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Preface

This book originates from three-dimensional data processing research in the Multi-
media Technology and Telecommunications Laboratory (LTTM) at the Department
of Information Engineering of the University of Padova. The LTTM laboratory has
a long history of research activity on consumer depth cameras, starting with Time-
of-Flight (ToF) depth cameras in 2008 and continuing since, with a particular focus
on recent structured light and ToF depth cameras like the two versions of Microsoft
KinectTM. In the past years, the students and researchers at the LTTM laboratory
have extensively explored many topics on 3D data acquisition, processing, and
visualization, all fields of large interest for the computer vision and the computer
graphics communities, as well as for the telecommunications community active on
multimedia.

In contrast to a previous book by some of the authors, published as Springer
Briefs in Electrical and Computer Engineering targeted to specialists, this book has
been written for a wider audience, including students and practitioners interested in
current consumer depth cameras and the data they provide. This book focuses on
the system rather than the device and circuit aspects of the acquisition equipment.
Processing methods required by the 3D nature of the data are presented within
general frameworks purposely as independent as possible from the technological
characteristics of the measurement instruments used to capture the data. The results
are typically presented by practical exemplifications with real data to give the reader
a clear and concrete idea about the actual processing possibilities.

This book is organized into three parts, the first devoted to the working principles
of ToF and structured light depth cameras, the second to the extraction of accurate
3D information from depth camera data through proper calibration and data fusion
techniques, and the third to the use of 3D data in some challenging computer vision
applications.

This book comes from the contribution of a great number of people besides the
authors. First, almost every student who worked at the LTTM laboratory in the past
years gave some contribution to the know-how at the basis of this book and must
be acknowledged. Among them, in particular, Alvise Memo must be thanked for
his help with the acquisitions from a number of different depth cameras and for
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his review of this book. Many other students and researchers have contributed, and
we would like to thank also Mauro Donadeo, Marco Fraccaro, Giampaolo Pagnutti,
Luca Palmieri, Mauro Piazza, and Elena Zennaro. We consider a major contribution
to this book the proofreading by Ilene Rafii which improved not only the quality of
the English language but also the readability of this book in many parts. The authors
would like to acknowledge 3DEverywhere which in 2008 purchased the first ToF
camera with which the research about depth sensors at the LTTM laboratory began.
Among the 3DEverywhere people, a special thank goes to Enrico Cappelletto,
Davide Cerato, and Andrea Bernardi. We would also like to thank Gerard Dahlman
and Tierry Oggier for the great collaboration we received from Mesa Imaging,
Arrigo Benedetti (now with Microsoft, formerly with Canesta), and Abbas Rafii
(with Aquifi) who helped the activity of the LTTM laboratory in various ways.

This book also benefited from the discussions and the supportive attitude of
many colleagues, among which we would like to recall David Stoppa and Fabio
Remondino (with FBK), Roberto Manduchi (with U.C.S.C.), Stefano Mattoccia
(with the University of Bologna), Marco Andreetto (with Google), and Tim Droz
and Mitch Reifel (with SoftKinetic).

Padova, Italy Pietro Zanuttigh
January 2016 Giulio Marin

Carlo Dal Mutto
Fabio Dominio

Ludovico Minto
Guido Maria Cortelazzo
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Chapter 1
Introduction

The acquisition of the geometric description of dynamic scenes has traditionally
been a challenging task which required state of the art technology and instrumen-
tation only accessible by research labs or major companies until professional-grade
and consumer-grade depth cameras arrived in the market. Both professional-grade
and consumer-grade depth cameras mainly belong to two technological families,
one based on the active triangulation working principle and the other based
on the Time-of-Flight working principle. The cameras belonging to the active
triangulation family are usually called structured light depth cameras, while the
cameras belonging to the second family are usually called matricial Time-of-Flight
depth cameras, or simply ToF depth cameras, as in the remainder of this book.

Structured light depth cameras are the most diffused depth cameras in the market.
Among them, the most notable example is the Primesense camera used in the
first generation of Microsoft KinectTM. ToF depth cameras have historically been
considered professional-grade (e.g., Mesa Imaging SwissRanger), however, recently
they have also appeared as consumer-grade products, such as the first and second
generation of Microsoft KinectTM, from now on called KinectTM v1 and v2.

