
Anchor Academic Publishing

disseminate knowledge

Scheduling in Distributed
Computing Environment Using
Dynamic Load Balancing

Dr. Priyesh Kanungo

Kanungo, Priyesh: Scheduling in Distributed Computing Environment Using Dynamic
Load Balancing, Hamburg, Anchor Academic Publishing 2016

PDF-eBook-ISBN: 978-3-96067-546-4
Druck/Herstellung: Anchor Academic Publishing, Hamburg, 2016

Bibliografische Information der Deutschen Nationalbibliothek:
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.d-nb.de abrufbar.

Bibliographical Information of the German National Library:
The German National Library lists this publication in the German National Bibliography.
Detailed bibliographic data can be found at: http://dnb.d-nb.de

All rights reserved. This publication may not be reproduced, stored in a retrieval system
or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission of the publishers.

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung
außerhalb der Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages
unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen,
Mikroverfilmungen und die Einspeicherung und Bearbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in
diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme,
dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei
zu betrachten wären und daher von jedermann benutzt werden dürften.

Die Informationen in diesem Werk wurden mit Sorgfalt erarbeitet. Dennoch können
Fehler nicht vollständig ausgeschlossen werden und die Diplomica Verlag GmbH, die
Autoren oder Übersetzer übernehmen keine juristische Verantwortung oder irgendeine
Haftung für evtl. verbliebene fehlerhafte Angaben und deren Folgen.

Alle Rechte vorbehalten

© Anchor Academic Publishing, Imprint der Diplomica Verlag GmbH
Hermannstal 119k, 22119 Hamburg
http://www.diplomica-verlag.de, Hamburg 2016
Printed in Germany

i

SILENT FEATURES OF THIS BOOK

This book illustrates distributed computing concepts and the steps involved in processor

management in computing cluster, server cluster and grid. The problem of poor resource

utilization due to uneven processing load in distributed systems is studied and techniques

of solving the problem using dynamic load balancing have been suggested. It describes

detailed algorithms for scheduling using dynamic load balancing. Various theoretical

concepts, experiments and examples enable students in understanding the process of

dynamic load balancing.

The book is suitable for the students of Distributed Computing, Operating Systems

and Advance Operating Systems subjects of B.E., M.C.A., M. Tech. and Ph.D courses.

ii

PREFACE

This century has presented new challenges for distributed systems. These challenges

include manifold increase in the number of information sources and the number of users.

With the growing demand of resource intensive distributed computing applications, the

need of using sophisticated techniques to improve the performance has also increased.

Distributed systems suffer from uneven process arrivals which causes load imbalance,

where some nodes are overloaded while other nodes are underloaded, or even idle.

Dynamic load balancing is a distributed scheduling technique which may be used to

improve reliability and overall throughput not only on a cluster of nodes and

workstations, but also on a server cluster. It distributes processing workload evenly to

improve response time and to maximize resource utilization.

In this book, the problem of poor resource utilization due to uneven processing load in

distributed systems is studied and techniques of solving the problem using dynamic load

balancing have been suggested. We have addressed the issue of dynamic load balancing

in terms of large amount of status information and heavy network traffic. We have

presented algorithmic infrastructure for load balancing in a cluster of nodes and

workstations as well as a server cluster. Various load indices for load measurement and

parameters for performance measurement in a distributed system have been explored.

Performances of various load balancing algorithms have been compared using these load

indices and parameters. The impacts of load balancing on individual hosts and servers as

well as the factors affecting load balancing performance are investigated. For achieving

dynamic load balancing, we have presented both non-preemptive as well as preemptive

process migration methodologies. We have compared two strategies and suggested

parameters to calculate process migration cost. Performance studies with respect to web

servers have been carried out and techniques for improving performance of a server

cluster have been suggested. New challenges favouring further need of dynamic load

balancing in Information Technology applications have also been highlighted.

iii

Dynamic load balancing is found to significantly improve mean response time under

unbalanced workload conditions. Load balancing is found to be very effective for small

as well as large networks. All nodes, even underloaded nodes, are benefited from load

balancing. Similarly all types of jobs get better average response time. Many of the above

results are likely to be applicable in general to cluster nodes and workstations, network

and web servers and even to networking devices like routers. Dynamic load balancing is

cost effective, flexible and reliable strategy to support distributed scheduling even

without modifying the system kernels or application programs and without deploying

costly powerful servers and nodes.

