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Preface

Viscoelasticity or rheology is important in polymer science and engineering
because it plays a crucial role in production and characterization of polymeric
materials. Understanding the viscoelasticity of polymers requires knowledge of
various disciplines such as continuum mechanics, thermodynamics, advanced
applied mathematics, polymer physics, and statistical mechanics. Rheology of
polymers is studied by the researchers from various fields such as polymer scien-
tists, mechanical engineers, chemical engineers, physicists, and chemists. Hence, it
is hard to expect that a newcomer to the field of polymer viscoelasticity would be
familiar with such diverse disciplines. From this viewpoint, one may feel the
necessity of a book which addresses basic sciences for polymer viscoelasticity as
possible as many. Examples of such comprehensive books of rheology are
“Dynamics of Polymeric Liquids, volume I and II”” written by Bird and coauthors,
and “Engineering Rheology” written by Tanner. The book of Bird and coauthors
does not contain numerical methods for nonlinear viscoelastic flows while the book
of Tanner deals with it. Even though both books are comprehensive rheology
books, in the author’s opinion, the former is focused on development of constitutive
equation while the latter is oriented to the application of constitutive equation to
polymer processing. Because it is practically impossible to write a comprehensive
book of rheology which contains everything of rheology, most famous books of
rheology have their own orientation indicating authors’ expertise, with addressing
sufficient amount of basic knowledges. The author intends to write a comprehensive
rheology book with the orientation to the identification of the rheological properties
of polymers from their experimental data. This has been one of the themes of the
author’s research for recent 10 years.

Any single book cannot satisfy all readers because each reader has different
backgrounds and different maturity in their knowledge. When the author was a
master-degree student, he thought that Larson’s book, “Constitutive Equations of
Polymer Melts and Solutions,” is not good because it is so compact. However,
when he read the book after his Ph.D., he recognized that it is one of well-made
rheology books. The present book assumes the readers to have strong background
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viii Preface

of engineering mathematics of undergraduate level. The readers do not have to be
familiar with tensor analysis because it is given in the book. This book is designed
for experimental rheologists, who are strong in mathematics, as well as for students,
who want to be familiar with theoretical rheology.

The book consists of three parts. The first part provides fundamental principles
which should be necessary to understand the other parts: linear and nonlinear
viscoelasticity. This part briefly addresses necessary mathematics, continuum
mechanics and thermodynamics, statistical mechanics and polymer physics.

As the book is oriented to the rheological identification of polymers from the
experimental data, the second part of linear viscoelasticity contains basic numerical
methods which are useful for viscoelastic spectrum, time—temperature superposi-
tion, and application of linear viscoelastic principles to polymeric systems. Different
from previous rheology books, this part is devoted to numerical algorithms of data
processing which is expected to be helpful for experimentalists.

The last part starts from theory of nonlinear constitutive equation in order to
explain large amplitude oscillatory shear (LAOS). The last chapter on LAOS is one
of the most remarkable features of this book which makes the book different from
previous well-made books of rheology.

The author appreciates for the help of a number of persons: his teachers, col-
leagues, students, and family. Without their help, this book could not have
been written. Professor Jinyoung Park, Dongchoon Hyun, Dongyoon Lee, and
Dr. Jung-Eun Bae are thankful for the review of the manuscript. Several parts of the
book have resulted from the research with my old student, Dr. Jung-Eun Bae. Work
cannot be in isolation. The author owes the present work to his teachers who taught
him. Especially, Prof. Sangyong Kim made him to recognize the pleasure of aca-
demic career. The author cannot forget his students because his research results
included in the book cannot be obtained without their assistance. This book was
supported by Kyungpook National University Research Fund 2011.

Daegu, Korea Kwang Soo Cho
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Part 1
Fundamental Principles



Chapter 1
Preliminary Mathematics

Abstract This chapter addresses mathematical preliminaries necessary to under-
stand polymer viscoelasticity assuming that the readers are familiar with engi-
neering mathematics of sophomore. Analysis of vector and tensor is the majority of
this chapter, which is necessary to understand constitutive theories of polymer
viscoelasticity as well as the theory of polymer physics. Since the knowledge of
functional analysis is also needed to understand numerical methods to be used for
the processing of viscoelastic data, the vectors and tensors in this chapter include
not only physical quantities but also generalized ones called abstract vectors.
Because of this purpose, the analysis of vector and tensor starts from the notion of
vector space which is an abstraction of physical vector. As for linear viscoelastic
theory, both Fourier and Laplace transforms are frequently used. Since this book is
not a text of mathematics, rigorous proofs will not be seriously considered. For the
proofs, the readers should refer the related references.