In several technical communities, especially those of computer vision, artificial
intelligence, and robotics, a large interest has risen for these devices, along with the
following questions: “What is a ToF camera?”, “How does the KinectTM work?”,
“Are there ways to improve the low resolution and high noise characteristics of ToF
cameras data?”, “How far can I go with the depth data provided by a 100–150 dollar
consumer-grade depth camera with respect to those provided by a few thousand
dollars professional-grade ToF camera?”. This book tries to address these and other
similar questions from a data user’s point of view, as opposed to a technology
developer’s perspective.

This first part of this book describes the technology behind structured light and
ToF cameras. The second part focuses on how to best exploit the data produced

© Springer International Publishing Switzerland 2016
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2 1 Introduction

by structured light and ToF cameras, i.e., on the processing methods best suited to
depth information. The third part reviews a number of applications where depth data
provide significant contributions.

This book leverages on the depth nature of the data to present approaches that are
as device-independent as possible. Therefore, we refer as often as possible to depth
cameras and make the distinction between structured light and ToF cameras only
when necessary. We focus on the depth nature of the data, rather than on the devices
themselves, to establish a common framework suitable for current data from both
structured light and ToF cameras, as well as data from new devices of these families
that will reach the market in the next few years. Although structured light and ToF
cameras are functionally equivalent depth cameras, i.e, providers of depth data, there
are fundamental technological differences between them which cannot be ignored.
These differences strongly impact noise, artifacts and production costs.

The synopsis of distance measurement methods in Fig. 1.1, derived from [17],
offers a good framework to introduce these differences. For the purposes of this
book, the reflective optical methods of Fig. 1.1 are typically classified into passive
and active. Passive range sensing refers to 3D distance measurement by way of
radiation (typically, but not necessarily, in the visible spectrum) already present in
the scene. Stereo-vision systems are a classical example of this family of methods.
Active sensing refers instead to 3D distance measurement obtained by projecting
some form of radiation in the scene, as done for instance by structured light and
ToF depth cameras.

The operation of structured light and ToF depth cameras involves a number of
different concepts about imaging systems, ToF sensors and computer vision. These

NON-CONTACT DISTANCE MEASUREMENT METHODS

REFLECTIVE TRANSMISSIVE

NON-OPTICAL OPTICAL

STRUCTURED 
LIGHT

ACTIVE

STEREO
STRUCTURE 

FROM MOTION
SHAPE FROM 
SILHOUETTE

TIME-OF-
FLIGHT

…

PASSIVE

Fig. 1.1 Taxonomy of distance measurement methods (derived from [17])



1.1 Basics of Imaging Systems 3

concepts are recalled in the next two sections of this chapter to equip the reader
with the notions needed for the remainder of the book; the next two sections can
be skipped by readers already acquainted with structured light and ToF systems
operation.

The depth or distance measurements taken by the systems of Fig. 1.1 can
typically be represented by depth maps, i.e., data with each spatial coordinate
.u; v/ associated with the corresponding depth value z, and the depth maps can
be combined into full all-around 3D models [14] as will be seen in Chap. 7. Data
made by a depth map together with the corresponding color image are also referred
to as RGB-D data.

1.1 Basics of Imaging Systems

1.1.1 Pin-Hole Camera Model

Let us consider a 3D reference system with axes x, y and z, called Camera
Coordinates System (CCS), with origin at O, called center of projection, and a plane
parallel to the .x; y/-plane intersecting the z-axis at negative z-coordinate f , called
sensor or image plane S as shown in Fig. 1.2. The axes’ orientations follow the so
called right-hand convention. Consider also a 2D reference system

u D xC cx

v D yC cy

(1.1)

associated with the sensor, called S-2D reference system, oriented as shown
in Fig. 1.2a. The intersection c of the z-axis with the sensor plane has coordinates
c D Œcx; cy�

T . The set of sensor points p, called pixels, of coordinates p D Œu; v�T

obtained from the intersection of the rays connecting the center of projection O with
all the 3D scene points P with coordinates P D Œx; y; z�T , is the scene footprint on
the sensor S.