This book is organized into eight chapters that reflect the stages of DLBs. In

Chapter1, we have provided a general overview of the field along with introduction to

related areas. We have also mentioned the objective of the proposed research work in this

chapter. Rest of the thesis is organized as f+ollows:

Chapter 2 describes the process of load balancing in details. A number of load

balancing techniques are defined and studied. The process of collecting the current state

of the system, identifying underloaded and overloaded nodes, identifying processes to be

transferred and mechanism of transferring processes from underloaded nodes to

overloaded nodes has been described. The algorithms for selecting destination node have

been described and compared. We also describe an overall methodology for carrying out

DLB.

Chapter 3 considers an important issue of load estimation and performance

measurement of load balancing algorithms. We have explored various parameters to

measure load on the nodes in the system and evaluated various load balancing policies.

We have also discussed architecture, implementation and performance evaluation of

indices and parameters for capturing and distributing the load using DLB technique.

DLB can not be achieved without process migration. In Chapter 4, we discuss about

this important phase in DLB. We have compared non-preemptive and preemptive

migration methods and described framework for process migration. Technique of

iv

transferring process address space from source node to destination node has been

explored. We have discussed mechanism for calculating process migration cost and

presented methodology for process migration.

A critical problem of performance improvement of network and web servers is

highlighted in Chapter 5. In this chapter, we have studied the method of performance

improvement in server cluster with the help of DLB. Web servers are facing the problem

of constantly increasing network traffic and diverse load levels. It is not feasible to use a

single powerful server. A cluster of replicated servers can be used and clients’ requests

can be distributed evenly among the servers in this cluster. We have described the

problem of server load balancing and compared various load balancing policies for the

cluster. The objective is to identify the algorithm that produces good overall performance.

In Chapter 6, we have identified new challenges posed by IT application, which are

causing overload in the web based applications and necessitate the use of DLB. We have

mainly raised the issues of public domain software, information overload, lack of

optimization algorithms in routers, heterogeneity of servers and incompatibility problem

of servers. Objective of this chapter is to explore the IT domains where the DLB

techniques can be effectively implemented. To meet these challenges only few solutions

are available and more solutions are possible. These problems can be tackled by the

solutions provided in Chapter 2 to Chapter 5. Possible areas of research have also been

mentioned.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION TO DISTRIBUTED COMPUTING

