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I am dedicating this book to my early mentor, colleague, and
friend Peter Jagers, whose influence inspired me long ago to get
started in mathematics, and whose faithful support has sustained
me through more than four decades.



Preface

The theory of random measures is a key area of modern probability theory,
arguably as rich and important as martingale theory, ergodic theory, or prob-
abilistic potential theory, to mention only three of my favorite areas. The
purpose of this book is to give a systematic account of the basic theory, and
to discuss some areas where the random measure point of view has been
especially fruitful.

The subject has often been dismissed by the ignorant as an elementary
and narrowly specialized area of probability theory, mainly of interest for
some rather trite applications. Standard textbooks on graduate-level prob-
ability often contain massive chapters on Brownian motion and related sub-
jects, but only a cursory mention of Poisson processes, along with a short
discussion of their most basic properties. This is unfortunate, since random
measures occur everywhere in our discipline and play a fundamental role in
practically every area of stochastic processes.

Classical examples include the Lévy–Itô representation of stochastically
continuous processes with independent increments, where the jump compo-
nent may be described in terms of a Poisson random measure on a suitable
product space. Poisson processes and their mixtures also arise naturally in
such diverse areas as continuous-time Markov chains, Palm and Gibbs mea-
sures, the ergodic theory of particle systems, processes of lines and flats,
branching and super-processes, just to name a few.

But there is so much more, and once you become aware of the random
measure point of view, you will recognize such objects everywhere. On a
very basic level, regular conditional distributions are clearly random mea-
sures with special properties. Furthermore, just as measures on the real line
are determined by their distribution functions, every non-decreasing random
process determines a random measure. In particular, it is often useful to
regard the local time of a process at a fixed point as a random measure.
Similarly, we may think of the Doob–Meyer decomposition as associating a
predictable random measure with every sub-martingale.

The random measure point of view is not only useful in leading to new
insights, quite often it is also the only practical one. For example, the jump
structure of a general semi-martingale may be described most conveniently
in terms of the generated jump point process, defined on a suitable product
space. The associated compensator is a predictable random measure on the
same space, and there is no natural connection to increasing processes. A
similar situation arises in the context of super-processes, defined as diffusion
limits of classical branching processes under a suitable scaling. Though there
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viii Random Measures, Theory and Applications

is indeed a deep and rather amazing description in terms of discrete particle
systems, the process itself must still be understood as a randomly evolving
family of diffuse random measures.

Though the discovery of Poisson processes goes back to the early 1900’s,
in connection with the modeling of various phenomena in physics, telecom-
munication, and finance, their fundamental importance in probability theory
may not have become clear until the work of Lévy (1934–35). More gen-
eral point processes were considered by Palm (1943), whose seminal thesis
on queuing theory contains the germs of Palm distributions, renewal theory,
and Poisson approximation. Palm’s ideas were extended and made rigorous
by Khinchin (1955), and a general theory of random measures and point
processes emerged during the 1960’s and 70’s through the cumulative efforts
of Rényi (1956/67), Grigelionis (1963), Matthes (1963), Kerstan (1964a/b),
Mecke (1967), Harris (1968/71), Papangelou (1972/74a/b), Jacod (1975),
and many others. A milestone was the German monograph by Kerstan,
Matthes, & Mecke (1974), later appearing in thoroughly revised editions
(1978/82) in other languages.

My own interest in random measures goes back to my student days in
Gothenburg—more specifically to October 1971—when Peter Jagers returned
from a sabbatical leave in the US, bringing his lecture notes on random mea-
sures, later published as Jagers (1974), which became the basis for our weakly
seminar. Inspired by the author’s writings and encouragement, I wrote my
own dissertation on the subject, which was later published in extended form
as my first random measure book K(1975/76), subsequently extended to
double length in K(1983/86), through the addition of new material.

Since then so much has happened, so many exciting new discoveries have
been made, and I have myself been working and publishing in the area, on and
off, for the last four decades. Most of the previous surveys and monographs
on random measures and point processes are today totally outdated, and it
is time for a renewed effort to organize and review the basic results, and to
bring to light material that would otherwise be lost or forgotten on dusty
library shelves. In view of the vastness of current knowledge, I have been
forced to be very selective, and my choice of topics has naturally been guided
by personal interests, knowledge, and taste. Some omitted areas are covered
by Daley & Vere-Jones (2003/08) or Last & Penrose (2017), which may serve
as complements to the present text (with surprisingly little overlap).
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This book is dedicated to Peter Jagers, without whose influence I would never
have become a mathematician, or at best a very mediocre one. His lecture
notes, and our ensuing 1971–72 seminar, had a profound catalytic influence
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so many ways. Thank you Peter!
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high school to attend a recital in the Stockholm concert hall. This opened
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addicted concert goer and opera fan ever since. Now I am constantly listening
to music, often leaving the math to mature in my mind during hours of piano
practice. How can I ever thank the great composers, all dead, or the countless
great performers who have so enriched my life and inspired my work?
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Among the great musicians I have known personally, I would like to men-
tion especially my longtime friend Per Enflo—outstanding pianist and also a
famous mathematician—and the Van Cliburn gold medalist Alexander Ko-
brin with his fabulous students at the Schwob music school in Columbus,
GA. Both belong to the exquisite group of supreme musicians who have per-
formed at home recitals in our house. Somehow, experiences like those have
inspired much of the work behind this book.

Whatever modest writing skills I have acquired through the years may
come from my passionate reading, beginning 30 years ago with the marvelous
The Story of Civilization by Will & Ariel Durant, eleven volumes of about a
thousand pages each. Since then I have kept on buying countless books on
especially cultural history and modern science, now piling up everywhere in
our house, after the space in our bookcases has long been used up. I owe my
debt to their numerous authors.

Let me conclude with two of my favorite quotations, beginning with one
that I copied long ago from a Chinese fortune cookie:

Behind every successful man is a surprised mother-in-law.

