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  Pref ace   

   “ Live as if you were to die tomorrow ,  learn as if you were to live forever ” 

   Mahatma Gandhi    

   Volume 4 of this 5 volume series adds various studies on phytoremediation of 
organic contaminants from terrestrial and aquatic ecosystems. In this volume, some 
examples on applications of phytoremediation in wastewater engineering technol-
ogy have been provided. Various studies on natural and constructed wetlands for 
phytoremediation have also been included in this volume. The importance of  phy-
toremediation   in reclamation and restoration of terrestrial and aquatic ecosystems 
has been described. Information on uptake, tolerance mechanisms and the role of 
grasses in phytoremediation of various organic contaminants has also been pro-
vided. Plant microbe interactions, bio-retention systems, phenolic compounds and 
enzymatic applications in phytoremediation of contaminated soil and water have 
been described in different chapters of this volume. The chapters in volume 4 illus-
trate how phytoremediation applications using constructed wetlands can also serve 
in the removal of pathogenic bacteria from contaminated waters. Volume 4 of this 
book series provides additional accounts of some selected phytoremediation 
research projects and case histories from specifi c sites and/or laboratories. The edi-
tors and contributing authors hope that one result of publishing this book will be to 
provide a wide range of useful experimental data derived from global applications 
of phytoremediation. Hopefully, like the previous three volumes of this book series 
this volume can also provide new insights into the advantages and disadvantages of 
phytoremediation to manage the continuing threat of ecosystem degradation result-
ing from anthropogenic inputs of environmental contaminants.  

  Tabuk, Saudi Arabia     Abid     A.     Ansari    
 Rohtak, India     Sarvajeet     Singh     Gill    
 Rohtak, India     Ritu     Gill    
 Syracuse, NY     Guy     R. Lanza    
 Syracuse, NY     Lee     Newman     
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      Phytoremediation of PCBs and PAHs 
by Grasses: A Critical Perspective                     

     Esmaeil     Shahsavari     ,     Arturo     Aburto-Medina    ,     Mohamed     Taha    , 
and     Andrew     S.     Ball   

       Abstract     Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls 
(PCBs) are two major environmental contaminants which threaten our health and 
environment. The removal of these key environmental pollutants from the environ-
ment is therefore paramount. Among the cleanup methods currently being used, 
traditional methods such as chemical and physical treatments tend to be expensive, 
laborious and may cause secondary contamination. Phytoremediation, the use of 
plants and associated microorganisms, represents a promising, nondestructive and 
cost-effective in situ technology for the degradation or removal of contaminants. 
Grasses belonging to the Poaceae family have drawn signifi cant attention in this 
regard due to their fast growth, dense, fi brous root systems, and the demonstrated 
fast removal of PAH and PCB compounds from soils in which these plants have 
been grown. In this review, we review  research on the use of grasses for the degrada-
tion of PAHs and PCBs and highlight the benefi ts of this phytoremediation approach.  

  Keywords     Phytoremediation   •   Grass   •   Polycyclic aromatic hydrocarbons   • 
  Polychlorinated biphenyls   •   Plant roots   •   Endophytes  
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1       Introduction 

 Since the start of the industrial  revolution  , there has been a steady impact of human 
activities on the environment. This has resulted in large environmental problems 
that threaten both  environmental and human health  . The constant increase in human 
activities is related to the exponential growth of the world population in the last 
century, now expected to exceed 8.9 billion by 2050 (UN). Such an increase in the 
global population also means a faster depletion of natural resources and ever- 
increasing pressure on the environment, resulting in increasing amounts of chemical 
and radioactive pollutants into the environment. In addition, inhabitants of major 
cities are commonly affected by air pollution generated by heavy industries and 
motor vehicles; the  World Health Organization (WHO)   estimates that these emis-
sions account for the death of three million people per year worldwide [ 1 ]. 

  Water and soil pollution   is a huge environmental problem caused by the vast amount 
of waste generated by human kind; in the European Union (EU) alone, around three 
million sites of contamination are suspected and 250,000 are known as contaminated 
sites which need to be cleaned up [ 2 ]. In China, it is estimated that 1 × 10 4  ha of land are 
contaminated with petroleum hydrocarbons [ 3 ]. The situation in aquatic systems is not 
much better; around 1.7–8.8 million metric tonnes of oil goes into  aquatic environ-
ments   [ 4 ] every year. Polycyclic aromatic hydrocarbons (PAHs), a key component of 
oil have been produced in huge amounts from anthropogenic activities such as oil refi n-
ing and during incomplete fuel combustion [ 5 ], resulting in soil contamination between 
1 μg/kg and 300 g/kg [ 6 ]. PAHs are of great concern since these compounds have car-
cinogenic and mutagenic properties and can enter the food chain because of their high 
persistence in the environment and their ability to bioaccumulate [ 7 ,  8 ]. 