The relationship between P and p, called central or perspective projection, can
be shown by triangle similarity (see Fig. 1.2b, c) to be

8

<̂

:̂

u � cx D f
x

z

v � cy D f
y

z

(1.2)

where the distance jf j between the sensor plane and the center of projection O is
typically called focal length. In the adopted notation, f is the negative coordinate
of the location of the sensor plane with respect to the z-axis. The reader should be
aware that other books adopt a different notation, where f denotes the focal length,
hence it is a positive number and the z coordinate of the sensor plane is denoted
as �f .
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Fig. 1.2 Perspective
projection: (a) scene point P
projected to sensor pixel p;
(b) horizontal section of (a);
(c) vertical section of (a)
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The perspective projection (1.2) is a good description of the geometric relation-
ship between the coordinates of the scene points and the corresponding location
in an image obtained by a pin-hole imaging device with the pin-hole positioned at
center of projection O. Such a system allows a single light ray to go through the pin-
hole at O. For a number of reasons, in imaging systems it is more practical to use
optics, i.e., suitable sets of lenses, instead of pin-holes. Quite remarkably, the ideal
model of an optical system, called thin-lens model, maintains the relationship (1.2)
between the coordinates of P and of p if the lens’ optical center (or nodal point) is
in O and the lens’ optical axis, i.e., the line orthogonally intersecting the lens at its
nodal point, is orthogonal to the sensor. If a thin lens replaces a pin-hole in Fig. 1.2c,
the optical axis coincides with the z-axis of the CCS.
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1.1.2 Camera Geometry and Projection Matrix

Projective geometry associates to each 2D point p with Cartesian coordinates p D
Œu; v�T of a plane a 3D representation called 2D homogeneous coordinates Qp D
Œhu; hv; h�T , where h is any real constant. The usage of h D 1 is rather common and
Œu; v; 1�T is often called the extended vector of p [57].

The coordinates p D Œu; v�T can be obtained by dividing Qp D Œhu; hv; h�T by its
third coordinate h. Vector Qp can be interpreted as the 3D ray connecting the sensor
point p with the center of projection O.

In a similar way each 3D point P with Cartesian coordinates P D Œx; y; z�T can
be represented in 3D homogeneous coordinates by a 4D vector Qp D Œhx; hy; hz; h�T

where h is any real constant. Vector Œx; y; z; 1�T is often called the extended vector
of P.

The coordinates P D Œx; y; z�T can be obtained by dividing QP D Œhx; hy; hz; h�T by
its fourth coordinate h. An introduction to projective geometry suitable to computer
vision applications can be found in [32].

The homogeneous coordinates representation of p allows one to rewrite the non-
linear relationship (1.2) in a convenient matricial form:

z

2

4
u
v

1

3

5 D
2

4
f 0 cx

0 f cy

0 0 1

3

5

2

4
x
y
z

3

5 : (1.3)

Note that the left side of (1.3) represents p in 2D homogeneous coordinates but the
right side of (1.3) represents P in 3D Cartesian coordinates. It is straightforward to
add a column with all 0 entries at the right of the matrix in order to represent P in
homogeneous coordinates as well. This latter representation is more common than
(1.3), which nevertheless is often adopted for its simplicity [57].

Digital sensor devices are typically planar matrices of rectangular sensor cells
hosting photoelectric conversion systems based on CMOS or CCD technology in the
case of digital cameras or video cameras, or single ToF receivers in the case of ToF
cameras, as explained in Sect. 1.4. Customarily, they are modeled as a rectangular
lattice �S with horizontal and vertical step-size ku and kv respectively, as shown
in Fig. 1.3a.

Given the finite sensor size, only a rectangular window of �S made by NC

columns and NR rows is of interest for imaging purposes.
In order to deal with normalized lattices with origin at .0; 0/ and unitary pixel

coordinates uS 2 Œ0; : : : ;NC � 1� and vS 2 Œ0; : : : ;NR � 1� in both the u and v
direction, relationship (1.3) is replaced by

z

2

4
u
v

1

3

5 D K

2

4
x
y
z

3

5 (1.4)
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u

v

ku 2ku NCku
kv

2kv

NRkv

u

v

1 2 NC

1

2

NR

(a) (b)