1 Vector Space

1.1 Definition of Vector Space

Vector is defined as a quantity having both magnitude and direction as described in
undergraduate text books. Although this definition is simple and intuitive, it is not
convenient for the application to more general cases. Hence, we will adopt the
abstraction of vector which is helpful for the description of the analysis of nonlinear
viscoelasticity and the numerical methods of viscoelastic characterization in a
unified manner.

One of the most intuitive examples of vector is a displacement vector which
points from a position to another position. The sum of two displacement vectors is
the vector obtained by parallelogram rule. This rule works for velocity and accel-
eration obtained by the differentiation of position vector which can be considered as
a displacement vector issuing from the origin. Geometric consideration shows
easily that velocity and acceleration follows the sum rule of displacement vector.
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4 1 Preliminary Mathematics

However, experiment is needed to prove that force follows the sum rule of dis-
placement vectors, though force has both magnitude and direction. The experi-
mental proof is as simple as to show that when three forces exerted on a point are in
equilibrium, the geometric sum of any set of two forces is equal to the opposite of
the other force. Here, the opposite of a force is the vector having the same mag-
nitude but opposite direction. Then, one becomes to know that every physical
quantity considered as a vector follows the sum rule of displacement vector. As for
displacement vector, scalar multiplication is defined as the replacement of the
magnitude of the vector by the multiplication of the magnitude by the scalar but
maintaining direction. These two binary operations can be used as the generaliza-
tion of vector.

A set having the two binary operations called addition and scalar multiplication
is called a vector space when the two binary operations satisfy the followings and
the elements of the set are called vectors.

[1] Addition is commutative:
a+tb=b+a (1.1)
[2] As for three arbitrary vectors u, v, w, addition is associative:
(u+v)+w=u+(v+w) (1.2)
[3] The zero vector 0 is a unique vector such that for any vector a,
at0=a (1.3)
[4] For every element of the set, there exists a unique vector —a such that
a+(—a)=0 (1.4)

[5] For any real number ¢ and arbitrary vectors a and b, the scalar multiplication
satisfies

c(a+b)=ca+cb (1.5)
[6] For any real numbers ¢ and k, scalar multiplication on a satisfies
(c+k)a=ca+ka (1.6)

[7]1 Associate rule for scalar multiplication is valid for any two scalars ¢ and k and
a vector a:

c(ka) = (ck)a (1.7)
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[8] Real number, unity is the identity of the scalar multiplication:
la=a (1.8)

Note that it is assumed that addition of any two elements of the set is also an
element of the set and scalar multiplication of a vector also belongs to the set. More
generally, complex number can replace the role of real number. However, we will
not treat complex vector space, here, which involves complex number as scalar,
because the complex vector is not relevant in mechanics of viscoelasticity.

It is easy to know that the set of continuous functions satisfies the definition of
vector space and so does the set of matrices with the same form. Then, continuous
function and matrix can be considered as abstract vector.

An example of a vector space, consider pairs of n real numbers denoted by
X = (x1,X, . ..,X,). Denote the set of all pairs of n real numbers as E". The set is a
vector space when addition and scalar multiplication are defined as

X+y:(x1+Y1,X2+Y27---axn+)’n)EE” (1 9)

cx = (exy, exa, ... Cxy) € E" .
It is easy to prove that E" satisfies Eqs. (1.1)—(1.8). The vector space E" is called n-
dimensional Euclidean space. An N x M matrix is considered as a vector of ENM_
too.

1.2 Linear Combination and Basis

When m vectors, say, ay, ..., a,, are members of a vector space, a vector X is called
a linear combination of the vectors ay,...,a,, if there exist scalars cy,cs, ...,y
such that

X=cia;+ - +cpa, (1.10)

When making all of ¢y, c»,...,c, zero is the only way to make the vector x of
Eq. (1.10) the zero vector, the vectors ay,...,a, are said to be independent.