Though I truly appreciate the support of family and in-laws through the
years, I admit that, in my case, the statement may have limited applicability.
If I was ever lucky enough to stumble upon some interesting mathematical
truths, I have utterly failed to convey any traces of those to my family or
non-mathematical friends, who may still think that I am delving in a boring
and totally incomprehensible world of meaningless formulas. They have no
idea what treasures of sublime beauty they are missing!

My second quote, this time originating with the late American comedian
Groucho Marx, may be a lot more relevant:

Man does not control his own fate—the women in his life
do that for him.

I am still struggling to navigate through the thorny thickets of life. Some
wonderful people have demonstrated the meaning of true friendship by offer-
ing their encouragement and support when I needed them the most. Their
generous remarks I will never forget.

Olav Kallenberg
January 2017
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Introduction

This book is divided into thirteen chapters, each dealing with a different
aspect of the theory and applications of random measures. Here we will
give a general, informal introduction to some basic ideas of the different
chapters, and indicate their significance for the subsequent development. A
more detailed introduction will be given at the beginning of each chapter.

Informally, we may think of a random measure1 as a randomly chosen
measure ξ on a measurable space (S,S). From this point of view, ξ is simply
a measure depending on an extra parameter ω, belonging to some abstract
probability space (Ω,A, P ). To ensure that the mass ξB assigned to a set B
will be a random variable for every B ∈ S, we need the function ξ(ω,B) on
the product space Ω×S to be A-measurable in ω for fixed B and a measure
in B for fixed ω. In other words, ξ has to be a kernel from Ω to S. This
condition is strong enough to ensure that even the integral ξf =

∫
f dξ is a

random variable, for every measurable function f ≥ 0 on S.

The state space S is taken to be an abstract Borel space2, defined by
the existence of a bi-measurable 1−1 mapping between S and a Borel set
B ⊂ R. This covers most cases of interest3, since every measurable subset of
a Polish space is known to be Borel. We also need to equip S with a localizing
structure, consisting of a ring Ŝ ⊂ S of bounded measurable subsets. When
S is a separable and complete metric space, we may choose Ŝ as the class of
bounded Borel sets, and if S is further assumed to be locally compact, we
may take Ŝ to consist of all relatively compact Borel sets.

A fixed or random measure ξ on a localized Borel space (S, Ŝ) is said to
be locally finite, if ξB <∞ a.s. for all B ∈ Ŝ. This will henceforth be taken
as part of our definition. Thus, we define a random measure on (S, Ŝ) as a
locally finite kernel from Ω to S. Equivalently, it may be defined as a random
element in the space MS of all locally finite measures on S, endowed with
the σ-field generated by all evaluation maps πB : μ �→ μB with B ∈ S. The
spaceMS is again known to be Borel.

The additional structure enables us to prove more. Thus, if ξ is a locally
finite random measure on a localized Borel space S, then the integral ξY =∫
Y dξ is a random variable for every product-measurable process Y ≥ 0 on

1Often confused with L0-valued vector measures on S, such as white noise. In K(05)
those are called continuous linear random functionals, or simply CLRFs.

2also known as a standard space
3The theory has often been developed under various metric or topological assumptions,

although such a structure plays no role, except in the context of weak convergence.

1



2 Random Measures, Theory and Applications

S, and if Y is further assumed to be bounded, then the measure Y · ξ, given
by (Y · ξ)f = ξ(fY ), is again a random measure on S. We may also derive
an essentially unique atomic decomposition ξ = α +

∑
k βk δσk

, in terms of
a diffuse (non-atomic) random measure α, some distinct random elements
σ1, σ2, . . . in S, and some random weights β1, β2, . . . ≥ 0. Here δs denotes a
unit mass4 at s ∈ S, so that δsB = 1B(s), where 1B is the indicator function5

of the set B.
When the random measure ξ is integer-valued, its atomic decomposition

reduces to ξ =
∑

k βk δσk
, where the coefficients βk are now integer-valued

as well. Then ξ is called a point process on S, the elements σ1, σ2, . . . are
the points of ξ, and β1, β2, . . . are the corresponding multiplicities. We may
think of ξ as representing a random particle system, where several particles
may occupy the same site σk. Since ξ is locally finite, there are only finitely
many particles in every bounded set. A point process ξ is said to be simple,
if all multiplicities equal 1. Then ξ represents a locally finite random set Ξ
in S, and conversely, any such set Ξ may be represented by the associated
counting random measure ξ, where ξB denotes the number of points of Ξ in
the set B. The correspondence becomes an equivalence through a suitable
choice of σ-fields.

The distribution of a random measure ξ on S is determined by the class
of finite-dimensional distributions L(ξB1, . . . , ξBn), and hence by the distri-
butions of all integrals ξf =

∫
fdξ, for any measurable functions f ≥ 0.

When ξ is a simple point process, its distribution is determined by the avoid-
ance probabilities P{ξB = 0} for arbitrary B ∈ Ŝ, and for diffuse random
measures it is given by the set of all one-dimensional distributions L(ξB).

Partial information about ξ is provided by the intensity measure Eξ and
the higher order moment measures Eξn, and for point processes we may
even consider the factorial moment measures Eξ(n), defined for simple ξ as
the restrictions of Eξn to the non-diagonal parts of Sn. In particular, ξ is
a.s. diffuse iff Eξ2D = 0, and a point process ξ is a.s. simple iff Eξ(2)D = 0,
where D denotes the diagonal in S2.

−−−

So far we have summarized the main ideas of the first two chapters,
omitting some of the more technical topics. In Chapter 3 we focus on some
basic processes of special importance. Most important are of course the Pois-
son processes, defined as point processes ξ, such that the random variables
ξB1, . . . , ξBn are independent and Poisson distributed, for any disjoint sets
B1, . . . , Bn ∈ Ŝ. In fact, when ξ is simple, independence of the increments6

alone guarantees the Poisson property of all ξB, and likewise, the Poisson

4often called Dirac measure
5The term characteristic function should be avoided here, as it has a different meaning

in probability theory.
6sometimes called complete randomness or complete independence



Introduction 3

property alone guarantees the independence of the increments. The distribu-
tion of a Poisson process ξ is clearly determined by the intensity Eξ, which
is automatically locally finite.