 Soils are also commonly polluted with hydrophobic man-made compounds that tend 
to be recalcitrant, they are called  persistent organic pollutants (POPs)   of which PAH are 
included [ 9 ]. These  POPs   are listed in the Stockholm convention (2004) and include 
aldrin, chlordane, dieldrin, endrin, heptachlor, hexachlorobenzene (HCB), mirex, toxa-
phene, polychlorinated biphenyls (PCB), DDT, dioxins, and furans. The following nine 
were added to the list in 2010: chlordecone, lindane, hexabromobiphenyl, pentachloro-
benzene, alpha hexachlorocyclohexane, beta hexachlorocyclohexane, perfl uorooctane 
sulfonic acid, its salts and perfl uorooctane sulfonyl fl uoride (PFOS), tetrabromodiphe-
nyl ether and pentabromodiphenylether (‘commercial pentabromodiphenyl ether’), 
hexabromodiphenyl ether and heptabromodiphenyl ether (‘commercial octabromdiphe-
nyl ether’) [ 10 ]. Many of these compounds were used for plant protection and as pest 
control chemicals and now are some of the most serious contaminants. 

 As a result of the threats to the environment from these organic contaminants, there 
is now an urgent need to remove them from the environment. There are a range of 
 traditional removal techniques   such as chemical oxidation, thermal treatment, and sol-
vent washing for PAHs and PCBs; these methods are expensive (varying between $50 
and $500 per tonne of soil) and further post-labor treatments are required. Therefore, 
increased attention has been paid to more economic and environmentally friendly 
remediation approaches such as phytoremediation. The aim of this chapter is to describe 
and assess the potential of phytoremediation of organic contaminants by grasses.  

E. Shahsavari et al.
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2     PAH  and PCB Compounds   

 Polycyclic aromatic hydrocarbons (PAHs) are defi ned as a group of organic com-
pounds, formed of two or more 2–6 aromatic rings (Fig.  1 ). Fossil fuel refi ning, 
timber products processing, iron and steel manufacturing, textile mills, vehicle 
exhausts, forest fi res, and volcanoes are important sources of PAHs [ 11 ]; however, 
the primary source of PAHs is fuel combustion [ 9 ]. All PAHs exhibit toxicity prop-
erties; the high-molecular-weight PAHs are also potentially carcinogenic.

   The 2015 ranking of PAHs in the  United States Agency for Toxic Substances and 
Disease Registry (ATSDR)   was 9 [ 12 ], while one particular PAH, benzo[ a ]pyrene, 
ranked 8. The  US Environmental Protection Agency (US-EPA)   lists 16 PAHs as 

  Fig. 1    Representative structure of PAHs and  PCBs         
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priority pollutants. These 16 PAHs include naphthalene, fl uorene, acenaphthene, 
acenaphthylene (2 ring), fl uoranthene, phenanthrene, anthracene (3 ring), chrysene, 
pyrene, benzo[ a ]anthracene, benzo[ b ]fl uoranthene, benzo[ k ]fl uoranthene (4 ring), 
benzo[ a ]pyrene, indeno[1,2,3- c , d ]pyrene, dibenzo[ a , h ]anthracene (5 ring), and 
benzo[ g , h , i ]perylene (6 ring) [ 13 ]. 

 Polychlorinated biphenyls (PCBs) represent a major group of  persistent organic 
pollutants (POPs)  , which contain 1–10 chlorine atoms and comprise 209 different 
congeners (Fig.  1 ). PCBs are widely used as coolants and lubricants in transformers, 
capacitors, heat exchange fl uids, paint additives, carbonless copy paper, and plastic. 
It is estimated that about 1.5 million tons of PCBs were manufactured over 40 years 
between the1930s and 1970s. The usage of PCBs was banned in the late 1970s, 
however there is still substantial amounts of PCBs released into the environment 
from different sources (e.g. old electrical equipment) in conjunction with poor han-
dling and storage, spills, and improper disposal in the past [ 14 – 16 ]. 