Suppose that N vectors ay, ..., ay of a vector space are independent. If any set
consisting of the N vectors ay, . .., ay and any other vector of the vector space is not
independent, then the N vector ay, .. .,ay are called the bases of the vector space.
Then, any vector b and the N vectors ay,...,ay are not independent. This implies
that there exists nonzero real numbers among ¢y, ¢y, ..., cy+1 such that

ciaj+ - +cyay+cenv1b=0 (111)
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If cy+1 =0, then Eq. (1.11) means

cia;+ - +cyay =0 (1.12)

and then it is contradictory to the premise that a;, ..., ay are independent. Hence,

cy+1 must not be zero. Finally, we can express b as a linear combination of the
bases ay, ..., ay:

ay (113)

Equation (1.13) implies that any vector of the vector space can be expressed by a
linear combination of the base vectors ay, . ..,ay. That is, an arbitrary vector v of
the vector space can be expressed by

N
V= vy (1.14)

n=1

The scalars v, are called the components of the vector v with respect to the base
vectors of {ay,...,ay}. Equation (1.14) implies that basis {ay,...,ay} spans the
vector space because any vector can be expressed by a linear combination of the
base vectors.

A set of base vectors is called simply basis and a base vector is called a base.
There are a number of ways to choose a basis. However, it can be proven that the
number of base vectors is not different from each other. The number of base vectors
is called the dimension of the vector space. In summary, base vectors have two
properties:

[1] Base vectors are linearly independent.
[2] Any vector is expressed by a linear combination of base vectors.

When a set of base vectors of a vector space is known, the two properties of base
vectors imply the components of a vector are uniquely determined. Assume that
{ay,...,ay} is the set of the base vectors and a vector v can be expressed by two
sets of components as follows:

N N
v:Zvnan:Zv;an (1.15)
n=1

n=1

Then, Eq. (1.15) leads to

Z(vn —V,)a, =0 (1.16)
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Since base vectors are linearly independent, it is clear that for all n, v, = v/, which
proves that components of a vector are uniquely determined. However, this does
not mean that two sets of components of a vector with respect to two different sets
of base vectors are identical.

For physical vector in 3-dimensional space, these theoretical tools such as linear
independence and base vectors look unnecessarily complicate. However, these
concepts are very convenient and necessary when abstract vectors such as con-
tinuous functions are considered. The approaches based on vector space can be met
in several fields of applied mathematics as well as quantum mechanics. See
Atkinson and Han (2000) for numerical methods, and Luenberger (1969) for
optimization theory, Kreyszig (1978) for functional analysis, and Prugovecki
(2006) for quantum mechanics.

A vector space can have a number of base vectors. A new set of N vectors can be

generated by linear combination of a set of base vectors A = {ay,...,ay} as
follows:
N
bi:ZQikak (i=1,2,...,N) (1.17)
k=1

where coefficients Qy are assumed to form an invertible matrix. Consider a linear
combination from B = {by,....,by}: u = c;b; + - -+ 4+ cyby. If the vector u is the
zero vector, then we have

u= Zcibi = Zci (Z Qikak> = Z (Z Qikci> a, =0 (1.18)

i=1

Equation (1.18) implies that for all k

N
ZQikCi =0 (1.19)
i1

Since the matrix Qy is invertible, Eq. (1.19) uniquely determines c¢; = O for all
i. Hence, the set {b;} is linearly independent. Let P,,, be the inverse matrix of Qy.
Then, we have

N
a; = ZPikbk (i=1,2,...,N) (1.20)
k=1

Substitution of Eq. (1.20) into Eq. (1.14) proves that any vector v can be expressed
by a linear combination of B = {by,...,by}. Detailed proofs are found in Ames
(1970).
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1.3 Dual Space

Consider a linear mapping $ from a vector space V to real numbers. It is a
real-valued function of a vector of V with satisfying the following properties:

Pu+v) = o +o(v), ¢(om) = ah(u) (1.21)

where o is an arbitrary real number and u and v are arbitrary vectors of V. The linear

mapping $ is called linear functional. If a set of linear functionals on V satisfies the
conditions of vector space, then the set is denoted by V* and called the dual space
of the vector space V.