Closely related to the Poisson processes are the binomial processes7, de-
fined as point processes of the form ξ = δσ1 + · · ·+ δσn , where σ1, . . . , σn are
i.i.d. random elements in S. In particular, a Poisson process on a bounded set
is a mixture8 of binomial processes based on a common distribution, and any
Poisson process can be obtained by patching together mixed binomial pro-
cesses of this kind. Mixtures of Poisson processes with different intensities,
known as Cox processes9, play an equally fundamental role. The classes of
Poisson and Cox processes are preserved under measurable transformations
and randomizations, and they arise in the limit under a variety of thinning
and displacement operations.

Apart from the importance of Poisson processes to model a variety of
random phenomena, such processes also form the basic building blocks for
construction of more general processes, similar to the role of Brownian mo-
tion in the theory of continuous processes. Most striking is perhaps the
representation of an infinitely divisible random measure or point process ξ as
a cluster process

∫
μ η(dμ) (in the former case apart from a trivial determin-

istic component), where the clusters μ are generated by a Poisson process η
on MS or NS, respectively. Thus, the distribution of ξ is essentially deter-
mined by the intensity λ = Eη, known as the Lévy measure10 of ξ. This leads
to a simple interpretation of the celebrated Lévy–Khinchin representation of
infinitely divisible distributions. Cluster processes of various kinds, in their
turn, play a fundamental role within the theory of branching processes.

−−−

Chapter 4 deals with convergence in distribution of random measures,
which is where the metric or topological structure of S comes in. The basic
assumption is to take S to be a separable and complete metric space with
Borel σ-field S, and let Ŝ be the subclass of bounded Borel sets. The metric
topology on S induces the vague topology onMS, generated by the integra-
tion maps πf : μ �→ μf for all bounded continuous functions f ≥ 0 on S with
bounded support, so that μn

v→ μ iff μnf → μf for any such f .
The vague topology makes even MS a Polish space, which allows us to

apply the standard theory of weak convergence to random measures ξn and

ξ on S. The associated convergence in distribution11, written as ξn
vd−→

7in early literature often referred to as sample or Bernoulli processes, or, when S = R,
as processes with the order statistics property

8Strictly speaking, we are mixing the distributions, not the processes.
9originally called doubly stochastic Poisson processes

10sometimes called the canonical or KLM measure, or in German Schlangemaß
11Often confused with weak convergence. Note that ξn

d→ ξ iff L(ξn) w→ L(ξ). The
distinction is crucial here, since the distribution of a random measure is a measure on a
measure space.
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ξ, means that Eg(ξn) → Eg(ξ) for any bounded and vaguely continuous

function g onMS. In particular, ξn
vd−→ ξ implies ξnf

d→ ξf for any bounded
continuous function f ≥ 0 with bounded support. Quite surprisingly, the

latter condition is also sufficient for the convergence ξn
vd−→ ξ. Thus, no

extra tightness condition is needed, which makes applications of the theory
pleasingly straightforward and convenient.

We may now derive criteria for the convergence
∑

j ξnj
vd−→ ξ, when the

ξnj form a null array12 of random measures on S, in the sense that the ξnj

are independent in j for fixed n, and ξnj
vd−→ 0 as n → ∞, uniformly in j.

When the ξnj are point processes and ξ is Poisson with Eξ = λ, we get in
particular the classical criteria∑

j
P{ξnjB = 1} → λB,

∑
j
P{ξnjB > 1} → 0,

for arbitrary B ∈ Ŝ with λ∂B = 0. More generally, we may characterize the
convergence to any infinitely divisible random measure ξ, where the condi-
tions simplify in various ways under assumptions of simplicity or diffuseness.

Beside the topological notion of distributional convergence, ξn
vd−→ ξ,

there is also a strong, non-topological notion of locally uniform convergence

in distribution, written as ξn
uld−→ ξ, and defined by the condition ‖L(1Bξn)−

L(1Bξ)‖ → 0 for arbitrary B ∈ Ŝ, where ‖ ·‖ denotes the total variation
norm for signed measures on MS. Again we may derive some necessary
and sufficient conditions for convergence, which reveal a striking analogy
between the two cases. Both modes of convergence are of great importance
in subsequent chapters.

−−−

In Chapter 5 we specialize to stationary random measures on a Eu-

clidean space S = Rd, where stationarity13 means that θrξ
d
= ξ for all r ∈ S.

Here the shift operators θr on MS are given by (θrμ)f = μ(f ◦ θr), where
θrs = s+ r for all r, s ∈ S. Note that stationarity of ξ implies invariance of
the intensity measure Eξ, in the sense that θrEξ = Eξ for all r ∈ S. Invari-
ant measures on Rd are of course proportional to the d-dimensional Lebesgue
measure λd.

Our first aim is to develop the theory of Palm measures Qξ, here defined
by the formula

Qξf = E
∫
I1
f(θ−r) ξ(dr), f ≥ 0,

where I1 = [0, 1]d, and the function f is understood to be measurable. The
measure Qξ is always σ-finite, and when 0 < EξI1 <∞ it can be normalized

into a Palm distribution Q̂ξ.

12Feller’s term, here preferred to Loève’s uniformly asymptotically negligible (u.a.n.),
Chung’s holospoudic, and the term infinitesimal used in MKM2

13Often confused with invariance. Note that ξ is stationary iff L(ξ) is invariant.
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The latter is especially important when ξ is a simple, stationary point
process on R with finite and positive intensity. Writing η for a point process
on R with distribution Q̂ξ, and letting · · · < τ−1 < τ0 < τ1 < · · · be the
points of η with τ0 = 0, we show that η is cycle-stationary, in the sense that
the sequence of spacing variables τk − τk−1 is again stationary. In fact, the
Palm transformation essentially provides a 1−1 correspondence between the
distributions of stationary and cycle-stationary point processes on R.

This suggests that, for general random measures ξ on R, we may introduce
an associated spacing random measure ξ̃, such that ξ and ξ̃ are simultaneously
stationary, and the spacing transformation of ξ̃ essentially leads back to ξ.
For simple point processes on Rd, we further derive some basic approximation
properties, justifying the classical interpretation of the Palm distribution of
ξ as the conditional distribution, given that ξ has a point at 0.

