 + β5 + β4x−1 + 4β3x0x−1 + 3β2 + 2βx−1 +
x0x−1 = 0 ⇒ x0 = −β5−β4x−1−3β2−2βx−1

β6x−1+4β3x−1+x−1

(x−1,
−β5−β4x−1−3β2−2βx−1

β6x−1+4β3x−1+x−1
) ∈ F .

7. n = 6 : x7 = 0 ⇔ β7x0x−1 + β6 + β5x−1 + 5β4x0x−1 + 4β3 + 3β2x−1 +
3βx0x−1 + 1 = 0 ⇒ x0 = −β6−β5x−1−4β3−3β2x−1−1

β7x−1+5β4x−1+3βx−1

(x−1,
−β6−β5x−1−4β3−3β2x−1−1

β7x−1+5β4x−1+3βx−1
) ∈ F .

8. n = 7 : x8 = 0 ⇔ β8x0x−1 + β7 + β6x−1 + 6β5x0x−1 + 5β4 + 4β3x−1 +
6β2x0x−1 + 3β + x−1 = 0 ⇒ x0 = −β7−β6x−1−5β4−4β3x−1−3β−x−1

β8x−1+6β5x−1+6β2x−1

(x−1,
−β7−β6x−1−5β4−4β3x−1−3β−x−1

β8x−1+6β5x−1+6β2x−1
) ∈ F .

9. n = 8 : x9 = 0 ⇔ β9x0x−1 + β8 + β7x−1 + 7β6x0x−1 + 6β5 + 5β4x−1+10
β3x0x−1 + 6β2 + 3βx−1 + x0x−1 = 0 ⇒ x0 = −β8−β7x−1−6β5−5β4x−1−6β2−3βx−1

β9x−1+7β6x−1+10β3x−1+x−1

(x−1,
−β8−β7x−1−6β5−5β4x−1−6β2−3βx−1

β9x−1+7β6x−1+10β3x−1+x−1
) ∈ F .

10. · · ·
The general case (when n = k : xk+1 = 0) is still in investigation process.

Example 1 If β = − 3
3√4

, then with the change of variables xn−1 = − 3
√

2yn−1 equa-
tion (1) can be written in the form without irrationality

yn+1 = 3

2
− 1

2yn yn−1
, n = 0, 1 . . . . (21)

y1 = −0.5, y2 = y3 = 1

Let assume

y−1 = k

k + 1
, y0 = k − 1

k
, k ∈ N ⇒ yk = 1

2
, yk+1 = 0.

As we can take k as big as we like initial points y−1, y0 will be close to the equilibrium
point y = 1, but after limited amount of iterations we get yk+1 = 0. Hence

(y−1, y0) =
(

k

k + 1
,
k − 1

k

)
∈ F, k ∈ N .
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Moment Vanishing of Piecewise Solutions
of Linear ODEs

Dmitry Batenkov and Gal Binyamini

Abstract We consider the “moment vanishing problem” for a general class of
piecewise-analytic functions which satisfy on each continuity interval a linear ODE
with polynomial coefficients. This problem, which essentially asks how many zero
first moments can such a (nonzero) function have, turns out to be related to several
difficult questions in analytic theory of ODEs (Poincare’s Center-Focus problem)
as well as in Approximation Theory and Signal Processing (“Algebraic Sampling”).
While the solution space of any particular ODE admits such a bound, it will in
the most general situation depend on the coefficients of this ODE. We believe that a
good understanding of this dependencemay provide a clue for attacking the problems
mentioned above. In this paper we undertake an approach to the moment vanishing
problem which utilizes the fact that the moment sequences under consideration sat-
isfy a recurrence relation of fixed length, whose coefficients are polynomials in the
index. For any given operator, we prove a general bound for its moment vanishing
index. We also provide uniform bounds for several operator families.