Fig. 1.3 2D sensor coordinates: (a) rectangular window of a non-normalized orthogonal lattice;
(b) rectangular window of a normalized orthogonal lattice

where K is the intrinsic parameters matrix defined as

K D
2

4
fx ˛ cx

0 fy cy

0 0 1

3

5 �
2

4
fx 0 cx

0 fy cy

0 0 1

3

5 (1.5)

with fx D fku the x-axis focal length of the optics, fy D fkv the y-axis focal length of
the optics, cx and cy the .u; v/ coordinates of the intersection of the optical axis with
the sensor plane. All these quantities are expressed in [pixel], i.e., since f is in [mm],
ku and kv are assumed to be [pixel]/[mm]. Notice also that an additional parameter ˛
(axis skew) is sometimes used to account for the fact that the two axes in the sensor
lattice are not perfectly perpendicular, however since it is typically negligible we
will not consider it in the rest of the book and approximate K by the r.h.s. of (1.5).
The symbol � within (1.5) denotes approximation.

In many practical situations it is convenient to represent the 3D scene points not
with respect to the CCS, but with respect to a different easily accessible reference
system conventionally called World Coordinate System (WCS), in which a scene
point denoted as P has coordinates PW D ŒxW ; yW ; zW �

T . The relationship between
the representation of a scene point with respect to the CCS, denoted as P, and its
representation with respect to the WCS, denoted as PW , is

P D RPW C t D
2

4
rT
1

rT
2

rT
3

3

5PW C
2

4
t1
t2
t3

3

5 (1.6)

where R and t are a suitable rotation matrix and translation vector, respectively.
For future usage let us introduce an explicit notation for the rows rT

i , i D 1; 2; 3

of R and the components ti, i D 1; 2; 3 of t. By representing PW at the right side
in homogeneous coordinates QPW D ŒhxW ; hyW ; hzW ; h�T and choosing h D 1, the
relationship (1.6) can be rewritten as
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P D ŒR j t � QPW : (1.7)

In this case, the relationship between a scene point represented in homogeneous
coordinates with respect to the WCS and its corresponding pixel in homogeneous
coordinates, from (1.4), becomes

Qp Š
2

4
u
v

1

3

5 Š 1

z
KP Š 1

z
KŒR j t � QPW Š 1

z
M QPW Š 1

z
M

2

6
6
4

xW

yW

zW

1

3

7
7
5 (1.8)

where the 3 � 4 matrix

M D KŒR j t � D

2

6
6
4

mT
1

mT
2

mT
3

3

7
7
5 (1.9)

is called projection matrix. Projection matrix M depends on the intrinsic parameters
matrix K and on the extrinsic parameters R and t of the imaging system. A
projection matrix M is said to be in normalized form if its bottom row is exactly
mT
3 D Œ rT

3 j t3 �. It is straightforward to see that if M is in normalized form, (1.8)

holds with the equality sign: in this case z D rT
3
QPW C t3 assumes the value of the

depth of PW with respect to the camera reference system. By denoting with mT
i ,

i D 1; 2; 3 the rows of M, the image coordinates .u; v/ of point P from (1.8) can be
written as

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

u D mT
1
QPW

mT
3
QPW

D
QPT

Wm1

QPT
Wm3

v D mT
2
QPW

mT
3
QPW

D
QPT

Wm2

QPT
Wm3

: (1.10)

The symbol Š within (1.8) denotes that in general, the equality holds up to a
multiplicative constant since it involves homogeneous coordinates. In this sense M
is also defined up to a multiplicative constant since it has 12 parameters but just 11
degrees of freedom: 5 from K (4 excluding the skew parameter), 3 from R and 3
from t.

From a set of J known 2D-3D correspondence values .pj;Pj/, j D 1; : : : ; J from
(1.10) one may derive a set of 2J homogeneous linear equations

8
<

:

mT
3
QPj

Wuj �mT
1
QPj

W D 0
mT
3
QPj

Wv
j �mT

2
QPj

W D 0
j D 1; : : : ; J (1.11)
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from which M can be computed. In principle, J D 6 correspondences suffice since
M has 12 entries; in practice, one should use J � 6 in order to effectively deal
with noise and non-idealities. However, this method, typically called Direct Linear
Transform (DLT), only minimizes a target with algebraic significance, and is not
invariant with respect to Euclidean transformations. Therefore the result of the DLT
is typically used as starting point for a nonlinear minimization either in L2 or L1
directly addressing Eqs. (1.10), for example

min
K;R;t

JX

jD1
jpj � f .K;R; t;Pj/j2 (1.12)

where f .K;R; t;Pj/ is a function that given K, R and t, projects P in the image
plane, as in (1.8). More details on the estimation of K, R and t will be provided in
Chap. 4.