A second major theme of the chapter is the ergodic theory, for stationary
random measures ξ on Rd. Using the multi-variate ergodic theorem, we show
that the averages ξBn/λ

dBn converge a.s. to a random limit ξ̄ ≥ 0, known as
the sample intensity of ξ, for any increasing sequence of convex sets Bn ⊂ Rd

with inner radii rn →∞. This provides a point of departure for a variety of
weak or strong limit theorems, involving stationary random measures, along
with their Palm and spacing measures. The ergodic theorem also yields the
most general version to date of the classical ballot theorem.

−−−

Palm measures remain important for general random measures, even
without any assumption of stationarity or invariance. The general notion
is treated in Chapter 6, where for any random measure ξ on S and ran-
dom element η in T , we define the associated Palm measures L(η ‖ ξ)s by
disintegration of the Campbell measure Cξ,η on S × T , as in14

Cξ,ηf = E
∫

ξ(ds) f(s, η)

=
∫

Eξ(ds)E{f(s, η) ‖ ξ}s,

for any measurable function f ≥ 0 on S × T . When ξ is a simple point
process with σ-finite intensity Eξ, we may think of L(η ‖ ξ)s as the conditional
distribution of η, given that ξ has an atom at s, and when ξ = δσ it agrees
with the conditional distribution L(η | σ)s.

Replacing ξ by the product measure ξn on Sn, we obtain the associated
n-th order Palm measures L(η ‖ ξn)s, for s ∈ Sn. When ξ is a point process
and η = ξ, the latter are a.e. confined to measures μ ∈ NS with atoms at
s1, . . . , sn, which suggests that we consider instead the reduced Palm mea-
sures, obtained by disintegration of the reduced Campbell measures

C
(n)
ξ f = E

∫
ξ(n)(ds) f

(
s, ξ −

∑
k≤n

δsk
)
, f ≥ 0.

14A version of this formula has often been referred to as the refined Campbell theorem.
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By symmetry, we may regard the multi-variate Palm measures as functions
of the bounded point measures μ =

∑
k≤n δsk , and by combination we see that

all such measures L(ξ ‖ ξ)μ arise by disintegration of the compound Campbell
measure

Cξf = E
∑
μ≤ξ

f(μ, ξ − μ) =
∞∑
n=0

C
(n)
ξ f

n!
, f ≥ 0,

which will also play an important role on Chapter 8.
Of the many remarkable properties of general Palm measures, we may

comment specifically on some basic duality principles. Then consider the
dual disintegrations

Cξ,η = ν ⊗ L(η ‖ ξ)
∼
= L(η)⊗ E(ξ | η),

where ν is a supporting measure of ξ. Here E(ξ| η) � ν a.s. iff L(η ‖ ξ)s �
L(η) a.e. ν, in which case we may choose the two density functions on S×T
to agree. Taking η to be the identity map on Ω with filtration (Ft), we
conclude from the stated equivalence that

E(ξ | Ft) = Mt · Eξ a.s. ⇔ P (Ft ‖ ξ)s = M s
t · P a.e.,

for some product-measurable function M s
t on S × R+. Assuming S to be

Polish, we prove that P (Ft‖ ξ)s is continuous in total variation in s for fixed
t iff M s

t is L1-continuous in s, whereas P (Ft‖ ξ)s is consistent in t for fixed s
iff M s

t is a martingale in t. Such results will play a crucial role in some later
chapters.

−−−
Chapter 7 deals with random measures ξ on S that are stationary under

the action of some abstract measurable group G. Under suitable regularity
conditions, we may then choose the Palm measures of ξ to form an invariant
kernel from S toMS. More generally, assuming G to act measurably on S
and T , and considering a jointly stationary pair of a random measure ξ on S
and a random element η in T , we may look for an invariant kernel μ : S → T ,
representing the Palm measures of η with respect to ξ. Here the invariance
is defined by μrs = μs ◦ θ−1

r , or in explicit notation∫
μrs(dt)f(t) =

∫
μs(dt)f(rt), r ∈ G, s ∈ S,

where f ≥ 0 is an arbitrary measurable function on T .
When S = G, we may construct the Palm measure at the identity element

ι ∈ G by a simple skew transformation. Similar methods apply when S =
G×S ′ for some Borel space S ′, in which case the entire kernel is determined
by the invariance relation. Various devices are helpful to deal with more
general spaces, including the notion of inversion kernel, which maps every
invariant measure on S×T into an invariant measure on a space G×A×T .



Introduction 7

Many striking properties and identities are known for invariant disinte-
gration kernels, translating into properties of invariant Palm measures. In
particular, we may provide necessary and sufficient conditions for a given
kernel to be the Palm kernel of some stationary random measure, in which
case there is also an explicit inversion formula. Another classical result is the
celebrated exchange formula, relating the Palm distributions L(ξ ‖ η) and
L(η ‖ ξ), for any jointly stationary random measures ξ and η.

From invariant disintegrations, we may proceed to the more challenging
problem of stationary disintegrations. Given some jointly stationary random
measures ξ on S and η on S × T satisfying η(· × T ) � ξ a.s., we are then
looking for an associated disintegration kernel ζ, such that the triple (ξ, η, ζ)
is stationary. Using the representation of G in terms of projective limits of
Lie groups, we show that such a kernel ζ exists when G is locally compact. In
particular, we conclude that if ξ and η are jointly stationary random measures
on S satisfying η � ξ a.s., then η = Y · ξ a.s. for some product-measurable
process Y ≥ 0 on S such that (ξ, η, Y ) is stationary.

−−−

The reduced Palm measures Qμ of a point process ξ were defined in
Chapter 6 through disintegration of the compound Campbell measure C, as
in

Cf = E
∑
μ≤ξ

f(μ, ξ − μ)

=
∫
ν(dμ)Qμ(dμ

′) f(μ, μ′),

for any measurable function f ≥ 0 on N̂S ×NS. When ξ is simple, we may
interpret Qμ as the conditional distribution of ξ − μ given μ ≤ ξ a.s., which
suggests the remarkable formula

L(1Bcξ | 1Bξ) = Q1Bξ( · |μB = 0) a.s., B ∈ Ŝ.