Keywords Moment vanishing · Holonomic ODEs · Recurrence relations ·
Generalised exponential sums

1 Introduction

Let f : [a, b] → R be a bounded piecewise-continuous function with points of dis-
continuity (of the first kind)
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a = ξ0 < ξ1 < · · · < ξp < ξp+1 = b,

satisfying on each continuity interval
[
ξ j , ξ j+1

]
a linear homogeneous ODE

D f ≡ 0, (1)

where D is a linear differential operator of order n with polynomial coefficients:

D = pn (x) ∂n + · · · + p1 (x) ∂ + p0 (x) I, ∂ = d

dx
, deg p j ≤ d j . (2)

Wesay that such f belongs to the classPD (D, p). Theunionof all suchPD (D, p)
is the class PD of piecewise D-finite functions, which was first studied in [2].

Any f ∈ PD has finite moments of all orders:

mk ( f ) =
∫ b

a
xk f (x) dx, k = 0, 1, 2, . . . (3)

We consider the following questions.

Problem 1 GivenD and p, determine the moment vanishing index ofPD (D, p),
defined as

σ (D, p)
def= sup

f ∈PD(D,p), f �≡0
{k : m0 ( f ) = · · · = mk ( f ) = 0} + 1.

In Theorem 3 below we shall prove that the moment vanishing index is always finite.
Consequently, the following problem becomes meaningful.

Problem 2 Find natural families F ⊂ PD which admit a uniform bound on the
moment vanishing index, i.e. for which

σ (F ) = sup
PD(D,p)⊂F

σ (D, p) < +∞.

Our main results, presented in Sect. 4, provide a general bound for σ (D, p) in terms
ofD. As a result, several examples of familiesF admitting uniform bound as above
are given. The main technical tool is the recurrence relation satisfied by the moment
sequence, established previously in [2].

Our main application is the problem of reconstructing functions f ∈ PD from
a finite number of their moments. Inverse moment problems appear in some areas
of mathematical physics, for instance heat conduction and inverse potential theory
[1, 11], as well as in statistics. One particular reconstruction technique, introduced
in [2] and further extended to two-dimensional setting in [7], can be regarded as
a prototype for numerous “algebraic” reconstruction methods in signal processing,
such as finite rate of innovation [17] and piecewise Fourier inversion [3, 5]. These
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methods, being essentially nonlinear, promise to achieve better reconstruction ac-
curacy in some cases (as demonstrated recently in [3, 5]), and therefore we believe
their study to be important. In Sect. 2 below we show that an answer to Problem 2
would in turn provide a bound on the minimal number of moments (measurements)
required for unique reconstruction of any f ∈ F . In essence, the results of this pa-
per can be regarded as a step towards understanding the range of applicability of the
piecewise D-finite reconstruction method to general signals in PD . See Sect. 2 for
further details.

Given a familyF ⊂ PD , consider the corresponding family of moment gener-
ating functions

{
I f (z)

}
f ∈F , where I f (z) = ∑∞

k=0 mk ( f ) z−k−1. Obtaining infor-
mation on the moment vanishing index is in fact an essential step towards studying
the analytic properties of I f , in particular a bound on its number of zeros near infinity
(as provided by the notion of “Taylor Domination”, see [4, 6]), as well as conditions
for its identical vanishing. In turn, these questions play a central role in studies of
the Center-Focus and Smale–Pugh problems for the Abel differential equation, see
[8, 9, 16] and references therein.

Themoment vanishing problemhas been previously studied in the complex setting
by V. Kisunko [14]. He showed that a uniform bound σ (F ) exists for families F
consisting of non-singular operators, by using properties of Cauchy type integrals. In
contrast, in this paperwe consider the real setting only, while proving uniformbounds
for some singular (as well as regular) operator families. Our method is based on the
linear recurrence relation satisfied by the moment sequence. Using this method, in
Sect. 5 we provide an alternative proof of Kisunko’s result, stating that the moment
generating function I f (z) of some f ∈ PD (D, p) satisfies a non-homogeneous
ODE

DI f (z) = R f (z)

for a very special rational function R f (z), which depends onD and on the values of
f at the discontinuities.
In Sect. 6 we provide an interpretation of our main result in the language of

Fuchsian theory of ODE.

2 Moment Reconstruction

We start by defining some preliminary notions.

