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  Fore word   

 It gives me immense pleasure to introduce  microRNA: Medical Evidence—From 
Molecular Biology to Clinical Practice  to the medical and scientifi c community. 
The book you are holding was developed to provide medical students, researchers, 
and physicians with the knowledge on an emerging fundamental section of 
biomedicine: microRNA. 

 This book represents one volume—focused on clinical practice—of a trilogy 
exploring the functional role of microRNAs from basic science to the clinical 
scenario. The other two volumes explore the importance of microRNA in molecular 
biology and in cancer, respectively. The books have been edited by Dr. Gaetano 
Santulli, MD, PhD, who reunited the major experts in the microRNA fi eld in order 
to have a comprehensive, up-to-date, and systematic overview of the mechanistic 
roles of these tiny molecules in physiology and disease. 

 MicroRNAs are small endogenous noncoding RNAs (~22 nucleotides) that fi ne- 
tune gene expression at the posttranscriptional level through mainly binding 3′-UTR 
of mRNAs. They are involved in numerous pathophysiological processes within 
cells and represent major regulators of gene expression by virtue of their preponder-
ance to target transcription factors. 

 Following an introduction to precision medicine and personalized therapies, the 
book propones diverse chapters discussing the role of microRNAs in neurologic 
disorders, including epilepsy, autism, chronic pain, fragile X syndrome, and neuro-
degenerative disease. Then, a series of chapters extensively describes the clinical 
aspects of microRNAs in both diagnosis and therapy of metabolic and cardiovascular 
disorders, focusing on mitochondrial fi tness, arterial hypertension, cardiovascular 
remodeling, cerebrovascular disease, pulmonary hypertension, diabetic kidney disease, 
and kidney transplantation. In the following chapters the experts discuss the impor-
tance of microRNAs in the wound healing process and in skin disease, in the patho-
genesis of allergy, in human ovulation, and in infection. An interesting outline on 
the emerging role of microRNAs in the fi eld of doping and a chapter explaining in 
detail microRNA profi ling conclude the book. 
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 This book highlights the functional roles of microRNAs in various human disor-
ders, discussed in a detailed manner by expert contributors. Worldwide renowned 
experts also emphasize the current challenges and outstanding questions for the 
application of microRNA in clinical practice. The book includes many color pic-
tures, schemes, and diagrams that will be very helpful to students and physicians 
and eloquent tables that support the text. 

 The clinical profi le is evident in each chapter. The authors have done a terrifi c job 
in presenting such complex topics in an easy and comprehensible manner.  

 Milan, Italy    Gianluigi     Condorelli     

 The original version of the editor affi liation has been revised. An erratum can be found at 
DOI   10.1007/978-3-319-22671-2_22     

Foreword

http://dx.doi.org/DOI�10.1007/978-3-319-22671-2_22
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    Chapter 1   
 Exploiting microRNA Specifi city 
and Selectivity: Paving a Sustainable Path 
Towards Precision Medicine       

       Gaetano     Santulli     

    Abstract     In his State of the Union address before both chambers of the US 
Congress, President Barack Obama called for increased investment in US infra-
structure and research and announced the launch of a new Precision Medicine 
Initiative, aiming to accelerate biomedical discovery. Due to their well-established 
selectivity and specifi city, microRNAs can represent a useful tool, both in diagnosis 
and therapy, in forging the path towards the achievement of precision medicine. 
This introductory chapter represents a guide for the Reader in examining the func-
tional roles of microRNAs in the most diverse aspects of clinical practice, which 
will be explored in this third volume of the microRNA trilogy.  

  Keywords     miRNA   •   Pharmacogenomics   •   Precision medicine   •   Initiative   
•   Selectivity   •   Specifi city   •   Pharmacogenetics  

      In his last State of the Union address before both chambers of the US Congress, 
President Barack Obama called for increased investment in US infrastructure and 
research and announced the launch of an innovative  Precision Medicine Initiative . 
“I want the country that eliminated polio and mapped the human genome to lead a 
new era of medicine—one that delivers the right treatment at the right time,” he 
said. “Tonight, I’m launching a new Precision Medicine Initiative to bring us closer 
to curing diseases like cancer and diabetes—and to give all of us access to the per-
sonalized information we need to keep ourselves and our families healthier,” he 
continued [ 1 ]. 