In this sense, the Palm measures Qμ govern the laws of interior condition-
ing L(1Bcξ | 1Bξ). In Chapter 8 we study the corresponding exterior laws
L(1Bξ | 1Bcξ), of special importance in statistical mechanics.

Though for bounded S we may simply interchange the roles of B and
Bc, the general construction relies on the notion of Gibbs kernel Γ = G(ξ, ·),
defined by the maximal dual disintegration

E Γf(·, ξ) = E
∫
G(ξ, dμ) f(μ, ξ)

≤ E
∑
μ≤ξ

f(μ, ξ − μ).

The exterior conditioning may now be expressed by the equally remarkable
formula

L(1Bξ | 1Bcξ) = Γ( · |μBc = 0) a.s. on {ξB = 0}, B ∈ Ŝ,
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showing how the conditional distributions on the left can be recovered, by
elementary conditioning, from a single random measure Γ.

Restricting Γ to the set of unit masses μ = δs, we are essentially led to the
notion of Papangelou kernel η, which is again a random measure on S. We
may often use η to draw conclusions about some distributional properties
of ξ. In particular, fixing a diffuse measure λ on S, we show that if η is
a.s. invariant under any λ-preserving transformation of S, then ξ itself is λ-

symmetric, in the sense that ξ ◦ f−1 d
= ξ for any such transformation f . For

unbounded λ, it follows that ξ is a Cox process directed by η. Such results
have proved to be especially useful in stochastic geometry.

From the Papangelou kernel η, we may proceed to the closely related
notion of external intensity15 ζ, which also arises in the limit from various
sums of conditional probabilities and expectations. We may also characterize
ζ as the dual external projection of ξ, in the sense that EξY = EζY , for any
externally measurable16 process Y ≥ 0 on S. To avoid technicalities, we
postpone the precise definitions.

−−−

Chapter 9 deals with the dynamic or martingale aspects of random
measures ξ on a product space R+ × S. Assuming ξ to be adapted to a
filtration F = (Ft), we may introduce the associated compensator η, defined
as a predictable random measure on the same space specifying the rate of
random evolution of ξ. The compensator η of a simple point process ξ on
R+ plays a similar role as the quadratic variation [M ] of a continuous local
martingale M . Thus, if ξ is further assumed to be quasi-leftcontinuous, in
the sense that ξ{τ} = 0 a.s. for every predictable time τ , it may be reduced
to Poisson through a random time change determined by η. In particular, ξ
itself is then Poisson iff η is a.s. non-random.

A related but deeper result is the predictable mapping theorem, asserting

that, whenever ξ is a random measure on [0, 1] or R+ satisfying ξ◦f−1 d
= ξ for

every measure-preserving transformation f , the same relation holds with f
replaced by any predictable map V with measure-preserving paths. Further
invariance properties of this kind may be stated most conveniently in terms
of the discounted compensator ζ, obtainable from η as the unique solution to
Doléans’ differential equation Z = 1− Z− · η, where Zt = 1− ζ(0, t].

The simplest case is when ξ is a single point mass δτ,χ, for some optional
time17 τ with associated mark χ in S. We may then establish a unique
integral representation L(τ, χ, η) = ∫ Pμ ν(dμ), where Pμ is the distribution
when L(τ, χ) = μ, and η is the compensator of (τ, χ) with respect to the
induced filtration. Equivalently, ζ can be extended to a random probability
measure ρ on R+ × S satisfying L(τ, χ | ρ) = ρ a.s., in which case L(ρ) = ν.

15sometimes called the stochastic intensity, often confused with the Papangelou kernel
16also called visible or exvisible
17also called a stopping time
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We finally consider some basic results for tangential processes18, defined
as pairs of processes with the same local characteristics. Here the main re-
sults are the tangential existence and comparison theorems, where the former
guarantees the existence, for every semi-martingale X, of a tangential pro-
cess X̃ with conditionally independent increments, whereas the latter shows
how some basic asymptotic properties are related for tangential processes.
Combining those results, we may often reduce the study of general random
measures ξ to the elementary case where ξ has independent increments.

−−−

The purpose of Chapter 10 is to study multiple integrals of the form

ξ1 · · · ξdf =
∫
· · ·
∫

ξ1(ds1) · · · ξd(dsd) f(s1, . . . , sd),

where ξ1, . . . , ξd are random measures on a Borel space S and f is a measur-
able function on Sd. When ξk = ξ for all k, we may write the integral as ξdf .
Starting with the case of Poisson or more general point processes ξ1, . . . , ξd
with independent increments, we proceed first to symmetric point processes,
then to positive or symmetric Lévy processes, and finally to broad classes of
more general processes.

Our main problems are to find necessary and sufficient conditions for the
existence of the integral ξ1 · · · ξdf , and for the convergence to 0 of a sequence
of such integrals. In the case of independent Poisson processes ξ1, . . . , ξd
and nonnegative integrands f or fn, we can use elementary properties of
Poisson processes to give exact criteria in both cases, expressed in terms of
finitely many Lebesgue-type integrals. The same criteria apply to any point
processes with independent increments. A simple decoupling argument yields
an immediate extension to the integrals ξdf .

Using some basic properties of random multi-linear forms, we can next de-
rive similar criteria for the integrals ξ̃1 · · · ξ̃df , where the ξ̃k are conditionally
independent symmetrizations of ξ1, . . . , ξd. It now becomes straightforward
to handle the case of positive or symmetric Lévy processes. The extension
to more general processes requires the sophisticated methods of tangential
processes, developed in the previous chapter. Since multiple series can be
regarded as special multiple integrals, we can also derive some very general
criteria for the former.

We also include a section dealing with escape conditions of the form

|ξdfn| P→ ∞ or |ξ1 · · · ξdfn| P→ ∞. Here it is often difficult, even in simple
cases, to find precise criteria, and we are content to provide some partial
results and comparison theorems, using concentration inequalities and other
subtle tools of elementary probability theory.