1.1.3 Lens Distortions

As a consequence of distortions and aberrations of real optics, the coordinates
Op D .Ou; Ov/ of the pixel actually associated with scene point P with coordinates
P D Œx; y; z�T in the CCS system do not satisfy relationship (1.4). The correct pixel
coordinates .u; v/ of (1.4) can be obtained from the distorted coordinates .Ou; Ov/
actually measured by the imaging system, by inverting suitable distortion models,
such as

pT D ��1. OpT/ (1.13)

where �.�/ denotes the distortion transformation.
Anti-distortion model (1.14), also called the Heikkila model [33], has become

popular since it adequately corrects the distortions of most imaging systems and
effective methods exist for computing its parameters:

�
u
v

�

D ��1. OpT/ D
" Ou.1C k1r

2 C K2r
4 C k3r

6/C 2d1 Ou Ov C d2.r
2 C 2Ou2/

Ov.1C k1r
2 C k2r

4 C k3r
6/C d1.r

2 C 2 Ov2/C 2d2 Ou Ov

#

(1.14)

where r D p
.Ou � cx/2 C . Ov � cy/2, parameters ki with i D 1; 2; 3 are constants

accounting for radial distortion and di with i D 1; 2 account for tangential distortion.
A number of other more complex models, e.g. [18], are also available.

Distortion parameters

d D Œk1; k2; k3; d1; d2� (1.15)
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are intrinsic camera parameters to be considered together with
�
f ; ku; kv; cx; cy

�
.

Equation (1.12) can be modified to also account for distortion, in this case, the
projection function f becomes f .K;R; t;d;Pj/.

The estimation of intrinsic and extrinsic parameters of an imaging system
by suitable methods such as [16] and [6] is called geometric calibration and is
discussed in Chap. 4.

1.2 Stereo Vision Systems

This section and the previous one summarize basic computer vision concepts
necessary for understanding the rest of this book and can be skipped by readers
familiar with computer vision. Readers interested in a more extensive presentation
of these topics are referred to computer vision textbooks such as [15, 20, 22, 24, 26,
27, 32, 45, 48, 55, 57, 61].

1.2.1 Two-view Stereo Systems

A stereo vision, or stereo, system is made by two standard cameras partially framing
the same scene, namely the left camera L, also called reference camera, and the
right camera R, also called target camera. Each camera is assumed to be calibrated,
with calibration matrices KL and KR for the L and R cameras respectively. As
previously seen, each has its own 3D CCS and 2D reference systems, as shown
in Fig. 1.4. Namely, the L camera has CCS with coordinates .xL; yL; zL/, also called
L-3D reference system, and a 2D reference system with coordinates .uL; vL/. The R
camera has CCS with coordinates .xR; yR; zR/, also called R-3D reference system,

Fig. 1.4 Stereo vision system coordinates and reference systems
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L

L

R

R

Fig. 1.5 Rectified stereo system

Fig. 1.6 Triangulation with a
rectified stereo system

pR

P

pL

zL

xL

zR

xR

b

z

f

uL uR

and a 2D reference system with coordinates .uR; vR/. The two cameras may be
different, but in this book they are assumed to be identical, with K D KL D KR,
unless explicitly stated. A common convention is to consider the L-3D reference
system as the reference system of the stereo vision system and to denote it as S-3D
reference system.