        G.   Santulli ,  M.D., Ph.D.      (*) 
  Columbia University Medical Center ,  New York Presbyterian 
Hospital—Manhattan ,   New York ,  NY ,  USA   

  “Federico II” University Hospital ,   Naples ,  Italy   
 e-mail: gsantulli001@gmail.com  

 The original version of this chapter was revised. The erratum to this chapter is available at: 
DOI   10.1007/978-3-319-22671-2_22     
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 Such an announcement offers an illustration of the considerable interest that 
exists in achieving greater progress in treating disease [ 2 ]. 

 President Obama has long expressed a strong conviction that research offers 
great potential for improving health [ 3 ]. One million or more US citizens will be 
powering President Barack Obama’s Precision Medicine Initiative. This bold 
volunteer- driven move to collect and link genotypic, phenotypic, and lifestyle data, 
including crowdsourcing and social media tools, aims to accelerate biomedical dis-
covery with an initial focus on cancer [ 4 ]. 

 The patient-participant cohort at the core of the initiative will enable new 
approaches to prevention, diagnosis, and treatments tailored to individual 
patients. “It’s a new model for doing medical research,” says National Institutes 
of Health’s (NIH) director Francis Collins, while discussing the precision medi-
cine approach [ 3 ,  4 ]. 

 Do  microRNAs (miRs)   have a role in precision medicine? The answer is yes, and 
apparently not only at an interindividual level but also at an intercellular level. 
Indeed, miRs are exquisite regulators of gene expression that inhibit translation and/
or promote mRNA degradation by base pairing to precise complementary sequences 
within the 3′-untranslated region. 

 They are expressed in a cell-specifi c manner and give us the possibility to gener-
ate selective treatments that target the bad cells and preserve the good cells, with 
major implication in cancer (see the second volume of the trilogy, where these 
aspects are discussed in detail) but also in other disorders [ 5 – 14 ]. 

 This introductory chapter opens the third volume, where miRs will be analyzed 
in the clinical scenario. In the next years, clinicians will have to deal with miRs, not 
just as diagnostic biomarkers but also as potential tools to design selective treat-
ments, alongside with their emerging important role in prognostic signatures and 
prediction models.    

  Acknowledgements   Dr. Santulli is supported by the NIH (1K99DK107895).  
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    Chapter 2   
 microRNAs and Personalized Medicine: 
Evaluating Their Potential as Cancer 
Biomarkers       

       Anne     Saumet       and     Charles-Henri     Lecellier     

    Abstract     microRNA deregulations are often, if not invariably, associated with 
human malignancies, including cancers. Though most of these deregulations may not 
be functionally implicated in tumorigenesis, the fact that microRNA expression can 
be monitored in a variety of human specimens, including biological fl uids, supports 
studies aimed at characterizing microRNA signatures able to detect various cancers 
(diagnosis), predict their outcome (prognosis), monitor their treatment (theranosis), 
and adapt therapy to a patient (precision medicine). Here, we review and discuss pros 
and cons of microRNA-based approaches that can support their exploitation as 
cancer biomarkers.  

  Keywords     Cancer   •   Theranosis   •   Diagnosis   •   Prognosis   •   Precision medicine
   •   Tumorigenesis  