−−−
18often confused with tangent processes
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Much of the theory developed so far was originally motivated by applica-
tions. The remainder of the book deals with specific applications of random
measure theory to three broad areas, beginning in Chapter 11 with some
aspects of random line and flat processes in Euclidean spaces, a major sub-
field of stochastic geometry. Here the general idea is to regard any random
collection of geometrical objects as a point process on a suitable parameter
space. The technical machinery of the previous chapters then leads inevitably
to some more general random measures on the same space.

A line process ξ in Rd is a random collection of straight lines in Rd. More
generally, we may consider flat processes ξ in Rd, consisting of random, k-
dimensional, affine subspaces, for arbitrary 1 ≤ k < d. We always assume
ξ to be locally finite, in the sense that at most finitely many lines or flats
pass through any bounded Borel set in Rd. We say that ξ is stationary, if
its distribution is invariant under shifts on the underlying space. Identifying
the lines or flats with points in the parameter space S, we may regard ξ as
a point process on S. The choice of parametrization is largely irrelevant and
may depend on our imminent needs.

Already for stationary line processes ξ in R2 satisfying some mild regular-
ity conditions, we can establish a remarkable moment identity with surprising
consequences. In particular, it implies the existence of a Cox line process ζ
with the same first and second order moment measures, which suggests that
ξ might have been a Cox process to begin with. Though this may not be
true in general, it does hold under additional regularity assumptions. The
situation for more general flat processes is similar, which leads to the funda-
mental problem of finding minimal conditions on a stationary k-flat process
ξ in Rd, ensuring ξ to be a Cox process directed by some invariant random
measure.

Most general conditions known to date are expressed in terms of the Pa-
pangelou kernel η of ξ. From Chapter 8 we know that ξ is a Cox process of
the required type, whenever η is a.s. invariant, where the latter property is
again defined with respect to shifts on the underlying space Rd. This leads
to the simpler—though still fiercely difficult—problem of finding conditions
on a stationary random measure η on the set of k-flats in Rd that will ensure
its a.s. invariance. Here a range of methods are available.

The easiest approach applies already under some simple spanning con-
ditions, which can only be fulfilled when k ≥ d/2. In the harder case of
k < d/2, including the important case of line processes in Rd with d ≥ 3,
the desired a.s. invariance can still be established, when the projections of
η onto the linear subspace of directions are a.s. absolutely continuous with
respect to some sufficiently regular fixed measure. The general case leads to
some subtle considerations, involving certain inner and outer degeneracies.

We may finally comment on the obvious connection with random particle
system. Here we consider an infinite system of particles in Rd, each moving
indefinitely with constant velocity. The particles will then trace out straight
lines in a (d+1)-dimensional space-time diagram, thus forming a line process
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in Rd+1. Assuming the entire system ξ of positions and velocities to be
stationary in Rd at time t = 0, we may look for conditions ensuring that ξ will
approach a steady-state distribution as t→∞. The limiting configuration is
then stationary in all d+1 directions, hence corresponding to a stationary line
process in Rd+1. This provides a useful dynamical approach to the previous
invariance problems for line processes.

−−−

Another case where applications of the previous theory have led to im-
portant developments is for regenerative processes, treated in Chapter 12.
Here the general setup involves a suitably regular process X on R+ that is
regenerative at some fixed state a, in the sense that for any optional time
τ < ∞ with Xτ = a a.s., we have L(θτX | Fτ ) = L(X) a.s. In other words,
X is assumed to satisfy the strong Markov property at visits to a. This is
of course true when the entire process X is strong Markov, but the theory
applies equally to the general case. A familiar example is provided by a
standard Brownian motion, which is clearly regenerative under visits to 0.

Most elementary is the case of renewal processes, where the regenerative
set Ξ = {t ≥ 0; Xt = a} is discrete and unbounded. Here the central
result is of course the classical renewal theorem, which can be extended to a
statement about the occupation measure of any transient random walk in R.
Assuming this case to be well known, we move on to the equally important
and more challenging case, where the closure of Ξ is perfect, unbounded, and
nowhere dense. For motivation, we may keep in mind our favorite example
of Brownian motion.

In this case, there exists a local time random measure ξ with support Ξ̄,
enjoying a similar regenerative property. Furthermore, the excursion struc-
ture of X is described by a stationary Poisson process η on the product space
R+×D0 with intensity measure λ⊗ν, such that a point of η at (s, x) encodes
an excursion path x ∈ D0, spanning the time interval where ξ[0, t] = s. Here
ν is the celebrated Itô excursion law, a σ-finite measure on the space D0 of
excursion paths, known to be unique up to a normalization.

Note that we are avoiding the traditional understanding of local time
as a non-decreasing process L, favoring instead a description in terms of
the associated random measure ξ. This somewhat unusual viewpoint opens
the door to applications of the previous random measure theory, including
the powerful machinery of Palm distributions. The rewards are great, since
the latter measures of arbitrary order turn out to play a central role in the
analysis of local hitting and conditioning, similar to their role for simple point
processes in Chapter 6.

To indicate the nature of those results, fix any times 0 = t0 < t1 < . . . <
tn, such that Eξ has a continuous density p around each point tk− tk−1. The
hitting probabilities P

⋂
k{ξIk > 0} are then given, asymptotically as Ik ↓

{tk} for each k, by some simple expressions involving p, and the corresponding
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conditional distributions ofX agree asymptotically with the associated multi-
variate Palm distributions. In this context, the latter measures can also be
factored into univariate components, which enjoy a range of useful continuity
properties.

−−−

It is only fitting that the book ends, in Chapter 13, with a long dis-
course on branching and super-processes, an area where all aspects of the
previous random measure theory come into play. Since any comprehensive
account would require a book-length treatment, we are forced to state some
basic existence and structural propositions without proof, focusing instead
on areas where the central ideas of random measure theory play an especially
prominent role.

Our starting point is a branching Brownian motion in Rd, where the
life lengths are independent and exponentially distributed with rate 2, and
each particle either dies or splits into two, with equal probability 1

2
. We

also assume the spatial movements of the individual particles to be given by
independent Brownian motions.