Let us momentarily consider the case of a calibrated and rectified stereo vision
system, i.e., a stereo vision system made by two identical standard cameras
with coplanar and aligned imaging sensors and parallel optical axes as shown in
Fig. 1.5. In rectified stereo vision systems points pL and pR have the same vertical
coordinates. By denoting

d D uL � uR (1.16)
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the difference between their horizontal coordinates, called disparity, a 3D point P
with coordinates PL D ŒxL; yL; zL�

T with respect to the S-3D reference system, is
projected to the pixels pL and pR of the L and R cameras with coordinates

pL D
"

uL

vL

#

pR D
"

uR D uL � d

vR D vL

#

(1.17)

respectively. Furthermore, let PR D ŒxR; yR; zR�
T denote the coordinate of P with

respect to the R-3D reference system and let .R; t/ denote the rigid transformation
mapping the R-3D reference system to the L-3D reference system, which is also the
S-3D reference system, i.e.,

PR D RPL C t: (1.18)

By introducing normalized image coordinates

QqL D

2

6
6
4

u0
L

v0
L

1

3

7
7
5 D K�1 QpL D

2

6
6
6
4

1

f
0 �cx

f

0
1

f
�cy

f
0 0 1

3

7
7
7
5

2

6
6
4

uL

vL

1

3

7
7
5 D

2

6
6
6
6
6
4

uL � cx

f
vL � cy

f

1

3

7
7
7
7
7
5

QqR D

2

6
6
4

u0
R

v0
R

1

3

7
7
5 D K�1 QpR D

2

6
6
6
4

1

f
0 �cx

f

0
1

f
�cy

f
0 0 1

3

7
7
7
5

2

6
6
4

uR

vR

1

3

7
7
5 D

2

6
6
6
6
6
4

uR � cx

f
vR � cy

f

1

3

7
7
7
7
7
5

(1.19)

the Cartesian coordinates of P with respect to the L and R 3D reference system can
be written as

PL D zLK�1 QpL D zL QqL

PR D zRK�1 QpR D zR QqR

(1.20)

and (1.18) can be rewritten as

zR QqR � zLR QqL D t (1.21)
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or

8
ˆ̂
<

ˆ̂
:

zRu0
R � zLrT

1 QqL D t1

zRv
0
R � zLrT

2 QqL D t2

zR � zLrT
3 QqL D t3 :

(1.22)

By substituting in the first equation of (1.22) zR D t3 C zLrT
3 QqL, derived from the

third equation, one obtains

zL D t1 � u0
Rt3

u0
RrT
3 QqL � rT

1 QqL
: (1.23)

Equation (1.23) shows that the depth, i.e., the z coordinate, of 3D point P with
respect to the L-3D reference system denoted zL can be obtained upon knowledge
of the left image coordinate QpL and of the right image coordinate QpR of point P,
assuming the stereo system calibration parameters are known. These parameters
are the external calibration parameters .R; t/, relating the position of the right
camera to the left camera, and the internal calibration parameters K, concerning both
cameras of the rectified stereo system. The procedure computing the stereo system
calibration parameters will be seen in Chap. 4. Such procedure delivers as output
the left and right camera projection matrices, which within the assumed conventions
respectively result in

ML D KL
�

I j 0
�

MR D KR
�

R j t
�
: (1.24)

The methods indicated in Sect. 1.2.1.3 can be used to solve the so-called
correspondence problem, i.e., the automatic determination of image points QpL and
QpR, called conjugate points. Triangulation or computational stereopsis is the process
by which one may compute the 3D coordinates PL D ŒxL; yL; zL�

T of a scene point P
from (1.20), from the knowledge of conjugate points QpL and QpR, obtained by solving
the correspondence problem, i.e., as

PL D
2

4
xL

yL

zL

3

5 D K�1
L

2

4
uL

vL

1

3

5 z (1.25)

where K�1
L is the inverse of the intrinsic parameters matrix (1.5) of camera L (or R)

of the stereo system.
In the case of a rectified system, where K D KL D KR, as shown in Fig. 1.6, the

parameters entering MR in (1.24) are R D I and t D Œ�b; 0; 0�T and it can be readily
seen that from rT

3 QqL D 1 and rT
1 QqL D u0

L, expression (1.23) becomes

zL D �b

u0
R � u0

L

D � bf

uR � uL
D bf

d
(1.26)
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where d is the disparity defined in (1.16). Equation (1.26), which shows that
disparity is inversely proportional to the depth value z of P, can be directly obtained
from the similarities of the triangles inscribed within the triangle with vertices at P,
pL and pR of Fig. 1.6. Indeed, from the established CCS conventions, one can write
for the L camera

uL � cx

xL
D f

zL
(1.27)

and for the R camera

uR � cx

xL � b
D f

zR
D f

zL
(1.28)

since in the case of rectified stereo systems xR D xL�b and zR D zL. By substituting
(1.27) in (1.28) one obtains

zL D uL � cx

uR � cx
zL � bf

uR � cx
(1.29)

which gives (1.26). The above derivation is what justifies the name of triangulation
for the procedure adopted to infer the 3D coordinates of a scene point P from its
conjugate image points pL and pR.