        microRNA Biogenesis 

  The microRNAs (miRNAs)    are a class of 18–25 nucleotides long RNAs involved in 
the repression of translation and in the adjustment of protein production in response to 
various stimuli [ 1 – 3 ]. Their expression must be accurately controlled to ensure 
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plethora of cellular processes [ 4 – 6 ]. The miRNA biogenesis involves several steps, 
each step being subject to specifi c controls (for review [ 7 ]). Briefl y, a long (thousand 
nucleotides long) RNA called the  primary-miRNA (pri-miRNA)   is transcribed from 
the genome mostly by the RNA polymerase II. This pri-miRNA contains one or sev-
eral local stem-loop structures (called precursor(pre)-miRNA) in which the mature 
miRNA sequence is embedded. Next, a specifi c complex, called the Microprocessor 
and containing the RNAse III Drosha, crops the pre-miRNA from the pri-miRNA. The 
pre-miRNA is exported to the cytoplasm where another RNAse III, Dicer, processes 
the pre-miRNA into duplex of miRNAs. Only one strand of this duplex will guide a 
protein complex onto mRNAs harboring partial sequence homology and eventually 
trigger translation repression mostly by mRNA exonucleolytic cleavage [ 8 ]. The fi rst 
two steps are believed to be the main control points for miRNA regulation [ 7 ,  9 ]. 
Similarly to protein coding genes (PCGs), control of pri-miRNA transcription involves 
DNA-binding proteins (i.e., transcription factors, TFs) that recognize specifi c  cis -
regulatory DNA motifs in the promoter region of the pri-miRNA. The defi nition of 
miRNA promoters remains elusive. The pri- miRNAs are unstable molecules making 
hard the precise identifi cation of their 5′ end, i.e., miRNA  Transcription Start Sites 
(TSSs)  . Numerous studies have tackled that problem and proposed different 
approaches to characterize miRNA TSSs, mostly based on features of PCG promoters 
such as CpG content, epigenetic marks, nucleosome positioning [ 10 – 19 ] but the 
results are quite mixed. A precise and complete map of miRNA TSSs/promoters is 
thus still missing precluding a genome- wide view of miRNA transcriptional regula-
tions and the identifi cation of potential miRNA-specifi c regulations. This lack of 
knowledge does not impede the study of specifi c miRNA loci though. We and others 
have shown that miRNA genes and PCGs are regulated by the same TFs. For instance, 
we have demonstrated that the PML-RARA oncogenic protein, which is associated 
with the Acute Promyelocytic Leukemia, represses the transcription of retinoic acid-
responsive miRNA genes similarly to its action on PCGs [ 20 ]. Likewise, we showed 
that the antagonism between retinoic acid and estrogen signaling initially reported for 
PCGs [ 21 ] is also observed on miRNA genes [ 22 ]. 

 At the posttranscriptional level, control of the miRNA biogenesis can be subjected 
to RNA-binding proteins (RBPs), which recognize specifi c RNA motifs on or at the 
vicinity of the pre-miRNAs. For instance, the LIN28 protein, a developmentally 
regulated RBP, can recognize a specifi c motif in the loop of the pre-miRNAs belonging 
to the let-7 family and selectively blocks their processing [ 23 ]. Also the p72 DEAD 
Box RNA Helicase binds a motif located in the 3′ fl anking region of the pre-miRNAs 
and this binding can be controlled—in a cell-density-dependent  manner—by the 
sequestration of p72 by YAP, a downstream target of the tumor- suppressive Hippo-
signaling pathway [ 24 ]. 

 These transcriptional and posttranscriptional regulations make miRNA extremely 
sensitive to various intra- and extracellular stimuli (e.g., hormones, vitamins, nutrients, 
pharmacological molecules, or hypoxia). They notably ensure that the miRNA rep-
ertoire is controlled in a temporal and cell-specifi c manner. These features were fi rst 
reported by Chen et al., who observed that the miR-181 was preferentially expressed 
in the B-lymphoid cells and that its ectopic expression in hematopoietic progenitor 
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cells redirects lymphopoiesis towards the B-cell lineage [ 25 ]. On the other hand, 
these tight regulations can have severe consequences in human diseases in particular 
cancer [ 22 ,  26 – 30 ].   

    microRNA Deregulation in Cancers 

  The miRNAs  are   key players in cancer initiation and progression, including metastasis 
formation [ 31 – 33 ]. This fi eld of research is probably one of the most productive in 
terms of publications (16,022 publications related to “miRNA and Cancer” listed in 
PubMed in March 2015 with an increase throughout the years). The miRNAs can act 
as oncogenes (“oncomirs”) or tumor suppressors [ 34 ]. He et al. fi rst reported the poten-
tial of one miRNA cluster, the miR-17/92, to act as an oncogene [ 35 ]. In 2007, Chang 
et al. showed that the miR-34a, which is transcriptionally regulated by p53, has a tumor 
suppressor activity [ 36 ]. Several databases have now been created to list the miRNA 
activity in specifi c cancer type [ 37 ,  38 ]. As observed for PCGs [ 39 – 43 ], the oncogene/
tumor suppressor activity of miRNAs depends on the cellular context and/or the type 
of cancer considered. For example, the miR-221 can act as an oncogene in liver cancer 
[ 44 ] while playing a tumor suppressor role in erythroblastic leukemia [ 45 ]. 