 PCBs are classifi ed as carcinogenic to humans. Exposure to PCBs leads to neu-
rological, reproductive, endocrine, and cutaneous disorders. It has also been shown 
that PCBs are strongly linked to some metabolic diseases, including type 2 diabetes, 
obesity, metabolic syndrome, and non-alcoholic fatty liver disease [ 17 ]. Like PAHs, 
PCBs are listed as USEPA Priority Pollutants and were ranked 5 by the United 
States Agency for Toxic Substances and Disease Registry (ATSDR) in the year 
2015 [ 12 ]. Although PAHs and PCBs are recalcitrant with low aqueous  solubility  , 
low bioavailability, and high stability in environments, both are subjected to bio-
logical degradation by bacteria, fungi, and plants. For more information regarding 
PAH degradation by bacteria and fungi, see articles by Bamforth and Singleton [ 6 ], 
Haritash and Kaushik [ 7 ], and Mougin [ 18 ]; and for a recent review for PCBs, see 
Passatore et al. [ 17 ].  

3      Phytoremediation Technique   

 Phytoremediation is defi ned as the use of plants or associated microorganisms to 
remediate contaminated soils, sediments, and water [ 19 ,  20 ]. The term “phytoreme-
diation” contains two words: Greek  phyto  (meaning plant) and Latin  remedium  
(meaning to correct or remove an evil) [ 21 ]. This method is relatively recent and it 
has attracted signifi cant attention on the basis of current research. However, like 
other methods, phytoremediation has both advantages and disadvantages as out-
lined in Table  1 .

   Many studies have shown phytoremediation to be very effi cient for the removal 
of a wide range of contaminants such as metals [ 22 – 24 ], POPs [ 25 – 29 ], and hydro-
carbons [ 30 – 36 ]. Furthermore, excellent reviews have also previously assessed the 
potential of phytoremediation [ 9 ,  33 ,  37 ,  38 ]. Phytoremediation is a general name 
and encompasses different techniques. These include phytoextraction, phytofi ltra-
tion, phytostabilization, phytovolatilization, phytodegradation, rhizodegradation, 
and phytodesalination. The defi nition and applications of different methods of phy-
toremediation are presented in Table  2 . It is important to note that each of these 
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methods is suitable for different types of  contaminants  . There is a growing number 
of studies showing successful phytoremediation of POPs, PAHs and other contami-
nants using different types of grasses [ 22 ,  39 – 47 ], and some of the studies are very 
recent [ 48 – 50 ] suggesting the use of grasses is popular and effective.

   Table 1    Advantages and disadvantages of  phytoremediation   of organic pollutants [ 90 ,  91 ]   

 Advantages  Disadvantages 

 Less disruptive to the environment 
( in situ ) 

 Growth limitation due to environmental toxicity 

 No need for disposal sites  Taking a longer time than other methods 
 High public acceptance  Results in greater environmental damage and/or pollutant 

migration due to enhanced solubility of some contaminants 
 Avoids excavation and heavy 
traffi c 

 Accumulation of pollutants in fi rewood 

 Useful for the treatment of several 
hazardous materials 

 Limited by certain climatic and geological conditions 

 Can be used in combination with 
other methods 

 Potential for the rerelease of pollutants to the environment 
during litter fall 

 Inexpensive and solar driven  Not successful for all pollutants 

   Table 2    Different approaches of  phytoremediation   using grasses [ 19 ,  21 ,  37 ,  92 ]   

 Phytoremediation method  Defi nition 
 Suitable 
contaminants  Usage of grasses 

 Phytoextraction  Contaminants 
accumulate in 
harvestable biomass 
(e.g. shoot) 

 Metals 

 Phytofi ltration  Contaminants from 
aquatic system are 
removed by plants 

 Metals 

 Phytostabilization  Contaminants mobility 
and bioavailability are 
eliminated or reduced 

 Metals  Recommended 

 Phytovolatilization  Contaminants are taken 
up by the plants and 
released into 
the atmosphere 

 Volatile organic 
compounds such 
as MTBE, 
methyl-tert-butyl 
ether 

 Phytodegradation  Organic contaminants 
are degraded by plant 
enzymes inside plant 
tissues 

 Herbicides and 
TNT 

 Recommended 

 Rhizodegradation  Contaminants are 
degraded by microbes 
associated with plant 
roots 