Here, the addition of any two functionals 5 € V* and n € V* is defined as
(6+7) @ = dw+nw (1.22)

Then, it is clear that <|~> + M € V*. For any real number a, scalar multiplication is
defined as

(o@) (u) = ad(u) (1.23)

Of course, we know that ad € V*. The zero functional is defined a mapping from
V to O for any elements of V. Then, it is not difficult to show that the set of linear
functional V* is a vector space.

Let {b;} be a set of base vectors of N-dimensional vector space V. Consider

N linear functionals <|~><i) defined as d~>(i) (by) = 8 where &y is the Kronecker’s
delta which is unity whenever i = k and zero otherwise. Then, it is easy to show

that the set {¢”} is the base of V*. The first step is to show that { ¢} is linearly
independent and the second step is to show that {d)(i)} generates any linear func-
tional that belongs to V*. The linear independence of {d)(i>} means that if a linear

combination of {¢ '} for any vector v of V is zero:

EN:C,@(“(V) =0 (1.24)
k=1

then all coefficients c; are zero. Substitution of a base vector b; of V to Eq. (1.24)
gives ¢; = 0. Thus, the set {c]>(i)} is linearly independent. For any vector v whose

components are v, a linear functional ¢ satisfies
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(Z kak> = kad)(bk) (1.25)

k=1

Equation (1.25) implies that if N values of $(b,~) are known, then the value of $(v)
is determined. Consider a functional s which is a linear functional such that

=3P W) (1.26)

k=1

Then, we know that (b;) = c|>(bl) from the definition of ¢¥. It is clear that the

functional \s(v) is identical to ¢ (v) because the two linear functionals have the
same value for any vector v.

The Dirac delta function is one of the most important applications of linear
functional. Consider the vector space F of continuous functions defined on the
interval (—oo, 00). One may define linear functional by using the following integral
transform

Bl = / ) (D) (1.27)

where f(x) is a vector of F and ¢ (x) is the function given by the functional ¢. The
function ¢(x) can be considered as the kernel function from the viewpoint of
integral transform. Fourier transform is a linear functional for functions f(x) which
satisfies

o0

[ rejac<o (1.28)

—00

and the kernel function is given by ¢(x) = exp(—igx) where i = /—1. One may
imagine that any linear functional corresponds to its own kernel function: the
one-to-one correspondence between linear functional and function. The existence of
the correspondence can be proved when the inner product is defined over the vector
space of functions. It will be treated later. The Dirac delta function is the kernel
function of the linear functional which maps f(x) € F to f(0):

o]

Sl = / 8(x)f (x)dx = £(0) (1.29)

—00
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However, the Dirac delta function 8(x) cannot be defined at x = 0. Hence, new
name for something like function is necessary. The name is distribution (Zemanian
1987). Note that 6(x) works always under integration. Thus, the Dirac delta
function can be said to be a linear functional.

Problem 1

[1] Show that the following sets are vector space if addition and scalar multi-
plication are suitably defined.

[a] Set of N x M matrix,
[b] Set of polynomials of order N,
[c] Set of linear functionals from physical vectors.

[2] Show that the followings are linearly independent.

[a] {sinot,sin2ot,sin 3w, .. .,sin Not}

b] {1,xx%x°, .. 2}

[31 When B = {by,b,,...,by} C Vis a linearly independent set of vector space
V, show that any subset of B is also linearly independent.

[4] If {aj,ay,...,ay} is a base of vector space V and {by,b,,...,by} is also a
base of the same vector space, then show that M = N.

[5] If a subset of a vector space V is also a vector space, then it is called subspace.
Consider two subspace V| and V; of V. Show that the following set is a vector
space.

Vi+V, = {V|V:V1 +vy v eV, vy € VQ}

)

Show that the intersection of two subspace is a vector space.
V1 and V, are subspaces of V whose dimension is finite. When the dimension
of a vector space U is denoted by dim(U), show that

=

2 Inner Product Space

2.1 Generalization of Inner Product

In physics, the inner product of two vectors is defined as the product of three terms:
the magnitudes of the two vectors and the cosine of the angle between the two
vectors. Hence, the inner product can be considered as a mapping from two vectors
to a real number. It is assumed that the readers are familiar with the inner product of
physics. Then, it is clear that
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a-b=b-a
(a+b)-c=a-c+b-c
(ka) -b=k(a-b)
a-a>0

(2.1)

where a, b, and ¢ are arbitrary vectors and & is an arbitrary real number. Note that
a-a = 0 is valid only when a = 0. Furthermore, we know that the magnitude of a
vector a is given by

Jal = va-a (22)

Generalization of inner product can be done by the replacement of the physical
vectors in Eq. (2.1) by abstract ones of arbitrary vector space. In other words, we
define inner product as a binary operation satisfying Eq. (2.1). The notation (a, b)
instead of a - b would be used in order to emphasize that the inner product under
consideration is a generalized one. There are a number of definitions of inner
product available for a given vector space.

Consider a vector space consisting of integrable functions on the interval of [a, b].
Then, one of the simplest inner product might be defined as

(f.g) = / F()g(x)w(x)dx (2.3)

where w(x) is nonnegative over the interval and called weight function. It is easy to
show that Eq. (2.3) satisfies Eq. (2.1).
As for N x N matrix, one may define inner product as follows:

N
(AB) =" auby (2.4)

i=1 k=1

where A and B are N x N matrices and a; and by are their components, respec-
tively. It is also easy to show that Eq. (2.4) satisfies Eq. (2.1).

A vector space with inner product is called inner product space and the mag-
nitude of vector is called norm. Metric space is a vector space equipped with the
definition of norm. Since the norm of vector can be defined from inner product,
inner product space is a metric space. If every Cauchy sequence of vectors of an
inner product space converges in the space, then the space is called Hilbert space
irrespective of the dimension of the space. A sequence of vectors {x;} is a Cauchy
sequence when it satisfies the condition that if for any positive real number € > 0,
there exists a positive integer N such that for all positive integers m,n > N, then the
magnitude of x,, — x,, is smaller than &. Since we can take linear combinations of
base vectors as a sequence, and any vector of the Hilbert space can be expressed by
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a linear combination of base vectors, it is clear that any inner product space of finite
dimension is a Hilbert space. However, all inner product spaces of infinite
dimension are not Hilbert spaces. Further information on metric and Hilbert spaces
are found in Kreyszig (1978), Luenberger (1969), and Prugovecki (2006).

2.2 Generalization of Distance

The distance between two positions is equal to the magnitude of the displacement
vector connecting the two positions. The magnitude of a geometric vector can be
obtained by the inner product as shown in Eq. (2.2). Then, the distance in a metric
space can be defined as the norm of the difference between two vectors of the metric
space.

The notion of distance in our daily life is summarized with the nonnegativity of
distance that the distance between any two vectors is nonnegative; the symmetry of
distance that the distance from a to b is equal to that from b to a; the triangle
inequality that the sum of distances from a to b and from b to ¢ is not less than the
distance between a and c. If the distance between a and b is denoted by g(a,b),
then the three axioms are expressed by

g(a,b) >0
g(a, b) = g(b, a) (2.5)
g(a,b) +g(b,c) >g(a,c)

As for inner product space, one can define the distance from inner product as
g(a,b) = \/(a—b,a—Db). Then, it is not difficult to show that the definition of
distance satisfies Eq. (2.5) except the triangle inequality. The Cauchy—Schwarz
inequality is necessary to prove the triangle inequality. For any generalized inner
product which satisfies Eq. (2.1), the following is valid:

(a,a)(b,b) > (a, b)2 (2.6)

where a and b are arbitrary vectors of an inner product space. Because of the last
inequality of Eq. (2.1), for any real number ¢, we have

(a+rb,a+1b)>0 (2.7)
Applying the properties of inner product, Eq. (2.7) can be rewritten as

(b,b)7* +2(a,b)t + (a,a) >0 (2.8)
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Since Eq. (2.8) is valid for any real number, the discriminant must not be positive:

D
=@ b)*—(a,a)(b,b) <0 (2.9)
Note that Eq. (2.9) is identical to Eq. (2.6).