 The miRNA deregulations observed in cancer (i.e., forced expression for 
oncomiRs and downregulation for tumor suppressor miRNAs) can occur at the gene 
(deletions, amplifi cations, or mutations of miRNA genes), the transcriptional (epigen-
etic silencing, deregulation of transcription factors), and/or the posttranscriptional 
(deregulation of the miRNA biogenesis pathway) levels (for review [ 29 ]). The action 
of miRNAs can also be impaired without affecting miRNA expression levels by, for 
example, genomic mutations that can modify either the sequence of the miRNAs 
and/or the sequence of their targets [ 46 ]. We provided earlier some examples of spe-
cifi c transcriptional regulations responsible for miRNA deregulations [ 20 ,  36 ]. 
Likewise, the miR-15a and miR-16 are downregulated in the majority of chronic 
lymphocytic leukemia cases because the corresponding gene is frequently deleted 
[ 47 ]. The transcription of miRNA genes can also be silenced by DNA methylation 
[ 48 ]. At the posttranscriptional level, the reactivation of LIN28 is many human 
tumors can lead to the exclusive downregulation of let-7 miRNAs [ 49 ]. The expres-
sion of several key proteins involved in the processing or the action of miRNAs 
(e.g., Dicer, Drosha, Argonaute 2) is perturbed in certain cancers [ 50 ,  51 ] with 
presumably broad impact on cell biology. 

 These deregulations ultimately generate miRNA profi les that can be associated 
with cancer types/subtypes and/or response to chemotherapies [ 52 – 57 ]. Most of 
these profi les have been made available in several databases. PhenomiR provides 
data from several studies that investigate deregulation of microRNA expression in 
various diseases (not only cancer) and biological processes as a systematic, manu-
ally curated resource [ 58 ].  OncomiRDB   is specifi cally dedicated to cancers [ 37 ]. 
Wang et al. manually curated 2259 entries of cancer-related miRNA regulations 
with direct experimental evidence from approximately 9000 abstracts, covering 
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more than 300 miRNAs and 829 target genes across 25 cancer tissues [ 37 ]. 
 PROGmiR   is aimed at providing potential prognostic properties of miRNAs in several 
cancer types derived from publicly available data from Gene Expression Omnibus 
(GEO) and The Cancer Genome Atlas (TCGA) [ 59 ]. The next question remains to 
determine whether these profi les contain clinically relevant biomarkers that could 
serve in diagnostic, prognostic, and/or theranostic tests.   

    Specifi c Advantages of microRNAs in Cancer Diagnosis 

 In addition to specifi c mutations associated to specifi c cancers [ 46 ], miRNA levels 
can also be indicative of cancer initiation, progression, and metastasis formation. 
Measuring miRNA levels is relatively straightforward. Several technologies are 
now available to profi le either a specifi c set of miRNAs (RT-qPCR, Nanostring, 
microarrays) or the whole miRNA repertoire (small RNA sequencing). 
Advantageously, RT-qPCR does not necessitate large amount of RNA and is highly 
sensitive and specifi c. Moreover, several assays are commercially available rendering 
miRNA profi ling easy even in clinical practice. It is important to note that each 
platform has, however, its advantages and drawbacks. For instance, the use of spe-
cifi c RT primers [ 60 ] could be a heavy procedure compared to the universal method, 
which uses linkers and one common RT primer. Problems with cross-priming can 
also lead to specifi city issues and make it diffi cult to distinguish miRNAs belonging 
to the same family and differing by 1 or 2 nucleotides only. The Nanostring technol-
ogy utilizes color-coded barcodes, which hybridize with the targeted miRNAs with-
out the need of amplifi cation thereby providing very sensitive digital data. However, 
similar to microarrays, RT-qPCR and Nanostring technologies are targeted 
approaches that do not allow the detection of novel miRNAs that can be species- 
and tissue-specifi c [ 61 ,  62 ]. In that context, RNA sequencing is defi nitely the best 
way to discover novel miRNAs. It can also detect sequence variation and posttran-
scriptional modifi cations thereby providing a more complete picture of the miRNA 
repertoire. However, its cost is still high to be envisaged in clinics. Besides, analysis 
of sequencing data is still a complex process, which requires rigorous bioinformat-
ics approaches and refi ned sequence algorithms. 