The procedure actually used for triangulation or stereopsis can be summarized in
very general terms as follows. Since

8
ˆ̂
<

ˆ̂
:

QpL Š 1

z
ML QPL

QpR Š 1

z
MR QPL

(1.30)

where ML D ŒmT
1L; mT

2L; mT
3L� and MR D ŒmT

1R; mT
2R; mT

3R� are the perspective
projection matrices of the L and R camera of (1.24) and QPL represents the
coordinates of P with respect to the S-3D reference system, assumed to be the L-3D
reference system, by (1.10) expression (1.30) can be rewritten as

2

6
6
6
6
6
4

mT
3LuL �mT

1L

mT
3LvL �mT

2L

mT
3RuR �mT

1R

mT
3RvR �mT

2R

3

7
7
7
7
7
5

QPL D 04�1 (1.31)

which, since pL, pR, ML, and MR are assumed known, corresponds to a linear
homogeneous system of four equations in the unknown coordinates of P. Clearly
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(1.31) gives a non-trivial solution only if the system matrix has rank 3. This
condition may not always be verified because of noise. The so-called linear-eigen
method [31] based on singular value decomposition overcomes such difficulties. As
already seen for the estimate of M by the DLT method, since the estimate of P
returned by (1.31) complies only with an algebraic criterion, it is typical to use it as
a starting point for the numerical optimization of (1.31), in terms of

min
QPL

8
<

:

 

uL � mT
1L
QPL

mT
3L
QPL

!2

C
 

vL � mT
2L
QPL

mT
3L
QPL

!2

C

C
 

uR � mT
1R
QPL

mT
3R
QPL

!2

C
 

vR � mT
2R
QPL

mT
3R
QPL

!2
9
=

;
: (1.32)

Equation (1.32) can be interpreted as a variation of (1.12), where the reprojection
error is jointly minimized in both cameras. Note that the goal of (1.32) is to find the
coordinates of P, rather than M, as in (1.12).

1.2.1.1 Epipolar Geometry

Figure 1.7 schematically represents the stereo system of Fig. 1.5 and evidences only
some elements of special geometric significance, such as the optical centers CL and
CR and the image planes of the two cameras. It shows that given pL, its conjugate
pR must lie on the plane defined by pL, CL, and CR, called epipolar plane, and
similarly for pR. This geometric constraint implies that given pL, its conjugate point
pR can only be sought along the intersection of the epipolar plane through pL, CL,

Fig. 1.7 Epipolar geometry P

CL CR

pL pR

eL eR
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and CR with the right image plane, which is a line, called the right epipolar line
of pL. Similar reasoning applies to pR. Epipolar geometry, which reduces the search
for the conjugate point from planar to linear, is formalized by the Longuet-Higgins
equation

QpT
RF QpT

L D 0 (1.33)

where 3� 3 matrix F is called the fundamental matrix [44]. In practical settings due
to noise and inaccuracies the equation does not perfectly hold and it can be replaced
by the search for the conjugate points that minimize (1.33). The homogeneous
equation of the epipolar line of pL from (1.33) is QpT

RF and similarly QpT
LF is the

equation of the epipolar line of pR.
Since the epipolar plane is defined by P, CL, and CR, it varies with P. Therefore,

there are infinite epipolar planes forming infinite epipolar lines on the left and
right image. It is worth noting that since every epipolar plane, i.e., the epipolar
plane defined by any P, includes CL and CR, all epipolar planes include the baseline
connecting CL and CR. Furthermore, the baseline intersects the left and right image
planes at two points called left epipole eL and right epipole eR. Indeed, eL and eR

belong to the bundle of all the left and right epipolar lines, since every epipolar plane
defined by any P must include rays pL P and pR P.