We may now perform a scaling, where the particle density and branching
rate are both increased by a factor n, whereas the weight of each particle
is reduced by a factor n−1. As n → ∞, we get in the limit a Dawson–
Watanabe super-process (or DW-process for short), which may be thought of
as a randomly evolving diffuse cloud. The original discrete tree structure is
gone in the limit, and when d ≥ 2, the mass distribution at time t > 0 is
given by an a.s. diffuse, singular random measure ξt of Hausdorff dimension 2.

It is then quite remarkable that the discrete genealogical structure of the
original discrete process persists in the limit, leading to a fundamental cluster
structure of the entire process. Thus, for fixed t > 0, the ancestors of ξt at
an earlier time s = t − h form a Cox process ζts directed by h−1ξs. Even
more amazingly, the collection of ancestral processes ζts with s < t forms an
inhomogeneous Yule branching Brownian motion, approximating ξt as s→ t.
The individual ancestors give rise to i.i.d. clusters, and the resulting cluster
structure constitutes a powerful tool for analysing the process.

Among included results, we note in particular the basic Lebesgue approxi-
mation, which shows how ξt can be approximated, up to a normalizing factor,
by the restriction of Lebesgue measure λd to an ε-neighborhood of the sup-
port Ξt. We can also establish some local hitting and conditioning properties
of the DW-process, similar to those for simple point processes in Chapter 6,
and for regenerative processes in Chapter 12. For d ≥ 3, the approximating
random measure ξ̃ is a space-time stationary version of the process. Though
no such version exists when d = 2, the indicated approximations still hold
with ξ̃ replaced by a stationary version η̃ of the canonical cluster.

Our proofs of the mentioned results rely on a careful analysis of the multi-
variate moment measures with associated densities. The local conditioning
property also requires some sufficiently regular versions of the multi-variate
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Palm distributions, derived from the conditional moment densities via the
general duality theory of Chapter 6.

The moment measures exhibit some basic recursive properties, leading
to some surprising and useful representations in terms of certain uniform
Brownian trees, established by various combinatorial and martingale argu-
ments. A deeper analysis, based on an extension of Le Gall’s Brownian
snake, reveals an underlying Palm tree19 representation, which provides a
striking connection between higher order historical Campbell measures and
appropriate conditional distributions of the uniform Brownian tree.

−−− � − −− � − −−

This is where the book ends, but certainly not the subject. The
quest goes on.

19named after Conny Palm—no relation to subtropical forestry
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We conclude with a short list of some commonly used notation. A more
comprehensive list will be found at the end of the volume.

N = {1, 2, . . .}, Z+ = {0, 1, 2, . . .}, R+ = [0,∞), R̄ = [−∞,∞],

(S,S, Ŝ): localized Borel space, classes of measurable or bounded sets,

S+: class of S-measurable functions f ≥ 0,

S(n): non-diagonal part of Sn,

MS, M̂S: class of locally finite or bounded measures on S,

NS, N̂S: class of integer-valued measures inMS or M̂S,

M∗
S, N ∗

S : classes of diffuse measures inMS and simple ones in NS,

G, λ: measurable group with Haar measure, Lebesgue measure on R,

δsB = 1B(s) = 1{s ∈ B}: unit mass at s and indicator function of B,

μf =
∫
f dμ, (f ·μ)g = μ(fg), (μ ◦ f−1)g = μ(g ◦ f), 1Bμ = 1B ·μ,

μ(n): when μ ∈ N ∗
S , the restriction of μn to S(n),

(θrμ)f = μ(f ◦ θr) =
∫
μ(ds)f(rs),

(ν ⊗ μ)f =
∫
ν(ds)

∫
μs(dt)f(s, t), (νμ)f =

∫
ν(ds)

∫
μs(dt)f(t),

(μ ∗ ν)f =
∫
μ(dx)

∫
ν(dy)f(x+ y),

(Eξ)f = E(ξf), E(ξ|F)g = E(ξg|F),

L( ), L( | )s, L( ‖ )s: distribution, conditional or Palm distribution,

Cξf = E
∑

μ≤ξ f(μ, ξ − μ) with bounded μ,

⊥⊥, ⊥⊥F : independence, conditional independence given F ,
d
=,

d→: equality and convergence in distribution,

w→,
v→,

u→: weak, vague, and uniform convergence,

wd−→,
vd−→: weak or vague convergence in distribution,

‖f‖, ‖μ‖: supremum of |f | and total variation of μ.



Chapter 1

Spaces, Kernels, and Disintegration

The purpose of this chapter is to introduce some underlying framework and
machinery, to form a basis for our subsequent development of random mea-
sure theory. The chapter also contains some more technical results about
differentiation and disintegration, needed only for special purposes. The im-
patient reader may acquire some general familiarity with the basic notions
and terminology from the following introduction, and then return for further
details and technical proofs when need arises.

To ensure both sufficient generality and technical flexibility, we take the
underlying space S to be an abstract Borel space, defined as a measurable
space that is Borel isomorphic to a Borel set B on the real line R. In other
words, we assume the existence of a 1 − 1, bi-measurable mapping between
S and B. In Theorem 1.1 we prove that every Polish space S is Borel,
which implies the same property for every Borel set in S. Recall that a
topological space is said to be Polish if it admits a separable and complete
metrization. The associated σ-field S is understood to be the one generated
by the topology, known as the Borel σ-field.

For technical reasons, we restrict our attention to locally finite measures
on S. In the absence of any metric or topology on S, we then need to
introduce a localizing structure, consisting of a ring Ŝ ⊂ S of bounded sets
with suitable properties. In fact, it is enough to specify a sequence Sn ↑ S
in S, such that a set is bounded iff it is contained in one of the sets Sn. For
metric spaces S, we may choose the Sn to be concentric balls of radii n, and
when S is lcscH (locally compact, second countable, and Hausdorff), we may
choose Ŝ to consist of all relatively compact subsets of S.