 The miRNAs can be detected in a variety of human tissue specimens, fresh or 
Formalin-Fixed Paraffi n Embedded (FFPE), and in almost all human biological fl uids 
(e.g., serum, plasma, saliva, urine) [ 63 – 67 ]. In contrast to most RNAs, circulating 
miRNAs are remarkably stable [ 68 ]. In fact, circulating miRNAs represent a potent 
mode of intercellular communication [ 69 ,  70 ]. The secretion of miR-105 through 
exosome destroys tight junctions between endothelial cells thereby facilitating 
metastasis propagation [ 70 ]. The molecular mechanisms responsible for the secre-
tion of miRNAs remain largely unknown. Circulating miRNAs can be free, packed 
into exosomes or other microvesicles present in body fl uids [ 71 ] or can be associ-
ated with (lipo)proteins (HDL [ 72 ] and Argonaute 2 protein [ 73 ]). Plethora of studies 
showed association between the presence of one or several extracellular circulating 
miRNAs in a given biological fl uid and cancer initiation/progression or response to 
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chemotherapy. These profi les have been listed and classifi ed in the miRandola data-
base [ 74 ]. miRandola contains 2132 entries, with 581 unique mature miRNAs and 
21 types of samples. miRNAs are classifi ed into four categories, based on their 
extracellular form: miRNA-Ago2 (173 entries), miRNA-exosome (856 entries), 
miRNA-HDL (20 entries), and miRNA-circulating (1083 entries) [ 74 ].  miRandola   
is also connected to miRò, a compendium, which integrates various online resources 
(ontologies, diseases, and targets) to provide users with miRNA- phenotype associa-
tions in humans [ 75 ]. 

 All these features make miRNAs appealing candidates for non-invasive diagnostic 
tests and several companies have indeed decided to meet the challenge (e.g., Santaris 
Pharma, Rosetta Genomics, Cepheid, Prestizia-Theradiag, and IntegraGen; [ 76 ]). 
However, at this stage, miRNA signatures per cancer type are still inconsistent [ 77 , 
 78 ] impeding their usage in clinics and calling for further development and research.  