 PAHs  Recommended 

 Phytodesalination  Surplus salt is removed 
from saline soils by 
halophytes 

 Salt  Recommended 
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4        Advantages of Grasses Used for Phytoremediation 
of Organic  Compounds   

 Plants are the main agents of phytoremediation, and selection of appropriate plants 
for specifi c contaminants is a crucial step. This is because all plants do not show 
the same potential for phytoremediation as a result of different morphology, physi-
ology, genetic background and root exudates. Irrespective of the fate of organic 
compounds in plants, the fi rst step in dealing with most organic contaminants by 
phytoremediation is through the use of plants with a fi brous root system. Grass 
root systems show the highest root surface area per m 3  of soil relative to other 
plants and can be developed up to 3 m in the soils, providing a very large surface 
area for microbial colonization by soil microorganisms and ample space for the 
interaction of contaminants and microorganisms. In addition, the genetic diversity 
of grasses helps them survive in unfavorable soil conditions such as contaminated 
soils [ 51 ]. Merkl et al. [ 52 ] performed a pre-selection of 57 native species of plants 
containing 18 legumes, 19 grasses, 3 sedges, and 17 other herbaceous species. 
The authors found that the most extensive root system belonged to some grasses 
and sedges. 

 Moreover, grasses are fast growing and cover the contaminated area quickly, 
preventing the leaching of contaminants from the soil. In addition, the lower main-
tenance cost for grasses (e.g. lower fertilizer requirements) make them good candi-
dates for the phytoremediation of organic compounds. Whilst it can be argued that 
the decontamination of sites by phytoremediation requires more time compared to 
other methods, the interaction of plants, especially grasses with endophytic micro-
organisms may lead to enhanced remediation beyond that of other technologies [ 39 , 
 53 ]. Many grasses benefi t from endophytic partnerships with both bacteria and 
fungi. Endophytes are defi ned as microorganisms (mostly bacteria, fungi, and acti-
nobacteria) which live inside the plants without showing any disease symptoms 
[ 54 ]. Some cool season grasses such as tall fescue, perennial ryegrass, and meadow 
fescue infected with a fungal endophyte ( Neotyphodium  sp.) exhibit enhanced toler-
ance to abiotic and biotic stress [ 55 ]. 

 It has been shown that  Neotyphodium  endophytes may enhance the phytoreme-
diation of metals [ 56 – 58 ], salt [ 59 ], and petroleum hydrocarbons [ 45 ]. Aged 
petroleum- contaminated soil has been shown to be effectively remediated using 
 Festuca arundinacea  and  Festuca pratensis  containing the endophytic fungi 
 Neotyphodium coenophialum  and  Neotyphodium uncinatum . Grasses infected 
with endophytic fungi showed a larger percentage of degradation of the  total 
petroleum hydrocarbons (TPH)  , suggesting they may be more effi cient for TPH 
removal [ 45 ]. However, our knowledge about the effects of  Neotyphodium  fungi 
on the degradation of other organic contaminants (e.g. PCBs) is limited. Endophytic 
 bacteria   from grasses have also alone showed signifi cant potential for the biore-
mediation of contaminants [ 60 – 62 ]. Extensive reviews about the benefi ts of endo-
phytic bacteria in the phytoremediation of contaminants have been recently 
published [ 53 ,  63 – 65 ].  
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5     Disadvantages of Grasses Used for the Phytoremediation 
of Organic  Compounds   

 Apart from the benefi ts of grasses in phytoremediation applications, there are some 
disadvantages of using grasses in phytoremediation. Unlike legumes, grasses can-
not fi x nitrogen and this would be a disadvantage relative to legumes in regard to 
phytoremediation of contaminated soil with PAHs and PCBs as many of these soils 
already exhibit poor nutrition status (low nitrogen). 

 In addition, seed dormancy, quality and lifespan of seeds, low emergence, and 
germinations rate represent additional disadvantages when grasses are used for phy-
toremediation. Merkl et al. [ 52 ] reported that native grasses showed the poorest 
germination rate relative to legumes in pre-screen tests for selection for use in east-
ern Venezuela for phytoremediation of petroleum hydrocarbons. Also, the grasses 
could not propagate effectively when compared to  legumes  . Gaskin et al. [ 66 ] 
screened nine perennial Australian native grasses in a soil contaminated with 60:40 
diesel/oil mixture at concentrations of 1 % (w/w) and 0.5 % (w/w). Their results 
showed that while at least three of the grasses showed the potential for phytoreme-
diation of hydrocarbons, seedling emergence of all grasses was low.  