1.2.1.2 Epipolar Rectification

A stereo system is called rectified if it has parallel image planes, as in Fig. 1.6.
This configuration is of special interest, since the epipoles become points at infinity;
therefore, the epipolar lines, bounded to intersect the epipoles, become parallel lines
as shown in Fig. 1.8. Such a geometry further simplifies the search for the conjugate
of pL D ŒuL; vL�

T in the right image, which epipolar geometry already turns from a
2D search to a 1D search, to a search on the horizontal right image line of equation
y D vL.

Figure 1.8 emphasizes that the projection matrices ML and MR and the left and
right images IL and IR of the stereo system with vergent cameras differ from the
those of the rectified system, respectively denoted as M0

L, M0
R and I0

L, I0
R. In a rectified

stereo system (Fig. 1.6), the left and the right projection matrices are

ML D K
�

I j 0
�

MR D K
�

I j Œb; 0; 0�T � : (1.34)

There exist methods for computationally rectifying vergent stereo systems, such
as the algorithm of [28] which first computes M0

L and M0
R from ML and MR and

then rectifies the images, i.e., it computes I0
L and I0

R upon M0
L and M0

R. Figure 1.9
shows an example of image rectification. In current practice, it is typical to apply
computational stereopsis to rectified images, which is equivalent to computationally
turning actual stereo systems into rectified stereo systems.
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P

CL CR

eL eR

Fig. 1.8 Epipolar rectification

Fig. 1.9 Top: pair of images acquired by a vergent stereo system [41]. Bottom: rectified images.
Red lines highlight some epipolar lines
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1.2.1.3 The Correspondence Problem

The triangulation procedure assumes the availability of a pair of conjugate points
pL and pR. This represents a delicate and tricky assumption for the triangulation
procedure, first of all because such a pair may not exist due to occlusions. Even if it
exists, it may not be straightforward to find it.

Indeed, the correspondence problem, i.e. the detection of conjugate points
between the stereo image pairs, is one of the major challenges of stereo vision
algorithms. The methods proposed for this task can be classified according to
various criteria. A first distinction concerns dense and sparse stereo algorithms. The
former, representing current trends [51], are methods aimed at finding a conjugate
point for every pixel of the left (right) image, of course within the limits imposed
by occlusions. The latter are methods which do not attempt to find a conjugate for
every pixels.

A second distinction concerns the methods suited for short baseline and wide
baseline stereo systems. The former implicitly assume the two images share consid-
erable similarity characteristics hence, in principle, can adopt simpler methods with
respect to the latter.

The third distinction concerns local and global approaches. Local methods
consider only local similarity measures between the region surrounding pL and
regions of similar shape around all the candidate conjugate points pR of the same
row. The selected conjugate point is the one which maximizes the similarity
measure, a method typically called Winner Takes All (WTA) strategy. Conversely,
global methods do not consider each couple of points on their own, but instead
estimate all of the disparity values at once, exploiting global optimization schemes.
Global methods based on Bayesian formulations are currently receiving great
attention in dense stereo. Such techniques generally model the scene as a Markov
Random Field (MRF), and include within a unique framework clues coming
from local comparisons between the two images and scene depth smoothness
constraints. Global stereo vision algorithms typically estimate the disparity image
by minimizing a cost function made by a data term representing the cost of local
matches, similar to the computation of local algorithms (e.g., covariance) and a
smoothness term defining the smoothness level of the disparity image by explicitly
or implicitly accounting for discontinuities [57].

Wide baseline stereo methods traditionally rest on salient point detection tech-
niques such as Harris corner detector [29]. Scale Invariant Feature Transform
(SIFT) [42], which offers a robust salient point detector and an effective descriptor
of the detected points, gave a truly major contribution to this field [47] and inspired
a number of advances in related areas. An application of wide baseline matching
which recently received major attention, as reported below, is 3D reconstruction
from a generic collection of images of a scene [54].

It is finally worth recalling that although specific algorithms may have a
considerable impact on the solution of the correspondence problem, the ultimate
quality of 3D stereo reconstruction inevitably also depends on scene characteristics.
This can be readily realized considering the case of a scene without geometric