    Challenges in microRNA-Based Diagnosis 

  One important  challenge   in the fi eld of microRNA-based diagnosis is to fi nd the 
sources of inconsistencies in order to propose standardized protocols. Inconsistencies 
in miRNA signatures could come from sample procurement and could be the results 
of, for instance, platelet contamination of the plasma [ 79 ,  80 ] or hemolysis occur-
ring during blood collection [ 81 – 84 ]. The protocols used to extract miRNAs also 
differ and can introduce signifi cant variability. One important point to compare 
miRNA extraction protocols is to evaluate the quantity and the quality of the 
extracted miRNAs. Though the size and abundance of ribosomal RNAs is tradition-
ally used as a quality marker for large RNAs, these RNAs cannot be informative on 
the quality of the miRNA extraction and specifi c methods are required (e.g., Agilent 
Small RNA Kit, synthetic miRNA standards). Moreover the quantifi cation of miR-
NAs is only accurate in samples where larger RNAs are not degraded. The low 
concentration of RNAs in body fl uids also makes the estimation of miRNAs abun-
dance particularly diffi cult [ 85 ]. Besides, protein and lipid content of plasma and 
serum samples could affect effi ciency of RNA extraction and introduce potential 
inhibitors of PCR [ 86 ]. This can be estimated using a spiked non-human synthetic 
miRNAs (typically from Arabidopsis thaliana or  Caenorhabditis elegans ) that will 
go through the entire RNA isolation procedure and will eventually be measured by 
RT-qPCR. Another aspect that should be considered is that the extraction methods 
could affect the nature (i.e., nucleotide composition) of the miRNAs extracted. 
Notably, depending on the protocol used, the quantity of the biological samples can 
impact the GC content of the miRNAs detected [ 87 ,  88 ]. Since these observations 
were also made in serum [ 88 ] (where large RNAs are barely detected), it is likely 
that the selective lost of miRNAs is linked to the presence of additional compounds 
(proteins and/or lipids), which are associated with miRNAs. Together these studies 
[ 87 ,  88 ] argue for standardization in quantities/volumes of starting materials to 
allow strict comparison of miRNA profi les. In fact, all these considerations point to 
the urgent need of consistency in all the steps of miRNA extraction procedures. 
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 Analytical aspects also impact the defi nition of miRNA signatures. Among them, 
normalization of the data, which is required to remove unwanted technical variation 
present in the samples, is critical. On common approach is to use other abundant 
noncoding RNAs, such as U6 small nuclear RNAs, as normalizers of miRNA 
expression. However, the biology of such RNAs is quite distinct from miRNA biol-
ogy in terms of transcription, processing, and tissue-specifi c expression [ 89 ]. An 
alternative is to use miRNAs whose expression is supposed to be stable in various 
conditions. However, this strategy can be limited by the fact that the chosen refer-
ence miRNAs are sensitive to other biological processes and/or other diseases com-
monly encountered in clinics. In that case, the expression of the normalizer miRNAs 
could fl uctuate in patients and introduce serious bias. In fact miRNA levels are 
extremely sensitive to various stimuli and conditions, even nonpathogenic, from 
gender [ 90 ,  91 ] and age [ 92 ,  93 ] to nutrients such as amino acids, carbohydrates, 
fatty acids, vitamins, and phytochemicals (curcumin, resveratrol) [ 94 ,  95 ]. If clini-
cally relevant, these aspects should be invariably taken into account in the cohort 
used to defi ne a miRNA signature. The ideal strategy would be to restrict potential 
miRNA signature to miRNAs whose transcriptional/posttranscriptional regulations 
are relevant for the cancer or the chemotherapy considered. This is where transla-
tional research meets fundamental research as this strategy clearly depends on a 
better understanding of miRNA regulations.   

    Conclusion 

 The discovery of miRNAs [ 96 ] has opened up new avenues of research in biomedi-
cine, in particular in cancer, and contributed to a large extent to the “Noncoding 
RNA revolution” [ 97 ]. It is remarkable to note not only the fast rate of fundamental 
discoveries made in two decades (illustrated by the exponentially growing number 
of publications) but also the velocity with which “miRNA gets to business” [ 76 ]. 
These molecules indeed harbor specifi c features (stability, easy manipulation, rea-
sonably simple detection, tissue specifi city) that make them appealing candidates as 
diagnostic, prognostic, or theranostic biomarkers and even therapeutic targets [ 64 , 
 98 ]. However some uncertainties remain [ 77 ,  78 ] that may prevent their immediate 
large-scale exploitation. Collective efforts made by clinicians, academic and indus-
trial researchers are needed to circumvent these limitations and promote the transfer 
of miRNAs from bench to bedside.     
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    Chapter 3   
 microRNA and Pain       

       Atsushi     Sakai      and     Hidenori     Suzuki    

    Abstract     Pain is an important protective system that alerts organisms to actual or 
possible tissue damage. However, a variety of pathologies can lead to chronic pain 
that is no longer benefi cial. Lesions or diseases of the somatosensory nervous sys-
tem cause intractable neuropathic pain that occasionally lasts even after the original 
pathology subsides. Chronic infl ammatory diseases like arthritis are also associated 
with severe pain. Because conventional analgesics such as non-steroidal anti- 
infl ammatory drugs and opioids have limited effi cacy and/or severe adverse events 
associated with long-term use, chronic pain remains a major problem in clinical 
practice. Recently, causal roles of microRNAs in chronic pain and their therapeutic 
potential have been emerging. microRNA expressions are altered not only at the 
primary origin of pain, but also along the somatosensory pathways. Notably, 
microRNA expressions are differentially affected depending on the causes of 
chronic pain. This chapter summarizes current insights into the roles of microRNAs 
in pain based on the underlying pathologies.  

  Keywords     Arthritis   •   Cancer pain   •   Infl ammatory pain   •   Neuropathic pain 
  •   Somatosensory pathways  

        Introduction 

   In general,  pain   is elicited by nociceptive stimuli applied to the body or through 
pathology in an internal organ,    and is perceived in the brain [ 1 ]. A subset of primary 
afferents, or nociceptors, detect various forms of nociceptive stimuli, including 
mechanical, thermal (hot or cold), and chemical stimuli, in the body surface (skin), 
deep tissue, viscera, and others. Primary afferents are the axons of primary sensory 
neurons referred to as  dorsal root ganglion (DRG)   or trigeminal ganglion (TG) neu-
rons after the locations of their cell bodies. Thus, a subset of DRG and TG neurons 
are the fi rst-line nociceptive neurons that detect noxious stimuli and tissue lesions, 
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while another subset of DRG neurons detect non-noxious stimuli such as tactile stimuli. 
Once stimulated, DRG and TG neurons transduce sensory stimuli into electrical signals 
and transmit these signals to the spinal and medullary dorsal horns, respectively. The 
sensory information is then synaptically transmitted to spinal neurons and consider-
ably modulated by a complex spinal network interconnected with excitatory and 
inhibitory interneurons, descending axons from the brainstem and glial cells (microglia 
and astrocytes) [ 2 ,  3 ]. The processed sensory information is further transmitted 
through direct or indirect connections to multiple brain areas, including not only 
somatosensory cortices, but also limbic systems and other cortices. The somatosensory 
cortices are mainly involved in the sensory aspects of pain such as intensity and location, 
while the limbic systems are involved in the affective and emotional aspects of pain as 
well as pain perception and attention [ 4 ]. 

 Although pain is an essential protective system that alerts organisms to actual or 
possible tissue damage, unnecessary or long-lasting pain is debilitating and requires 
medical intervention. In particular, chronic pain is a major clinical problem because 
conventional analgesics such as nonsteroidal anti-infl ammatory drugs and opioids 
have problems associated with long-term treatment. In addition, neuropathic pain, a 
form of chronic pain caused by lesions or diseases of the somatosensory system, is 
no longer benefi cial, and is poorly controlled by the currently available analgesics 
[ 5 ]. However, there are many obstacles for the development of ideal analgesics. 
Processing of nociceptive information is readily disrupted in injured or pathological 
conditions through neural plasticity that develops at multiple points along the sen-
sory circuits [ 1 ,  6 ]. These changes in nociceptive processing can occur over a wide 
range of time scales (acute to chronic) and at multiple levels in molecules, synapses, 
cells, and networks [ 2 ]. For example, hyperexcitability of primary sensory neurons 
is commonly observed in pathological pain and is caused by changes in the expres-
sion level, intracellular distribution, and posttranslational modulation of ion channels, 
such as voltage-gated sodium channels [ 7 ]. In the spinal dorsal horn, aberrant 
processing of sensory inputs occurs through neuronal or synaptic changes such as 
long-term potentiation and disinhibition and contributes to pathological pain with 
both spinal and peripheral origins [ 8 ]. Consistent with these long-term changes in 
the nociceptive pathway, there is increasing evidence that epigenetic mechanisms 
such as DNA methylation, histone modifi cation, and miRNA expressions are impli-
cated in chronic pain syndromes [ 9 ]. On the other hand, spinal glial cells, especially 
microglia and astrocytes, are also recognized as major players in pain modulation 
by regulating neurotransmission and neuroinfl ammation [ 10 ]. In the brain, nocicep-
tive inputs negatively affect emotion, cognition, and motivation, most notably in the 
chronic pain state, and chronic pain is correlated with comorbid cognitive, mood 
and anxiety disorders [ 11 ]. Reciprocally, the cortical activity underlying these 
higher brain functions can affect pain perception [ 12 ,  13 ]. 

 Critical roles of microRNAs (miRNAs) have been emerging in the development 
and pathophysiology of the nervous system [ 14 – 16 ], including chronic pain [ 17 ]. 
miRNA dysregulation leads to abnormal neuronal excitability through regulation of 
ion channel expressions [ 18 ]. Specifi c deletion of Dicer in nociceptive DRG neu-
rons resulted in expression changes of three nociceptor-enriched voltage-gated 
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