Definition 1 The Pochhammer symbol (i) j denotes the falling factorial

(i) j
def= i(i − 1) · · · · · (i − j + 1), i ∈ R, j ∈ N

and the expression (i) j is defined to be zero for i < j .
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Definition 2 Given D of the form (2), the bilinear concomitant [13, p. 211] is the
homogeneous bilinear form, defined for any pair of sufficiently smooth functions
u (x) , v (x) as follows (all symbols depend on x):

PD (u, v)
def= u

{
p1v − ∂ (p2v) + · · · + (−1)n−1 ∂n−1 (pnv)

}
+ u′ {p2v − ∂ (p3v) + · · · + (−1)n−2 ∂n−2 (pnv)

}
+ . . .

+ u(n−1) · (pnv) . (4)

Proposition 1 (Green’s formula, [13])GivenD of the form (2), let the formal adjoint
operator be defined by

D∗ {·} def=
n∑
j=0

(−1) j ∂ j
{
p j (x) ·} .

Then for any pair of sufficiently smooth functions u (x) , v (x) the following identity
holds:

∫ b

a
v (x) (Du) (x) dx −

∫ b

a
u (x)

(
D∗v

)
(x) dx = PD (u, v) (b) − PD (u, v) (a) .

(5)

Theorem 1 ([2]) Let f ∈ PD (D, p) with D of the form (2). Denote the dis-
continuities of f by a = ξ0 < ξ1 < · · · < ξp < ξp+1 = b. Then the moments mk =∫ b
a f (x) dx satisfy1 the recurrence relation

n∑
j=0

d j∑
i=0

ai, j (−1) j (i + k) j mi− j+k = εk, k = 0, 1, . . . , (6)

where

εk = −
p∑

j=0

{
PD

(
f, xk

) (
ξ−
j+1

)
− PD

(
f, xk

) (
ξ+
j

)}
. (7)

Proof Apply Green’s formula (5) to the identity

∫ ξ j+1

ξ j

xk (D f ) (x) dx ≡ 0

1For consistency of notation, the sequence {mk} is understood to be extended with zeros for
negative k.
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for each j = 0, . . . , p and sum up. The result is

p∑
j=0

∫ ξ j+1

ξ j

f (x)D∗ {
xk

}
dx = −

p∑
j=0

{
PD

(
f, xk

) (
ξ−
j+1

)
− PD

(
f, xk

) (
ξ+
j

)}

∫ b

a
f (x)D∗ {

xk
}
dx = εk

The left-hand side of the last formula is precisely the linear combination of the
moments given by the left-hand side of (6). This finishes the proof. �

Nowconsider the problem of recovering f ∈ PD (D, p) ⊂ PD from themoments
{m0 ( f ) , . . . ,mN ( f )} (the operator D is assumed unknown in the most general
setting). Based on the recurrence relation (6), we demonstrate in [2] that an exact
recovery is possible, provided that the number N ∈ N is sufficiently large. However,
the question of obtaining an upper bound for N turns out to be non-trivial, as we now
demonstrate.

Definition 3 Given D and p, the moment uniqueness index τ (D, p) is defined by

τ (D, p)
def= sup

f,g∈PD(D,p), f �≡g

{
k : m j ( f ) = m j (g) , 0 � j � k

} + 1.

In other words, given D and p, at least τ (D, p) first moments of f ∈ PD (D, p)
are necessary for unique reconstruction of f .

Recalling boundedness of σ (D, p) (see Theorem 3 below), we immediately ob-
tain the following conclusion.

Lemma 1 For any operator D and any p

τ (D, p) ≤ σ (D, 2p) .

Proof Let N = σ (D, 2p). Take f1, f2 having p jump points each, satisfyingD f1 ≡
0,D f2 ≡ 0 on each continuity interval such that

m0 ( f1) = m0 ( f2)

. . .

mN
(
f1

) = mN ( f2) .

The function g = f1 − f2 has at most 2p jumps, and it satisfies Dg ≡ 0 on each
continuity interval. The first N moments of g are zero, therefore g ≡ 0 and thus
f1 ≡ f2. Therefore τ (D, p) ≤ N . �


