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Preface

Nanotechnology and nanomaterials are increasingly imparting its great influence in
our life and environment. During the last two decades, significant amount of
research has been conducted in nanotechnology focusing on their application in
electronics, energy, mechanics, and life sciences including plant sciences. The
impact of nanotechnology and nanomaterials is inevitable in the field of agriculture,
and many researches are evidencing their potential in improving the food and
agricultural systems through different approaches resulting in the enhancement of
agricultural output and development of new food and food products, etc.

The early research investigations in this direction documented absorption,
translocation, accumulation, and effects of nanomaterials, mostly metal-based and
carbon-based, in several plants including crops. Many of these research studies
evidenced for the potential utility of nanomaterials in crop improvement as
demonstrated by enhanced germination and seedling parameters in rice, maize,
wheat, alfalfa, soybean, rape, tomato, radish, lettuce, spinach, onion, pumpkin, and
cucumber; and also enhanced nitrogen metabolism, chlorophyll content, and
activities of several enzymes leading to enhanced photosynthesis in maize, soybean,
peanut, tomato, and spinach.

There are many investigations reported on nanomaterial-induced improvement
in agronomic traits including yield, biomass content, and content of secondary
metabolites by direct treatment in soybean, bitter melon, and rice indicating the
ability of the nanomaterials in modifying genetic constitution of plants.
Nanomaterials have exhibited promise in targeted gene delivery for developing
atomically modified plants—a safer and acceptable strategy in contrast to genetic
engineering. Interestingly, generational transmission of nanomaterials has been
documented in rice and bitter melon.

The usage of these nanomaterials can ultimately land in our food cycle and so a
careful study and analysis is pertinent regarding their usage before putting these
materials in actual use.
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The spurt in the research in this interdisciplinary field that involves primarily the
fusion of nanotechnology and plant science may lead to the creation of a new field
as “Plantnanomics.”

Nanomaterials have also exhibited promise for precise and environmentally
safe application of fertilizers and plant protection chemicals using nanoformulations
besides plant disease management using nanosensors and nano-based diagnostic
kits.

Some concerns have been raised about potential adverse effects of nanomaterials
on biological systems and environment although carbon-based nanomaterials, in
general, have been found to be safe in many instances.

The book “Plant Nanotechnology” comprises 15 chapters. Chapter 1 clearly lays
out the foundation of the book by providing the overview of the concepts, strate-
gies, techniques, and tools of nanobiotechnology and its promises and future pro-
spects. Before using the nanomaterials, we should know its physical and chemical
properties. Based on the properties, we can decide the use of the materials in
different applications. Chapter 2 deals with the physical and chemical nature of the
nanoparticles. After characterizing the nanomaterials, we can employ them in
intended applications in plants. While doing that we should know how it could be
applied and how we could detect and quantify the uptake of the nanomaterials,
translocation, and accumulation. Chapter 3 is devoted to provide the information
about the quantification of uptake, translocation, and accumulation of nanomaterials
in plants.

For application of any materials anywhere, we should have a clear-cut kno-
whow, such as how it can be applied and what are the different ways. Chapter 4
describes various methods for using nanomaterials. After the usage of the nano-
materials, naturally we have to look for their impact on plants. The earlier indication
of their impact can be assessed by the germination, seedling parameters, and
physiological attributes. Chapter 5 deals with the assessment of the impact of
nanomaterials on plant growth and development. Chapter 6 provides the informa-
tion on the effects of nanomaterials on plants with regard to physiological attributes.

After laying a very good foundation toward the characterization and application
of nanomaterials and their impact, in general, in plants, we are discussing on the
response of plants to nanoparticles at molecular level including changes in gene
expression (Chap. 7), and movement and fate of nanoparticles in plants and their
generational transmission (Chap. 8).

Recent researches have shown that nanomaterials can be used for the
improvement of yield of crops and quality. This finding will lead to the application
of nanomaterials in agriculture. For shedding light on the use of nanomaterials in
agriculture for different applications, Chap. 9 has been incorporated to elucidate the
potential of nanomaterials for the enhancement of yield, plant biomass, and sec-
ondary metabolites. A highly promising application potential of nanomaterials for
delivery of genetic materials has been deliberated in Chap. 10. Application of
agrochemicals including fertilizer and plant protection chemicals using conven-
tional methods leads to less effectivity and even pollution of plant products, soil,
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water, and air. In contract, use of nanomaterials can lead to precise and targeted
delivery of these chemicals. Utilization of nanoparticles for delivery of fertilizers
and for plant protection has been deliberated in Chap. 11 and Chap. 12, respec-
tively. We have included another chapter (Chap. 13) to discuss the impact of the
nanomaterials in soil-plant systems.

Use of nanomaterials can arouse the concern of safety of their usage with regard
to human health and environment. This concern led us to include the Chap. 14 that
deals with the concerns of hazards of nanomaterials to human health and envi-
ronment and also critical views on compliances.

As mentioned earlier, nanotechnology and nanomaterials are increasingly find-
ing their application in the field of agriculture; time has come for the policy makers
and researchers to think and depict a road map for the use of nanotechnology in
future. Chapter 15 has been specially designed for enumerating on the future road
map for plant nanotechnology.

The fifteen chapters of this book have been authored mostly by different teams of
scientists dealing with various aspects related to the concepts, strategies, techniques,
and tools of plant nanotechnology focusing on the application potential and also on
concern for nanotoxicity. Hence, some overlapping contents, particularly on a few
fundamental aspects of nanomaterials including their types, natures, and impacts,
are obvious. However, the responsibility lies on us as the editors for such redun-
dancy and for addressing them in the future editions of this book.

We believe that our book “Plant Nanotechnology” provides a very precise
discussion pertinent to the application of nanotechnology and nanomaterials in
plant sciences so that by reading the book, any student, researcher, or policy maker
can appreciate the potential and the tremendous application value of this approach
and can have a precise and clear idea as to what is going on in this field.

We express our sincere thanks to the 23 scientists beside us for their chapters
contributed to this book and their constant cooperation from submission of the first
drafts to revision and final fine-tuning of their chapters commensurate with the
reviews.

Finally, we wish to extend our thanks to Springer Nature and its entire staff
particularly Dr. Christina Eckey and Dr. Jutta Lindenborn involved in publication
and promotion of this book that will hopefully be useful to students, scientists,
industries, and policy makers.

Mohanpur, India Chittaranjan Kole
Kawagoe, Japan D. Sakthi Kumar
Little Rock, USA Mariya V. Khodakovskaya
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Chapter 1
Plant Nanotechnology: An Overview
on Concepts, Strategies, and Tools

Joydeep Banerjee and Chittaranjan Kole

Abstract Nanotechnology is the branch of science dealing with manipulation of
matter on an atomic, molecular, or supramolecular level. Application of nanopar-
ticles is of great scientific interest due to diverse applications of nanotechnology in
the field of life sciences, medicine, electronics, and energy. Since the last couple of
decades, several research groups worked on the application of nanoscience in the
field of agriculture. Efficient utilization of agrochemicals and manipulation of
several physiological parameters of plants are key research areas of agriculture
nanotechnology. This introductory chapter presents a brief glimpse on the present
global scenario of research on plant nanotechnology and several pros and cons of
nanoscience in the fields of plant sciences particularly agriculture.
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1.1 Nanoparticles and Nanotechnology

The materials that are lesser than 100 nm, at least one dimension, are referred to as
nanomaterials. Hence, the nanoparticles can be zero-dimensional (all dimensions are
at nanoscales), one-dimensional (fine rod-shaped), two-dimensional (ultrathin films),
or three-dimensional (of any shape) based on their manipulation of matter (Bernhardt
et al. 2010; Tiwari et al. 2012). Hence, nanotechnology is the study of different
nanoparticles, which are available in 1–100 nm range, at least in one dimension
(Love et al. 2005). Nanoparticles categorized on the basis of dimensions, which are
not confined to the nanoscale range, are presented in Fig. 1.1. During the last two
decades, a significant amount of research has been conducted in nanotechnology
focusing on their applications in electronics, energy, medicine, life sciences including
plant sciences (Mnyusiwalla et al. 2003; Nair et al. 2010). In the field of agriculture,
nanotechnology has been used to improve the food and agricultural systems through
different approaches including enhancement of agricultural output, development of
new food products, and conservation of foods (Chen 2002). In the course of time, the
experiences in the field of nanotechnology facilitated the development of genetically
modified crops, chemicals for protecting the plants from biotic stresses, better weed
management, and improvement of precision farming techniques. The chapters of this
book deliberate on the achievements so far made in plant nanotechnology and the
safety issues as well as prospects for fundamental and applied research.

0-D: All dimensions (x, y and z)
are at nanoscale 

1-D: Two dimensions (x and y)
are at nanoscale, third is not (z)

y 

x 

2-D: One dimension (z) is at
nanoscale, other two are not (x
and y) 

y 

x 

3-D: In all of the three
dimensions the size is above 100
nm

y 
x 

z 

Classification of nanoparticles based on dimension

Fig. 1.1 Classification of nanoparticles based on dimension. Four different types of nanoparticles
viz., zero dimentional (0-D), one dimentional (1-D), two dimentional (2-D) and three dimentional
(3-D) have been mentioned with appropriate diagram

2 J. Banerjee and C. Kole



1.2 Use of Nanoparticles in Agriculture, Medicine,
and Environment

In the field of agriculture and medicine, the use of nanoparticles (NPs) was found to
be effective to combat biotic stresses, to increase the efficacy of agrochemicals
including pesticides, and to manage the weeds in a better and eco-friendly manner.
To control various bacterial and fungal pathogens, the silver NPs (Ag NPs) were
found to be very effective (Nair et al. 2010). To control pathogenic Candida spe-
cies, application of Ag NPs was found to be effective at the concentrations below
their cytotoxic limit compared to that of the ionic silver against the tested human
fibroblasts (Panáceka et al. 2009). Similarly, silver-based NPs were more effective
against gram-negative bacteria compared to the gram-positive bacteria and the
larger surface-to-volume ratio was the main reason for the effectiveness of these
smaller particles (Singh et al. 2008). Similar to the Ag NPs, silica-based NPs have
been widely used in medical as well as agricultural industries. Gold-coated silica
has been used for the treatment of benign as well as a malignant tumor.
Additionally, lipophilic nano-silica has been used for the treatment of chicken
malaria and nuclear polyhedrosis virus infestation of silkworm (Bombix mori)
(Barik et al. 2008). Other studies documented that the use of surface-modified
hydrophobic nano-silica is absorbed into the cuticular layer of the insects and
subsequently causes damages to the protective wax layer causing the death of the
insects by desiccation (Nair et al. 2010). Such pesticides are not only safer to the
plants but also less harmful to the environment compared to the chemical pesticides.

In agricultural field, different agrochemicals are used as fungicides, insecticides,
pesticides, or herbicides either by spraying or by broadcasting at various growth stages
of plants. A significant amount of the applied chemicals is lost due to various means
such as leaching of chemicals, degradation of chemicals by photolysis, hydrolysis,
and by microbial degradation. A field study was conducted in cotton plants infested
with aphid for estimating the efficacy of nanosphere (NS) formulations compared to a
classical suspension used as a reference. The results indicated that compared to the
classical suspension, the NS formulations were slower regarding the speed of action
and sustained release, but NS formulations were better for enhancing the systemicity
of the active ingredient and for improving the penetration through the plant (Boehm
et al. 2003). Hence, nano-encapsulated agrochemicals should be designed in such a
way that the active ingredients will be released efficiently with improved solubility,
stability as well as effectiveness, and finally enhanced targeted activity and reduced
ecotoxicity will be achieved. In a similar approach to controlling obnoxious and
parasitic weeds, nanocapsule herbicide could be used effectively to reduce the phy-
totoxicity as mentioned by earlier researchers (Perez-de-Luque and Rubiales 2009).
Another class of nanoparticles, namely porous hollow silica nanoparticles (PHSN),
was found to provide shielding protection to pesticides from degradation due to UV
light exposure (Li et al. 2007). Another study on wheat demonstrated the slow release
of fertilizer for regulated, responsive, and timely release of active ingredients using
nano- and subnanocomposites (Zhang et al. 2006; Nair et al. 2010). Very recently,
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a slow-release fertilizer hydrogel nanocomposite has been prepared by free radical
polymerization of sodium alginate, acrylic acid, acrylamide, and clinoptilolite using
N, N΄-methylene bisacrylamide as a crosslinker and ammonium persulfate as an
initiator (Rashidzadeh et al. 2014). Additionally, it was found that the swelling of the
hydrogels was pH dependent, and the swelling in different salt conditions was sig-
nificantly lower than the values in distilled water. Moreover, another group showed
that plasmonically active nanorods linked with 2,4-D, an auxin growth regulator, can
enhance the growth of tobacco (Nicotiana tabacum) cells (Nima et al. 2014). In this
way, although different NPs are being studied in the agricultural industries, their
uptake, accumulation aswell as their impact on the yield and different yield attributing
characters should be analyzed in detail.