6     Phytoremediation of PAHs and PCBs by Grasses 

 Plants can absorb the organic compounds, take up, translocate or metabolize them. 
The fate of the organic chemicals in plants depends on some  factors   such as lipophi-
licity, expressed as octanol–water partition coeffi cient (log  K  ow ), acidity constant 
(pKa), aqueous solubility (Sw), octanol solubility (So), and concentration of 
the contaminants. However, overall the log  K  ow  plays the most signifi cant role [ 63 ]. 
It is generally believed that compounds with log  K  ow  values between 0.5 and 3 can 
be taken up by plants while compounds with values higher than log  K  ow  4 are not 
easily taken up by the  plant root system   [ 19 ]. Rhizodegradation represents the main 
mechanism for the phytoremediation of PAHs and PCBs as many of them generally 
have log  K  ow  > 4, suggesting that plants are incapable of uptake in signifi cant quanti-
ties. Like other plant roots, the presence of grass roots enhances microbial activity 
through the release of nutrients, root exudates, and oxygen into the contaminated 
soil [ 35 ]. In brief, the main effects of the  plant rhizosphere   are:

 –    Enhancing bioavailability of contaminants.  
 –   Improving soil aeration and soil quality.  
 –   Enhancing co-metabolism and genetic induction of some functional genes 

involved in the degradation of contaminants.  
 –   Increasing the population of biosurfactant-producing microorganisms.    

 Many review papers have shown how the plant roots can enhance microbial abil-
ity as well as increase the degradation rate of organic contaminants [ 15 ,  33 ,  67 ]. 
Several studies have also shown the successful degradation of PAHs in soils by 
 grasses   (Table  3 ). The primary work by Aprill and Sims [ 68 ] showed that when eight 
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prairie grasses were planted in soil, increased degradation of chrysene, benzo[ a ]
pyrene, benz[ a ]anthracene, and dibenz[ a , h )]anthracene was observed compared 
with the control. Epuri and Sorensen [ 69 ] reported that the planting of tall fescue in 
contaminated soil led to a decrease in benzo[ a ]pyrene volatilization, enhanced min-
eralization, and increased solvent extractability after 180 days of plant incubation.

   Banks et al. [ 70 ] investigated the effects of tall fescue plants on highly adsorbed, 
recalcitrant  benzo[ a ]pyrene degradation  . The result from that study showed that the 
level of residual benzo[ a ]pyrene in vegetated soil was lower (44 %) than in control 
soils (53 %). However, the authors did not observe any difference in the bacterial 
community in planted and unplanted soils. Chen and Banks [ 71 ] also showed that 
tall fescue plants enhanced the degradation of pyrene relative to the control in a 
greenhouse study. The pyrene level decreased from 758 mg/kg to below detection 
limit after 91 d of plant incubation compared to 82 mg/kg for the unplanted control 
after 147 days.  Phenanthrene and pyrene   have been used widely as model PAHs in 
many studies based on grass phytoremediation [ 72 – 75 ]. Cheema et al. [ 75 ] per-
formed a greenhouse experiment to investigate the impact of tall fescue in soil 
spiked with different concentrations of phenanthrene (11–344 mg/kg) and pyrene 
(15–335 mg/kg). The results showed that the presence of phenanthrene and pyrene 
did not affect plant biomass at lower concentrations; however, biomass reduction 
was observed when the concentration of PAHs was increased in the soil. The authors 
also observed higher microbial viable counts, water-soluble phenolic compounds, 
and dehydrogenase activity in planted soil compared with unvegetated soil. In terms 
of PAHs removal, PAHs degradation rates were higher for phenanthrene (1.88–
3.19 %) and pyrene (8.85–20.69 %) compared to degradation rates in unplanted soil. 