ENVIRONMENT .. 1

1.1 PREAMBLE ... 1

1.1.1 Processor Allocation ... 5

1.1.2 Distributed Shared Memory (DSM) ... 6

1.1.3 Naming .. 7

1.1.4 Distributed File System (DFS) .. 8

1.2 MOTIVATION BEHIND DYNAMIC LOAD BALANCING 9

1.3 PROCESS OF LOAD BALANCING .. 12

1.4 ORGANIZATION OF THE BOOK .. 13

1.4.1 Objectives ... 13

1.4.2 Scope ... 15

CHAPTER 2 DYNAMIC LOAD BALANCING METHODOLOGY 17

2.1 PREAMBLE ... 17

2.2 DYNAMIC LOAD BALANCING METHODOLOGY 19

2.2.1 Information Policy .. 19

2.2.2 Process Transfer .. 20

2.2.3 Status Information Exchange .. 22

2.2.4 Node Selection .. 23

2.2.5 Process Migration ... 24

vi

2.3 ALGORITHM DESCRIPTION ... 26

2.3.1 Informal Description of the Algorithm ... 26

2.3.2 Formal Algorithm ... 29

2.3.3 Example .. 30

2.4 SUMMARY ... 34

CHAPTER 3 LOAD MEASUREMENT AND PERFORMANCE ISSUES IN DLB 35

3.1 PREAMBLE ... 35

3.2 LOAD INFORMATON MANAGEMENT ... 36

3.2.1 Parameters for Static Load Balancing ... 37

3.2.2 Processor Queue Length ... 37

3.2.3 Execution Time ... 38

3.2.4 Process Age ... 39

3.3 PERFORMANCE MEASUREMENT ... 41

3.3.1 Mean Response Time .. 42

3.3.2 Processor Utilization ... 42

3.3.3 Mean Slow Down ... 42

3.4 NODE SELECTION TECHNIQUES .. 43

3.5 ALGORITHM DESCRIPTION ... 43

3.5.1 Informal Description of the Algorithm ... 43

3.5.2 Formal Algorithm ... 44

3.5.3 Example .. 48

3.6 SUMMARY ... 51

vii

CHAPTER 4 IMPLEMENTATION OF DYNAMIC LOAD BALANCING

THROUGH PROCESS MIGRATION .. 53

4.1 PREAMBLE ... 53

4.2 NON-PREEMPTIVE AND PREEMPTIVE MIGRATION 54

4.3 FRAMEWORK FOR PROCESS MIGRATION ... 57

4.3.1 Decision to Migrate a Process ... 57

4.3.2 Freeze the Process on Source Node .. 58

4.3.3 Create an Empty Process on Destination Node .. 58

4.3.4 Transfer the Process State ... 58

4.3.5 Transfer the Address Space .. 59

4.3.6 Forward the Pending Messages .. 63

4.3.7 Restart the Process on Destination Node .. 64

4.4 METHODOLOGY ... 64

4.4.1 Informal Description the Algorithm ... 65

4.4.2 Formal Algorithm ... 68

4.4.3 Example .. 70

4.5 SUMMARY ... 73

CHAPTER 5 DYNAMIC LOAD BALANCING IN WEB SERVERS 75

5.1 PREAMBLE ... 75

5.2 LOAD BALANCING OF CLUSTER SERVER ... 81

5.2.1 Random ... 82

5.2.2 Round Robin ... 82

5.2.3 Weighted Round Robin ... 82

viii

5.2.4 Shortest Queue .. 83

5.2.5 Diffusive Load Balancing ... 84

5.3 LOAD BALANCING METHODOLOGY .. 86

5.3.1 Informal Description of the Algorithm ... 86

5.3.2 Formal Algorithm ... 91

5.3.3 Example .. 94

5.4 SUMMARY ... 98

CHAPTER 6 EXPLORING DLB IN INFORMATION TECHNOLOGY 100

6.1 PREAMBLE ... 100

6.2 RECENT CHALLENGES ... 102

6.2.1 Public Domain Software ... 103

6.2.2 Information Overload .. 104

6.2.3 Mismatch / Incompatibility of Severs ... 107

6.2.4 Lack of Optimization Algorithm in Routers ... 108

6.2.5 Performance and Heterogeneity of End Servers 111

6.2.6 Threats and Viruses ... 112

6.3 SOLUTIONS .. 114

6.4 FUTURE SCOPE ... 115

6.5 CONCLUDING REMARKS ... 117

REFERENCES…………… ... 118

1

CHAPTER 1

INTRODUCTION TO DISTRIBUTED COMPUTING ENVIRONMENT

1.1 PREAMBLE

Modern operating systems provide access to a large number of resources and facilities

including communication and resource sharing. In distributed computing environments,

effective scheduling of jobs and efficient resource utilization are critical issues. Hence,

there is a great deal of work to be done by an operating system (OS hereafter) as far as

scheduling of jobs on various processing elements is concerned. Our thesis addresses this

important issue of processor scheduling in a distributed computing environment and

emphasizes the need of dynamic load balancing (DLB hereafter) to solve the problem in a

cost effective manner.

A conventional OS on a centralized computer manages all the systems’ resources viz.

processor, memory, devices and information. It provides all the related services like

processor allocation, memory management, device management and information

management to the users . It may also provide some simple communication services e.g.

message passing and file transfer from one computer to other as shown in Fig 1.1.

Fig. 1.1: Communication in centralized OS

User Processes

Centralized OS

Communication
Software

User Processes

Centralized OS

Communication
Software

Communication Network

. . .

2

Network operating system (NOS hereafter) is intended to provide users with global

access to resources beyond simple communication available in a centralized system as

shown in Fig. 1.2. Major limitation of NOS is that it does not take global control over the

resources in the network. The NOS provides access to remote resources by using the

facilities and mechanisms supported by local OS. Each computer in the network is

managed locally, independent of the other computers. NOS merely provides

communication infrastructure to the users. A user must have the knowledge of existence

of a remote resource and privileges to access this resource. He must explicitly request

NOS to provide connectivity to the remote resource.