1.3 Types of Nanoparticles and Their Relative Merits

Based on their origin, nanoparticles (NPs) are of three types, namely natural,
incidental, and engineered NPs (Monica and Cremonini 2009). Naturally occurring
NPs are existing since the beginning of the Earth, and those are available in vol-
canic dust, lunar dust, terrestrial dust storms, mineral composites, photochemical
reactions, forest fires, simple erosion, etc. Incidental NPs are generated mostly by a
man-made industrial process like petrol/diesel exhaust, coal combustion, welding
fumes, industrial exhausts, etc. (Buzea et al. 2007). Engineered NPs can be cate-
gorized into five types including carbon-based NPs (CB NPs), metal-based NPs
(MB NPs), magnetic NPs, dendrimers, and composite NPs. Carbon-based NPs
include fullerene (C70), fullerol [C60(OH)20], single-walled carbon nanotubes
(SWCNTs), multiwalled carbon nanotubes (MWCNTs), and single-walled carbon
nanohorns (SWCNHs), while MB NPs include gold (Au), silver (Ag), copper (Cu),
and iron (Fe)-based nanomaterials. In addition to that, different types of metal
oxide-based NPs, such as TiO2, CeO2, FeO, Al2O3, and ZnO, are extensively
studied in agriculture and medical sciences. Magnetic NPs can be manipulated
using a magnetic field, and such particles commonly consist of Fe, cobalt (Co) and
nickel (Ni) and their compounds. Among different magnetic NPs when ferrite (an
iron oxide Fe2O3) particles become smaller than 128 nm, they become super-
paramagnetic (Lu et al. 2007). Dendrimers are nano-sized polymers built from
branched units, and they are typically symmetrical around the core part, and mostly,
they adopt a spherical three-dimensional structure. Composite NPs are either the
combination of different NPs, or the combination of NPs with larger bulk-type
materials and those include hybrids. In addition to that, the core–shell nanoparticles
are prepared using two or more materials, e.g., silica/inorganic, silica/polymer, or
polymer/inorganic combinations. Composite NPs possess improved solubility,
easier functionalization, and decreased toxicity compared to the single-component
materials (Lin and Xing 2007; Janczak and Aspinwall 2012). NPs are available in
different shapes such as spheres, tubes, rods, and prisms.
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Among the CB NPs, the significance of fullerene C70 and fullerol in agricultural
sciences has been extensively studied and reviewed by some researchers (Lin et al.
2009; Kole et al. 2013) and it has been found that these two types of CB NPs get
readily accumulated in plants (Rico et al. 2011). An interesting study on rice
documented that the individual fullerene C70 NPs were possibly entering plant roots
through osmotic pressure, capillary forces, pores on cell walls, and intercellular
plasmodesmata, or via the highly regulated symplastic route (Lin et al. 2009),
whereas another study on onion, Alium cepa, reported that the application of
hydrophobic fullerenes C70—Natural organic matter in onion cell suspensions—
caused negligible NPs uptake by the cells due to blockage of cell wall pores (Chen
et al. 2010). In contrast to the fullerenes, C70—another CB NP (SWCNT)—was
found to penetrate the cell walls and cell membranes of tobacco cells (Liu et al.
2009). It was demonstrated that CNT can activate water channels in roots as well as
seeds and enhance seed germination/plant growth (Khodakovskaya and Biris 2009;
Khodakovskaya et al. 2011; Villagarcia et al. 2012; Lahiani et al. 2013). Likewise,
another study on tobacco cells demonstrated that the application of MWCNTs in a
wide range of concentrations (5–500 lg/mL) could enhance the cell growth sig-
nificantly compared to the control conditions and a correlation was found between
the activation of MWCNT-treated cell growth and the up-regulation of some major
genes involved in cell division/cell wall formation and water transport
(Khodakovskaya et al. 2013). Lahiani et al. (2013) showed that NPs could suc-
cessfully activate germination of valuable crops including soybean (Glycine max),
maize (Zea mays), and barley (Hordeum vulgare) after deposition of MWCNTs on
seed surfaces. Later on, another group confirmed the promising capabilities of
carbon nanohorns, another group of CB NPs, in activating the germination of
different crop seeds and enhancing growth of plant organs (Lahiani et al. 2015).
Furthermore, it was also documented that MWCNTs could improve the water
uptake in wheat (Triticum aestivum), maize, peanut (Arachis hypogea), and garlic
(Allium sativum) seeds possibly through the creation of new pores (Srivastava and
Rao 2014). In contrast to the positive findings on the application of CNTs, another
study depicted inhibitory effect on root elongation in tomato (Solanum lycoper-
sicum) but enhanced root elongation in onion and cucumber (Cucumis sativa)
(Cañas et al. 2008). Other studies also evidenced the toxic effect of MWCNTs in
plant cells, and application of MWCNTs was found to be deleterious due to the
accumulation of reactive oxygen species (ROS) and subsequently decreased cell
proliferation and cell death (Tan and Fugetsu 2007; Tan et al. 2009). Based on the
positive as well as negative effects of CB NPs, it can be stated that the response of
plants or plant cells to NPs varies with the plant species, stages of growth, and the
nature of the NPs. Further research on nanosciences is needed to reveal the most
efficient and useful combinations of NPs for the betterment of agriculture.

Biogenic nanocrystallines such as Fe, manganese (Mn), zinc (Zn), Cu, Co,
selenium (Se) have been extensively used in the agricultural sector due to their
participation in different redox processes and their presence in many enzymes as
well as complex proteins. Out of these metals, Fe, Cu, and Co with variable
valences are highly bioactive in nature and their application in soybean was found
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to show positive role in germination, growth, and production in a dose-dependent
manner (Ngo et al. 2014). Similarly, the application of silver nanoparticles showed
their positive impact on germination, biotic stress tolerance, and other physiological
parameters of plants (Nair et al. 2010; Savithramma et al. 2012; Sharma et al.
2012). Also, some reviews suggested the importance of typical metals such as gold
(Au), platinum (Pt), and palladium (Pa) in agriculture, biosciences, and pharma-
cology (Abhilash 2010; Agrawal and Rathore 2014). An excellent review has
documented the plant uptake, translocation, accumulation as well as toxicity of
different NPs including those belonging to metal oxide/hydroxide category, namely
TiO2, ZnO, CeO2, Ni(OH)2, and Fe3O4 (Rico et al. 2011). Although some studies
have been carried out on the beneficial role of various metal oxides including CuO,
TiO2, ZnO, CuZnFe2O4, Fe3O4, Fe2O3, the adverse effects of some of those metal
oxide NPs on soil microbial community and soil structure have also been identified
(Frenk et al. 2013). Hence, it is important to research on plant type and soil
conditions before applying any specific type of NPs and further experimentation is
needed in that regard.