As for physical vector, the Cauchy—Schwarz inequality is straightforward
because of the definition of the inner product in physics such that

(a,b) =a-b=||a]|||b||cos 6 (2.10)

where 0 is the angle between the two vectors. Note that —1 < cos 0 <1 for any 6.
Analogy to the inner product of physical vectors, the angle between two abstract
vectors might be defined as

(a,b)

V(a,a)/(b,b)

Let us move back to the problem of the triangle inequality of distance. Since
distance is not negative, the triangle inequality is equivalent to

cos0 = (2.11)

[g(a.b) +g(b,c)]* > [g(a,c)]” (2.12)

Replace the distance function by the corresponding inner product. Then, we have

[g(a, b) +g(b,¢)]>>(a—b,a—b)+(b—c,b—c)+2(a—b,b—c)
=(@a-b)+(b—c)(a-b)+(b—c))=(a—ca—c)

= [g(a,c)]’
(2.13)

Then, the proof is completed.

2.3 Orthogonalized Basis

Vector spaces considered in this book are usually assumed as inner product space or
Hilbert space. From inner product, one can consider the notion of orthogonality such
that the inner product of two nonzero vector is zero. As for physical vectors, orthog-
onality implies that the directions of the two vectors are perpendicular to each other.
Hence, orthogonality is an abstraction of the perpendicularity of geometry. Whenever
we consider physical vectors, orthogonality is identical to perpendicularity.

In general, two base vectors do not have to be orthogonal. However, mutually
orthogonal base vectors are more convenient. Consider N mutually orthogonal
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vectors of an inner product space of finite dimension. These vectors are linearly
independent if N is not larger than the dimension of the inner product space.
Mutually orthogonal vectors {uj,uy,...,uy} are said to be vectors such that
(u;, u;) = 0 for any pair of i and k whenever the two indices are not same. If a linear
combination of these vectors is the zero vector:

cuit+cuy+ - +ceyuy =0 (214)

then taking inner product with w; on both sides of Eq. (2.14) gives ¢;{u;,u;) = 0.
The property of inner product results in ¢; = 0 for any i. Thus, these N vectors are
linearly independent. It is not difficult to show that contradiction occurs whenever
N is larger than the dimension of the space. If N is equal to the dimension of the
space, it is clear that the N mutually orthogonal vectors are base vectors.
Mutually orthogonal base vectors are called orthonormal base vectors when
every member of the base vectors has the magnitude of unity. If we have mutually
orthogonal base vectors {u;,uy, ..., uy}, then we can define N vectors such that

1
Vv <lli, lli>

From Eq. (2.15), it is straightforward that

e = w fori=1,2,...,N (2.15)

(er, ) =€ - e = i (2.16)

where 0y is called Kronecker’s delta which is unity when i = k and zero otherwise.
Orthonormal base vectors are more convenient than mutually orthogonal ones
because any vector can be expressed by

N
V= Z <V, ek>ek =
k=

1

(V . ek)ek (217)

N
k=1

When orthonormal base is used, inner product of any two vectors is expressed by
N

(ab)=a-b=> ab (2.18)
k=1

where @; and by are kth components of a and b, respectively, with respect to the
orthonormal base.

Then, how can we obtain an orthonormal base from a given base? Suppose that
we have a basis {by,b,...,by}, which do not have to be mutually orthogonal.
Since a member of an orthogonal basis {e,e,,...,ey} is also a vector, it can be
expressed by a linear combination of {by,bs,...,by}:
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N
e = Z Qikbr (2.19)
k=1

With the help of Eq. (2.16), we have

N N N N
<Z Qinbna Z kabm> == Z Z Qianm <bm bm> = 6ik (220)
n=1 m=1

n=1 m=1

Since we know (b, b,,) for any pair of n and m, Eq. (2.20) is a set of N? nonlinear
equations for N> unknowns Qj. This is a quite complicate problem. The Gram—
Schmidt orthogonalization is a simpler method to find Qy in a systematic way.

2.3.1 The Gram-Schmidt Orthogonalization

The first step of the Gram-Schmidt orthogonalization is to find a mutually
orthogonal bias, say {uy, uy, ..., uy} from a given basis {by,bs,...,by}. The
next step is the normalization of the mutually orthogonal basis by ¢; = u;/||u;]|.