Fig. 1.2: A typical microkernel

Distributed operating system, on the other hand, considers the resources across multiple

computer systems (including all resources on all sites) to be globally owned. The

system controls and management are based on a single system-wide policy. Contrary to

NOS, a distributed operating system is built on a bare machine, not just as an add-on to

existing software. The distributed operating system determines the resource requirements

of a process and decides how best to execute this process based on best guess or

knowledge about the total system as shown in Fig. 1.3.

User Processes

Centralized OS

Network OS

Communication
Software

User Processes

Centralized OS

Network OS

Communication
Software

Communication Network

User Processes

Centralized OS

Network OS

Communication
Software

Noden Node2Node1

. . .

3

Fig. 1.3: Resource sharing in distributed OS

As the distributed operating system considers various resources available on a computer

network to be globally owned, it provides resource sharing in a user transparent way.

Thus, it makes the collection of computers to act like a virtual uni-processor system. The

system is perceived as a whole and the existence of separate components of the system is

concealed from the users and application programmers. A single system-wide policy

manages the access to the resources effectively and efficiently. The system determines

the processes’ resource requirement and allocates the resources in a global way by

collecting the information about current status of the total system. In this manner, the

functionality of centralized system is made available in managing the resources in a

computer network. For a given node, local and remote processes are executed in an

identical way [Shiraji,1995].

In the distributed environment, kernel manages only basic resources like processor,

memory and inter-process communication (IPC hereafter). It is implemented as

microkernel architecture replicated on each node to derive functionality and features of a

conventional monolithic kernel. As shown in Fig.1.4, it contains modules for process

management, IPC, memory management; interrupt processing, system calls, traps and

exceptions. Shared resources and services of the OS are provided by open servers that are

Communication Network

User
Processes

Distributed
OS

User
Processes

Distributed
OS

Node1 Noden

. . .

4

implemented above the micro-kernel layer. Local and remote resources are accessed in

identical way without the knowledge of their location. DCS are open and scalable. They

are capable of detection and recovery of faults. Fault tolerance is achieved with the help

of hardware redundancy and software recovery [Petri,1995].

The services provided by the open servers are distributed scheduling, distributed

shared memory, distributed file system, name services, remote procedure calls, network

servers etc. Apart from the functionality of conventional OS in a centralized environment,

a number of other services are provided in a distributed environment as shown in Fig. 1.4.

Fig. 1.4: A typical microkernel

The main services provided by distributed operating systems are:

Application Code Layer (Applications, Utilities and Lib.)

 General Purpose Servers for Unix Emulation
 Server

 File Server Unix Process Manager

 Other
 Network Server Specific

 Pipe Server Servers
 Name Server

Micro Kernel (Replicated on Each Node)

Process Management

 Interprocess Communication (IPC)

 Thread Management Memory Management

Supervisor (Machine Dependent)

5

1.1.1 Processor Allocation

Apart from processor scheduling on a specific node, process management tries to make

optimal use of processing elements in a distributed environment and provides best

possible services to a process by transferring the processes to remote processor, if

necessary. Execution of a process is not bounded to local node. How best to execute a

process using the resources available in the distributed environment depends on system’s

best guess about the current state of total system. If the node on which a process is

waiting for execution has a long queue, then the process may be shifted to some other

node which is either idle or having less number of processes. This ensures proper

utilization of resources and improved response time of the process [Alnoso,1988;

Ridge,1997].

Main design goals in processor scheduling are better resource utilization, improvement

in response time of processes, minimizing network congestion and optimization of

scheduling overheads. A number of techniques are used for distributed scheduling of

processes. In task assignment approach, a process is treated as a collection of tasks which

are scheduled on nodes by taking into consideration the cost of processing each task on

every node and IPC cost between each pair of processors. An optimal weight is obtained

by finding minimum weight cut-set using network flow algorithm or using heuristics if

problem is NP-hard as in case of arbitrary number of processors [Sinha,2001;

Barak,1993].

Multithreading can be used for implementing task assignment approach, where each

task is organized as a thread. Peer threads can execute concurrently in multiprocessor as

well as distributed computing systems (DCS hereafter). A thread is a unit of execution

within a process and has its own program counter, register set and stack. However all

threads share same address space. Threads also share open files, child processes,

semaphores, signals and accounting information. Peer threads do not require protection

among them. Threads may be supported at user level or at kernel level. User level threads

can be implemented without OS support and allow users to use their own scheduling