1.4 Impacts of NPs on Germination and Seedling
Parameters in Various Crops

Application of NPs was found to have positive as well as negative impact on seed
germination and in different stages of growth and development. Khodakovskaya and
her group demonstrated the ability of MWCNTs to penetrate tomato seed coat and
activate seed germination (Khodakovskaya and Biris 2009; Khodakovskaya et al.
2011). Later, the same group documented that tomato plants grown in soil supple-
mented with MWCNTs were able to produce two times more flowers and fruits
compared to plants grown in control soil (Khodakovskaya et al. 2013). Further
studies showed that the positive effect of MWCNTs on germination and growth of
corn, soybean, and barley seedlings was reproducible between crop species (Lahiani
et al. 2013). An in-depth study was carried out on wheat, maize, peanut, and garlic
for knowing the effect of MWCNTs on seed germination and plant growth
(Srivastava and Rao 2014). Seeds exposed to nanotubes showed three to four times
faster sprouting compared to the controlled condition, and after about 5–10 days of
exposure to MWCNTs, a significant enhancement was detected in the plant growth
and biomass production of the treated plants compared to the control one. It is to be
noted here that the same study also showed evidence on the detrimental effects of
MWCNTs at higher doses. Another study on tomato documented the inhibition
of root elongation after application of CNTs (Cañas et al. 2008). Application of
nanosized TiO2 (10 ppm concentration) on wheat showed lowest germination time
compared to the control condition, while the shoot as well as seedling length was
found to be sufficiently higher after application of 2–10 ppm nanosized TiO2

compared to control and bulk TiO2-treated plants (Feizi et al. 2012). In addition, it
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was stated that the higher concentrations of TiO2-based NPs had inhibitory effect or
not any effect on wheat. Similarly, another study reported that the application of
nano-TiO2 in proper concentration accelerated the germination of aged spinach
(Spinacia oleracea) seeds and enhanced vigor (Zheng et al. 2005). A different study
on chickpea (Cicer arietinum) demonstrated that the application of hydroxylapatite
(HAP) nanorod resulted in better germination and enhanced plant growth. The best
performance was observed in presence of 1 mg/ml Hap-nanorod compared to
control and other doses (Bala et al. 2014). Soybean seeds treated with superdis-
persive iron, cobalt, and copper nanocrystalline powders at zerovalent state under
laboratory condition showed improved germination frequencies compared to the
control condition (Ngo et al. 2014). In addition to that, the application of extra low
dose (not more than 300 mg of each metal per hectare) of nanocrystalline powders in
field experiment was found to have improvement in different aspects of plant growth
and development such as chlorophyll content, number of nodules/root, number of
pods/plant, pods weight, 1000-grain weight, and crop yield. Similarly, another study
on soybean reported improved germination and growth parameters after application
of nano-SiO2 and nano-TiO2 mixtures (Lu et al. 2002). Ag NPs are one of the widely
used engineered NPs. A comprehensive study was carried out for knowing the
effects of Ag NPs on germination and growth on 11 species of wetland plants
including Lolium multiflorum, Panicum virgatum, Carex lurida, C. scoparia, C.
vulpinoidea, C. crinita, Eupatorium fistulosum, Phytolacca americana, Scirpus
cyperinus, Lobelia cardinalis, and Juncus effusus belonging to six different families,
and it was found that different species showed differential response to germination
(Yin et al. 2012). Additionally, the root growth was found to be affected more
compared to the leaf growth after exposure to Ag. Exposure of tobacco plants to
different concentrations of Al2O3 (0, 0.1, 0.5, and 1 %) documented that as the
exposure to NPs increased, the average root length, average biomass, and leaf count
of the NP- exposed plants were significantly decreased compared to the control
samples (Burklew et al. 2012). Along with the various reports on the detrimental
effect of various NPs on germination and plant growth, some studies reported the
genotoxic effect of some NPs. Random amplified polymorphic DNA analysis was
carried out for knowing the DNA damage as well as mutations caused by NPs, and it
was found that after exposure to CeO2 NPs on soybean plants, four new bands were
detected at 2000 mg L−1, and three new bands were found at 4000 mg L−1 treat-
ment (López-Moreno et al. 2010). Another report documented the copper oxide
NP-mediated DNA damage in some terrestrial plants. In that study, under controlled
condition, strong plant growth inhibitions were recorded for radish (Raphanus
sativus), perennial ryegrass (Lolium perenne), and annual ryegrass (Lolium rigidum)
and in addition, some oxidatively modified, mutagenic DNA lesions (7,8-dihydro-
8-oxoguanine; 2,6-diamino-4-hydroxy-5-formamidopyrimidine; and 4,6-diamino-5-
formamidopyrimidine) were found to be accumulated in significant amount under
laboratory conditions (Atha et al. 2012). Further experimentation is needed for
understanding the probable impacts of NPs in biological systems as well as on their
physiological aspects. Some of the chapters of this book are going to address those
specific questions in detail.
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1.5 Effects of Nanoparticles on Gene Expression