Setu; =b; and uy = b, + qiz)ul. Then, there is only one unknown qiz) which
could be determined by the orthogonality condition of (u;,u,) = 0. Then, we know
that

g? = - (by,by)  (by,uy) (2.21)

(b1, b1) (ur,uy)

Since there are two orthogonal conditions such that (u;,uz) = 0 and (up,uz) = 0,

one may construct uz by uz = b + qs)uz + q(13>u1. The unknowns qéS) and q§3) can

be determined by solving the following set of linear equations:
(urun)gt + (u, m)gs) = — (g, us) (2.22)
(w,u)gy + (0, w)gs) = —(us, us)

Since (u,u;) > 0 because uy # 0 for any &, Eq. (2.22) must have a unique solution
and we have

b b
< 3’u2>u < 37111>u

=b; — - 2.23
" } U, up) ? (up,uy) ! ( )
Similar procedure can be applied to u, for n > 3 and we have
= <bn7 uk>
u,=b, — uy (2.24)
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Since this procedure gives mutually orthogonal basis {uj,uy,...,uy}, finally we
have orthonormal basis:

1

= (2.25)
[Jwil

€;

The Gram—Schmidt orthogonalization implies that any inner product space can
have orthonormal basis. We know that finite-order polynomials have the basis
By = {l,x,...,x"}. Suppose that the inner product space of polynomial is
equipped with the inner product defined by

{p(x),q(x)) = /P(X)Q(X)W(X)dx (2.26)

where the weight function w(x) is positive for the whole interval of a <x <b.
First, consider the case of a =0, b = L > 0, and w(x) = 1, then the mutually
orthogonal basis My = {Qo(x), Q1(x),...,On(x)} from the basis By is given by

Qo(x) = 1; Ql(x):x—%L; Qz(x):xz—L)H—éLz; (2.27)

Note that My C My ,, when m > 0.

2.3.2 Orthogonal Polynomials

There are several named orthogonal polynomials which have different definitions of
inner product. The Legendre polynomials construct an orthogonal basis for a = —1,
b =1 and w(x) = 1. Some of the Legendre polynomials are

Po(x)=1; Pi(x)=x Po(x)=2"(37-1);
Py(x) =271(5x —3x);  Pa(x) =273 (35x* — 3047 +3); (2.28)
Ps(x) =27%(63x° — 70x’ + 15x);

Although the Gram—Schmidt orthogonalization is easy to be understood and is a
systematic way, the calculation procedures are tedious and time-consuming. As for
the Legendre polynomials, the following recursive equation is valid:

2n+1 n

P,(x) ———
n+1x () n+1

Pyii(x) = P,_1(x) for n>1 (2.29)

Note that Py(x) =1 and P;(x) = x are needed as initial conditions for the
recursive Eq. (2.29). The recursive equations are more convenient than the Gram—
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Schmidt orthogonalization. As for the Legendre polynomials, the following
orthogonal conditions are valid:

T on1om

/ Py (x) Py(x)dx 2 5 (2.30)
-1

When a = —1, b =1 and w(x) = 1/v/1 — x? is used, the Chebyshev polyno-
mials of the first kind are obtained. Some of the Chebyshev polynomials of the first
kind are

To(x) =1; Ti(x)=x Ta(x)=2¢—1;
3

T3(x) = 4x° — 3x;  Ty(x) = 8x* — 8x* + 1; (2.31)
Ts(x) = 16x° — 20x> +5x; ...

The recursive equation for the Chebyshev polynomial of the first kind is given as
Tyi1(x) =2xT,(x) — T—1(x) forn>1 (2.32)

with the initial conditions of Ty(x) = 1 and T;(x) = x. The orthogonal conditions
are given as

0 form#n

1
/de: n form=n=0 (2.33)
JooVI=x In form=n+#0

It is noteworthy that the Chebyshev polynomial of the first kind is useful in analysis
of large amplitude oscillatory shear (LAOS) because it has the following properties:

T,(cos 0) = cos(n)

T, (x) = T,(narccos x) = cosh(n arccos hx) (2.34)
See Chap. 11. Furthermore, the Chebyshev polynomial of the first kind is also
useful in various fields of numerical methods. Polynomial regression is one of the
most representative applications of the polynomial.

The Chebyshev polynomial of the second kind U, (x) is defined over the same
interval, but its weight function is w(x) = v/1 — x2. Its recursive equation is the
same as that of the first kind while the initial conditions are given as Up(x) = 1 and
U, (x) = 2x.

The Hermite polynomials are an orthogonal basis for a = —co, b = oo and
w(x) = exp(—x?). Some of the Hermite polynomials are
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