The spaceMS of all locally finite measures μ on S may be equipped with
the σ-field generated by all evaluation maps πB : μ �→ μB with B ∈ Ŝ, or
equivalently by all integration maps πf : μ �→ μf =

∫
fdμ, with f ≥ 0 a

measurable function on S. The spaceMS is again Borel by Theorem 1.5, as
is the subspace NS of all integer-valued measures on S.

Every measure μ ∈MS has an atomic decomposition

μ = α +
∑
k≤κ

βk δσk
, (1)

in terms of a diffuse (non-atomic) measure α, some distinct atoms σk ∈ S,
and some real weights βk > 0. Here δs denotes a unit mass at s, defined by
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δsB = 1B(s), where 1B is the indicator function of the set B. The sum is
unique up to the order of terms, and we can choose α and all the σk and
βk to be measurable functions of μ. When μ ∈ NS, we have α = 0, and
βk ∈ N = {1, 2, . . .} for all k.

To prove such results, we may consider partitions of S into smaller and
smaller subsets. To formalize the idea, we may introduce a dissection sys-
tem, consisting of some nested partitions of S into subsets Inj ∈ Ŝ, such that
every bounded set is covered by finitely many sets Inj, and the whole family
generates the σ-field S. The collection {Inj} clearly forms a semi-ring, de-
fined as a class I of subsets closed under finite intersections and such that
every proper difference in I is a finite union of disjoint I-sets. Generating
rings and semi-rings will play important roles in the sequel.

Let N ∗
S denote the class of simple point measures μ ∈ NS, where all

multiplicities βk in (1) equal 1. Such a measure μ may be identified with
its support supp(μ), which yields a 1 − 1 correspondence between N ∗

S and
the class F̂S of all locally finite subsets of S. The correspondence becomes a
Borel isomorphism, if we endow F̂S with the σ-field generated by all hitting
maps hB : F �→ 1{F ∩ B �= ∅} with B ∈ Ŝ.

Given two measurable spaces (S,S) and (T, T ), we define a kernel from
S to T as a function μ : S × T → [0,∞], such that μ(s, B) is measurable in
s ∈ S for fixed B and a measure in B ∈ T for fixed s. It is said to be locally
finite if μ(s, B) < ∞ for all B ∈ T̂ and a probability kernel if μ(s, T ) ≡ 1.
Though often neglected in real analysis, kernels play a fundamental role in all
areas of probability theory. In the context of our present exposition, they are
needed already for the definition of random measures and their transforms,
and they figure prominently especially in connection with Palm measures
and Gibbs kernels.

For any two kernels μ : S → T and ν : T → U , we define their composition
μ⊗ ν and product μν as kernels from S to T ×U or U , respectively, given by

(μ⊗ ν)sf =
∫
μs(dt)

∫
νt(du) f(t, u),

(μν)sf =
∫
μs(dt)

∫
νt(du) f(u),

so that μν = (μ⊗ ν)(T ×·). Measures on T may be regarded as kernels from
a singleton space S.

Conversely, kernels often arise through the disintegration of measures ρ
on a product space S × T . Thus, when ρ is σ-finite and S and T are Borel,
we may form the dual disintegrations ρ = ν ⊗ μ

∼
= ν ′ ⊗ μ′, in terms of some

σ-finite measures ν on S and ν ′ on T and some kernels μ : S → T and
μ′ : T → S, or more explicitly

ρf =
∫

ν(ds)
∫

μs(dt) f(s, t)

=
∫

ν ′(dt)
∫

μ′
t(ds) f(s, t).
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When the projections ρ(· × T ) and ρ(S × ·) are σ-finite, they may be chosen
as our supporting measures ν and ν ′, in which case we may choose μ and μ′

to be probability kernels. In general, we can choose any σ-finite measures
ν ∼ ρ(· × T ) and ν ′ ∼ ρ(S × ·). Note that if ρ = L(ξ, η) for some random
elements ξ in S and η in T with marginal distributions ν and ν ′, respectively,
then μ and μ′ are versions of the regular conditional distributions L(η | ξ)s and
L(ξ | η)t. Despite its fundamental importance, the subject of disintegration
has often been neglected, or even dismissed as a technical nuisance1.

Disintegration of kernels is more subtle. In particular, regarding the
measures ρ and ν above as measurable functions of the pair (ρ, ν), hence
as kernels from MS×T ×MS to S × T and S, respectively, we may want
to choose even the disintegration kernel μ to depend measurably on ρ and
ν, hence as a kernel from S ×MS×T ×MS to T . The existence of such a
measurable disintegration is ensured by Corollary 1.26.

Even more subtle is the subject of iterated disintegration, clarified by
Theorem 1.27, which plays an important role in the context of general Palm
measures. To explain the idea in a simple case, consider some random el-
ements ξ, η, and ζ in arbitrary Borel spaces, and introduce their marginal
and conditional distributions, denoted as in

μ12 = L(ξ, η), μ23|1 = L(η, ζ | ξ) μ3|12 = L(ζ | ξ, η).

We wish to form versions of the kernel μ3|12, via disintegration of μ23|1 or
μ13|2. Denoting the resulting disintegration kernels by μ3|2|1 and μ3|1|2, we
prove that, under suitable hypotheses,

μ3|12 = μ3|2|1
∼
= μ3|1|2 a.e. μ12.

This should not be confused with the much more elementary chain rule for
conditional expectations.

Differentiation may be regarded as a special case of disintegration. Here
we explain the classical dissection approach to the Lebesgue decomposi-
tion and Radon-Nikodym theorem, which leads directly to some product-
measurable versions, required for the previous disintegration theory. We also
review the classical theory of general differentiation bases, and prove some
general approximation properties, useful in subsequent chapters.

1.1 Borel and Measure Spaces

Two measurable spaces (A,A) and (B,B) are said to be Borel isomorphic,
if they are related by a bijective map f : A → B such that f and f−1 are
both measurable. A Borel space is a measurable space (S,S) that is Borel

1“The theorem about disintegration of measures has a bad reputation, and probabilists
rarely employ it without saying ‘we are obliged to’ . . .” (quoted from Dellacherie & Meyer
(1975), p 125).