The effect of different NPs on gene expression of animals, human as well as plants
has been studied by many workers (Khodakovskaya et al. 2011; Poynton et al. 2011;
Lee et al. 2012; Kaveh et al. 2013; Lahiani et al. 2013). Some studies documented
that after exposure to nanoparticles, the gene expression of superoxide dismutase
(SOD) was altered along with other enzymes in the animal as well as in plant system
(Lee et al. 2012; Kaveh et al. 2013; Siddiqi 2014). In addition to that, higher
concentration (1 %) of Al2O3 nanoparticle stress was found to show significant
up-regulation of a number of micro-RNA genes including miR395, miR397,
miR398, and miR399 (Burklew et al. 2012). These findings might be analyzed in
great detail to understand the global gene expression profiling after the application of
NPs. Out of these miRNAs, especially miR398 was found to possess a significant
relation to SOD expression (Sunkar et al. 2006; Dugas and Bartel 2008), whereas
other miRNAs were involved in other stresses (Sunkar 2010). Microarray-based
gene expression analyses were carried out in Arabidopsis (Arabidopsis thaliana) for
knowing the nanoparticle-specific changes in gene expression after exposure to ZnO,
TiO2, and fullerene soot (Landa et al. 2012). The study reported that after exposure
to ZnO and fullerene soot (FS), mostly the biotic (wounding and defense to
pathogens) and abiotic stress (oxidative, salt, and water deprivation) responsive
genes were up-regulated, whereas ZnO-exposure was responsible for
down-regulation of genes involved in cell organization and biogenesis but
FS-exposure leads to down-regulation of genes involved in electron transport and
energy pathways. Interestingly, after exposure to TiO2, most of the expressional
changes (up-regulation and down-regulation) were detected for genes, which were
responsive to abiotic and abiotic stimulus. Another study on Arabidopsis was done
by microarray for knowing the changes in gene expression after exposure to AgNPs
as well as Ag+ (Kaveh et al. 2013). Among the up-regulated genes, a major part was
associated with the response to metals and oxidative stress (such as cation
exchanger, cytochrome P450-dependent oxidase, SOD, and peroxidase), whereas
the down-regulated genes were responsive to pathogens and hormonal stimuli such
as genes involved in systemic acquired resistance, ethylene signaling, and
auxin-regulated gene involved in organ size (ARGOS). On the other hand, among
the differentially expressed genes in response to AgNPs only, most remarkable
up-regulation (>4.0 fold) was detected in two salt stress-related genes (AT3G28220
and AT1G52000), one gene codes for myrosinase-binding protein (AT1G52040)
involved in biotic stress, three genes engaged in the thalianol biosynthetic pathway
(AT5G48010, AT5G48000, and AT5G47990), and a gene responsive to wounding
(AT2G01520). Although it is clear from the above discussions that the exposure of
Arabidopsis to ZnO, FS or AgNPs causes similar type of changes in gene expression
(Landa et al. 2012; Kaveh et al. 2013), the mechanisms of phytotoxicity are highly
specific to the type as well as concentrations of NPs. Interestingly, germins and
germin-like proteins belonging to cupin superfamily were found to be involved in
various biotic as well as abiotic stresses (Dunwell et al. 2008) and some of the
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members of this superfamily possessed SOD activity (Dunwell et al. 2008; Banerjee
et al. 2010). Very recently, an interesting study on Indian mustard (Brassica juncea)
showed a correlation between copper oxide nanoparticles induced growth sup-
pression and enhanced lignification as well as modification in root system. It is
worthy to mention that a germin-like protein from rice (OsGLP1) was found to have
some relation to plant height and SOD-mediated cell wall reinforcement (Banerjee
and Maiti 2010; Banerjee et al. 2010). If the proteins belonging to cupin superfamily
members are involved in nanoparticle-regulated cascades, there will be a new area of
research for understanding such complex plant signaling networks involving various
stresses. A variety of NPs was found to have effects on gene expression in plant
system as well as in animal systems including humans, and NPs are able to express
distinct bioactivity and unique effects with different biological systems. For
assessing the potential health risks after exposure to NPs, luciferase reporter system
has been used for understanding the gene expression profiles in response to NPs
(Ding et al. 2012). Further work is needed in model organisms to specifically
identify the signaling cascades or to determine the regulation of a set of genes by
specific NPs in a dose-dependent manner.