 Only limited studies on the phytoremediation of PAH-contaminated soils using 
grasses have been conducted in the fi eld [ 76 – 78 ]. Pizarro‐Tobías et al. [ 76 ] applied 
bioremediation ( Pseudomonas putida  strains) and rhizoremediation (annual grasses) 
methodologies for soil restoration in a fi eld-scale trial in a protected  Mediterranean 
ecosystem   after a controlled fi re. Their results showed that the site had returned to 
pre-fi re status after 8 months of monitoring, with PAH concentrations falling from 
398 mg/kg down to 36.8 mg/kg in planted soil treatments. Like PAHs, several stud-
ies have shown the degradation of PCBs in soils planted with grasses (Table  3 ) rela-
tive to unplanted soils [ 69 ,  79 – 82 ]. In regard to the phytoremediation of PCBs by 
grasses, Epuri and Sorensen [ 69 ] evaluated the effect of tall fescue plants on Aroclor 
1260 (hexachlorobiphenyl)-contaminated loamy sand during 180 day experiments. 
The authors found that while the tall fescue plants had no effect on hexachlorobi-
phenyl volatilization and soil binding, the plants increased the mineralization as 
well as decreased extractability of Aroclor 1260. 

 Reed canary grass, switch grass, tall fescue, and deer tongue were all tested, 
among other plants (alfalfa, fl at pea,  Sericea lespedeza ) in terms of the phytoreme-
diation of PCB-contaminated soil. Approximately 62 % removal of PCB was 
observed in treated soil while only around 18 % was removed from the unplanted 
control soils. Greatest contaminant removal for grasses was observed in alfalfa and 
canary grass for legumes and grasses respectively after 4 months of growth in PCB- 
amended soil. The  biodegradation of Aroclor 1248 was infl uenced by the presence 
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of plants and plant–bacterial interactions [ 83 ]. PCB-contaminated soil, specifi cally 
contaminated with Aroclor 1260 at concentrations of 90–4200 μg/g, was treated 
with several  grasses   such as  Festuca arundinaceae ,  Glycine max ,  Medicago sativa , 
 Phalaris arundinacea ,  Lolium multifl orum ,  Carex normalis , and three varieties of 
 Cucurbita pepo  under controlled greenhouse conditions in Canada [ 84 ]. The authors 
reported that varieties of  C. pepo  extracted more PCBs from the soil compared to 
the other plants. All plants only showed signs of stress when the concentration of 
PCBs was 4200 μg/g (highest tested); however, at two lower concentrations of PCBs 
(250 and 90 μg/g) no effect on plant heath was observed. Overall, the results indi-
cated that the planted soil did not enhance the degradation of PCBs. 

 Another study evaluated the microbial communities in planted or unplanted soil 
with ryegrass ( Lolium multifl orum  L.) in a PCB, Aroclor 1242-contaminated soil 
(8 mg /kg). At the end of 90 days, the presence of plants signifi cantly enhanced 
Aroclor 1242 degradation compared with soils without ryegrass [ 85 ]).  Phospholipid 
fatty acids (PLFAs)   profi ling showed that the distance from the rhizosphere impacted 
the PLFA profi les, confi rming a distance-dependent selective enrichment of compe-
tent microorganisms involved in the degradation of this PCB. Li et al. [ 86 ] used tall 
fescue and alfalfa alone or in combination to evaluate the phytoremediation of PCB- 
contaminated soil in a greenhouse experiment. The results showed that the highest 
removal of PCBs was found in tall fescue single plant treatment, followed by a tall 
fescue and alfalfa combination. The authors concluded that tall fescue on its own 
produced greatest biomass and could extract more PCBs from soil relative to mixed 
plants. However, the highest gene copies of  bphA ,  bphD.1.B ,  bphD.2.A , and 
 bphD.2.A / B  genes (i.e. genes involved in degradation of PCBs) as well as total bacte-
ria counts and dehydrogenase enzyme activity was observed in the tall fescue/alfalfa 
treatment.  

7     Future Aspects 

 Many studies have been carried out on the phytoremediation of PAHs and PCBs 
using grasses, but major gaps in our knowledge remains due to the complexity of 
contaminants, microbes, grasses, as well as environmental factors. Therefore, further 
work needs to be performed and a suggestion of the future research  requirements   is 
shown in Fig.  2 . The literature shows that most of the phytoremediation of PAHs and 
PCBs studies have been carried out in greenhouse or controlled environments (Table 
 3 ). To our knowledge, there are very few reports in the literature involving fi eld 
experiments of PCBs degradation by grasses. It is obvious that many of PAH- and 
PCB-contaminated sites are also co-contaminated with other pollutants (e.g. metals); 
in addition, the climatic conditions and other soil factors are more complex in the 
fi eld rather than greenhouse. To further assess the potential of the grass phytoreme-
diation strategy, more studies need to be performed in the fi eld. In addition, many of 
the studies on grass phytoremediation are based on spiking the soils with PAHs and 
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PCBs; in this case, bioavailability is not a limitation to phytoremediation. In reality, 
bioavailability of weathered PAHs and PCBs is one of the main limitations, since 
PAHs and PCBs tend to strongly attach to the soil particles. Therefore, more studies 
on weathered PAH- and PCB-contaminated soils are required.