1.6 Translocation and Accumulation of Nanoparticles
in Plant Tissues and Organs

Due to rapid progress in the field of nanosciences and wide applications of nano-
materials (NMs) in medical sciences as well as in agriculture, some researchers
started analyzing the potential impacts of NMs along with their translocation and
accumulation in tissues. The first study on the uptake, accumulation, and translo-
cation analyses of magnetite (Fe3O4) nanoparticles was carried out on pumpkin
(Cucurbita maxima) (Zhu et al. 2008). The study revealed that the iron oxide NPs
(Fe3O4) were taken up by pumpkin roots and subsequently translocated through
plant tissues. In addition to that, it was also found that almost 45.5 % of fed
nanoparticles were accumulated in roots and about 0.6 % of the nanoparticles were
detected in leaves. In contrast to that, application of same NPs on another crop, lima
bean (Phaseolus limensis), did not show any uptake and transport of the NMs as
revealed by same researchers.

Among the CB NMs, fullerene C70 and fullerols were mostly found to be taken
up as well as accumulated in plants (Rico et al. 2011; Kole et al. 2013). An
interesting study on uptake and translocation of CB NPs on rice (Oryza sativa)
established that fullerene C70 was easily taken up by roots and transported to shoots
compared to MWCNTs (Lin et al. 2009), possibly due to the relatively larger size of
MWCNTs than fullerenes. Additionally, in the roots of mature plants, no C70 was
detected, explaining robust transport of NPs from root to shoot. SWCNTs, another
CB NPs, were found to show gradual findings regarding its penetration to plant
cells (Liu et al. 2009; Shen et al. 2010). Some study on Bright Yellow (BY-2) cells
reported that the water-soluble SWCNTs (<500 nm in length) were able to
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penetrate the intact cell wall and the cell membrane through fluidic phase endo-
cytosis, whereas another study on cucumber documented no uptake of SWCNTs by
the roots upon exposure to CB NPs for 48 h (Cañas et al. 2008). Little is known
about the quantity of NPs being delivered inside plant tissues due to less availability
of detection methods. Dr. Green and his group showed the ability of the
microwave-inducing heating technique to quantify tubular structure CB NPs inside
plant tissue (Irin et al. 2012). This method was followed to quantify SWCNHs
inside different crop roots system (Lahiani et al. 2015) and MWCNTs inside dif-
ferent plant tissues (Irin et al. 2012).

Application of an aqueous colloidal solution of NaYF4:Yb,Er nanocrystals
during watering was found to show uptake and transport of nanocrystals from roots
to leaves in moth orchid (Phalaenopsis spp.) and Arabidopsis (Hischemoller et al.
2009). Probably that was the first report on uptake kinetics and that illustrated the
potential penetration routes of NPs in plant tissues. The route of penetration of the
nanocrystals at different period of times in different plant tissues was carried out
using confocal laser scanning microscopic analyses. The uptake and accumulation
of Cu NPs, Ag NPs, and metal NPs have been described in some recent reviews
(Ma et al. 2010), and it was found that the higher application of Cu NPs resulted in
higher uptake and accumulation under laboratory condition. Another review has
nicely described the uptake and accumulation of metal oxide NPs as well as metal
NPs in plant systems (Rico et al. 2011).

Other than the CB NPs, the magnetic NPs (Fe3O4) were detected in roots, stems,
and leaves of pumpkin plants and the uptake was found to be dependent on the
growth medium (Zhu et al. 2008). Among the metal oxide-based NPs, an
ultra-small TiO2 (<5 nm) complexed with Alizarin red S nanoconjugate was found
to show uptake and translocation in Arabidopsis plants (Kurepa et al. 2010). The
study also documented that the mucilage released by the roots of Arabidopsis
formed a pectin hydrogel capsule surrounding the root, which either facilitated or
inhibited the entry of TiO2 complexed with Alizarin red S or sucrose. In contrast to
that, another study on maize roots did not show any uptake of TiO2 NPs (30 nm)
probably due to the larger size of the NPs than the pore diameters (Asli and
Neumann 2009). Other studies also documented that polysaccharides in mucilage
might adsorb and inactivate toxic heavy metals in root rhizosphere and ultimately
enhanced the accumulation of aluminum (Watanabe et al. 2008). The uptake and
accumulation study of another metal oxide NPs (ZnO) by soybean seedlings
demonstrated that at 500 mg L−1 concentrations, the uptake of the NPs (8 nm) was
significantly higher possibly due to lesser aggregation, whereas at higher concen-
trations (1000–4000 mg L−1), the passage of NPs through the cell pore walls was
difficult probably due to agglomeration, and that caused reduced uptake and
accumulation (López-Moreno et al. 2010).

It has been found that after application of CeO2 at 4000 mg L−1, the concen-
tration of Ce (mg kg−1 dry weight biomass) significantly varied between soybean,
alfalfa (Medicago sativa), maize, and tomato. The concentrations of Ce in corn,
soybean, tomato, and alfalfa were found to be approximately 300, 462, 4000, and
6000 mg kg−1 dry weight biomass, respectively. The differences in concentrations
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could be explained by the variations in the root microstructures and the physical as
well as chemical interactions between the NPs and root exudates in the rhizosphere
of respective plant species (Rico et al. 2011). Due to advancement in the field of
nanotechnology, some of the present research papers and review articles are focusing
on the shape, size, structure, chemical composition, and surface chemistry of NPs for
understanding the nanoparticle aggregation in the environment and subsequently the
accumulation and transport of NPs in living systems (Hotze et al. 2010; Albanese
et al. 2012). Further research is needed in this context for knowing the uptake
capacity and permissible limit of different NPs in agriculture and food industry.

This book is going to describe the physio-chemical properties of different NPs,
their merits as well as demerits, the detection, and quantification of NPs along with
their involvement in uptake, accumulation, and translocation. Additionally, the
chapters of this book will focus on the use of NPs and their impacts on germination,
growth, and other physiological aspects as well as yield and quality components.
Some of the sections will describe the modern understanding of the gene expres-
sional changes caused by NPs and different modes of transmission of NPs. Later
chapters will focus the importance of NPs for gene delivery, fertilizer delivery, and
various agrochemicals applications along with their involvement in plant protec-
tion. At last but not the least, the possible merits and demerits of various NPs, the
effects of NPs on soil, plant and environments and the prospects and policies for
nanosciences will be considered.
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Chapter 2
Physical and Chemical Nature
of Nanoparticles

Sanmathi Chavalmane Subbenaik

Abstract Nanoparticles have some specific features, including physical properties,
chemical properties, merits, and demerits, which have drawn much attention for
their application in nanobiotechnology. This chapter explains the state of the art of
different properties of nanoparticles and their potential beneficial roles. In addition,
this chapter discusses on the research on nanoparticles essentiality for plants and
describes the current knowledge concerning the key nanoparticles with important
studies for their future applications.

Keywords Nanoparticles � Physiochemical nature � Merits and demerits

2.1 Introduction

Nanoparticles in general refer to particles having internal structural measurement or
external dimensions within the size range of a few nanometers, preferable up to
100 nm size. According to the European Committee for Standardization, nano-
materials are defined as the materials with any external dimension at the nanoscale,
or that possess nanoscale internal or surface structures. Nanoscale describes the size
range from approximately 1–100 nm (ISO/TS 27687: 2008) (Lövestam et al. 2010).
It is most frequently used as a specific size description (usually <100 nm, though
sometimes <50 nm), and this book chapter will use the term nanoparticle to refer to
particles of <100 nm.

Nanoparticles have been developed for use in the area of agriculture (Nair et al.
2010; Campos et al. 2014), where they can increase the efficiency and productivity
of crops. To properly assign the mechanisms for the application of nanoscale
materials in plants, their synthesis and characterization must be well understood.
Scientists have many methods to synthesize NPs of different size, shape, and
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surface properties. The major synthesis routes are liquid phase, gas-phase, and
biological methods (Klaus et al. 1999; Konishi et al. 2007; Raliya and Tarafdar
2012; Mittal et al. 2013). The main liquid phase syntheses of inorganic NPs are
coprecipitation, solgel processing, micro-emulsions, hydrothermal or solvothermal
methods, template synthesis, and biometric synthesis (Cushing et al. 2004). The
biological method can be approached for synthesis of NPs, which is rapid and
cost-effective. (Gilaki 2010; Raliya and Tarafdar 2012). Besides these synthesis
methods, the gas-phase synthesis methods are of interest because they allow elegant
way to control process parameter in order to be able to produce size-, shape-, and
chemical composition-controlled nanostructures, and also can be used to prepare
the large quantity of NPs (Jiang et al. 2007; Thimsen et al. 2008).

Nanoparticles are of two types: non-engineered and engineered NPs.
Non-engineered NPs present in the environment are derived from natural events
such as terrestrial dust storms, erosion, volcanic eruption, and forest fires (Nowack
and Bucheli 2007). Engineered NPs (ENPs) are intentionally produced by man
using many different materials, such as metals (including Au, Ag, Zn, Ni, Fe, and
Cu) (Fedlheim and Foss 2001), metal oxides (TiO2, Fe2O4, SiO2, CeO2, and Al2O3)
(Fernández‐García and Rodriguez 2011), nonmetals (silica and quantum dots)
(Ehrman et al. 1999), carbon (graphene and fullerene) (Endo et al. 2013), polymers
(alginate, chitosan, hydroxyethylcellulose, polyhydroxyalkanoates and polyhy-
droxyalkanoates, and poly-E-caprolactone) (Paques et al. 2014) (Rao and Geckeler
2011), and lipids (soybean lecithin and stearic acid) (Ekambaram et al. 2012).

Engineered NPs are able to enter into plants cells and leaves and also can
transport DNA and chemicals into plant cells (Galbraith 2007; Tripathi et al. 2011;
Raliya et al. 2015). The unique physical and chemical properties of nanoparticles
could boost plant metabolism (Nair et al. 2011; Brew and Strano 2014). Here, we
describe the physical and chemical nature of the NPs and compare their merits and
demerits during application. Figure 2.1 shows the different physical and chemical
nature of NPs.

Fig. 2.1 Physical and
chemical nature of
nanoparticles
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