    Microbial communities   play an important role in the degradation of both PAHs 
and PCBs and should be monitored during the phytoremediation of PAHs and PCBs 
to elucidate their microbial dynamics and to identify the microorganisms responsi-
ble for the degradation.  Next-generation sequencing (NGS)  , metagenomics opens a 
new horizon to investigate different aspects of the microbial communities such as 
species richness and distribution as well as information on the functional genes 
present in the microbial communities. Furthermore, no prior knowledge of the 
organisms or specifi c genes is required in order to evaluate whole microbial com-
munities [ 87 ]. Further studies using  metagenomics   can lead to a better understand-
ing of active microorganisms involved in PAHs and PCBs degradation in the 
rhizosphere of grasses. As mentioned earlier, plant endophytes can represent a prac-
tical solution in the degradation of PAHs and PCBs. Some of the advantages of 
using  endophytic bacteria   include [ 53 ]:

 –    Endophytic bacteria are less affected by biotic and abiotic stresses than rhizo-
sphere bacteria.  

 –   The population of endophyte degraders is higher than rhizosphere bacteria.  
 –   Genetic manipulation (genetic engineering) of endophytic bacteria is much eas-

ier than plants (in this case, grasses) where genetic engineering of PAHs and 
PCBs degradation pathways is needed.  

 –   Symbiosis of endophytic PAH and PCB degraders with grasses leads to the deg-
radation of contaminants inside the plants, resulting in reduced toxicity to other 
organisms and any subsequent biomagnifi cation.  

 –   Many endophytes contribute to enhanced plant growth, resulting in increased 
stress resistance of plants to contaminants such as PAHs and PCBs.    

  Fig. 2    Future aspects of grass phytoremediation of PAHs and PCBs       
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 Our current understanding of the role of  endophytic bacteria   in grasses used for 
the phytoremediation of PAHs and PCBs is still incomplete. Only a few endophytic 
bacteria involved in degradation of PAHs and PCBs have been isolated and investi-
gated. Recently Khan et al. [ 88 ] isolated an endophytic bacteria ( Pseudomonas 
putida , PD1) from poplar which showed phenanthrene degrading ability when inoc-
ulated in willow and perennial ryegrass. The results of this study showed that the 
presence of PD1 not only increased (by 25–40 %) the removal rate of phenanthrene 
by willow and grasses but also the PD1 strain promoted root and shoot growth. 

  Toxicity   associated with PAHs and PCBs is the main constraint to grass phytore-
mediation. Therefore, phytoremediation is not always successful; consequently, a 
combination of other bioremediation methods can represent long-term solutions in 
PAH- and PCB-contaminated soils. In one study, polychlorinated biphenyl (PCB) 
congeners (PCB 52, 77, and 153) were subjected to switch  grass phytoremediation 
and bioaugmentation   with  Burkholderia xenovorans  LB400Y [ 89 ]. The results 
showed that total PCB removal was greatest, with an average of 47.3 % in switch 
grass/LB400Y-treated soil. In addition, the presence of switch grass supported 
LB400Y survival in the soil. The authors concluded that the use of phytoremedia-
tion in conjunction with bioaugmentation might represent a sustainable approach to 
eliminate or degrade recalcitrant PCB congeners in soils. Our understanding about 
the interaction of grass with other microorganisms is not clear and remains to be 
elucidated in future studies. 

 In conclusion, grass phytoremediation is a promising, cost-effective, and 
environmental- friendly strategy to degrade or remediate PAH- and PCB- 
contaminated soils. However, most of the results reported to date have been obtained 
from the phytoremediation of PAHs and PCBs by grasses in greenhouses or spiked 
soil. There is now an urgent need to move to fi eld studies. Is grass phytoremediation 
going to be a successful strategy in the real PAH- and PCB-contaminated environ-
ments? The answer to this question will be addressed through the application of 
fi eld studies and the development of new molecular microbial and environmental 
analytical techniques.     
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