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P r e f a c e

Numbers are unique, there is nothing like them and this book
reveals something of their mysterious nature. Numbers are familiar
to everyone and are our mainstay when we feel the need to bring
order to chaos. In our own minds they epitomize measured ratio-
nality and are the key tool for expressing it. However, do they really
exist? They certainly don’t exist the way cats and football teams
exist, or even the way colors and feelings exist, but more in the
way that words exist. Words have meanings and the meaning of a
number, what the number ‘is’, is about overall matchings that allow
us to measure and compare things that might otherwise have little
in common, such as the value of oil, of a taxi cab, and of the services
of its driver.

And collectively numbers represent the one thing in the world
that is free and inexhaustible. It is therefore natural to try and
understand them as much as we can.
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The opening chapters of this book will re-acquaint the reader
with numbers, both seen as individuals and taken all together.
Throughout the first four chapters, we generally stick to discussing
ordinary, whole counting numbers. The fifth chapter looks at some
practical issues surrounding number use that, by involving arith-
metic operations, lead us out of an environment where everything
is given in solid, discrete chunks.

Chapter 6 explains how it is that through carrying out the
standard operations on numbers, we discover new number types,
including the irrational. In the subsequent chapter we visit infinite
collections and see how they can be compared to one another
and how the set of real numbers as we call them knit together to
form the number line, something we examine with a mathematical
magnifying glass later in the book.

The historical development of Number History is, like all his-
tory, a complex thing but one that seems to have resolved itself to
the extent that number systems now enjoy agreed status among
mathematicians and certainly form a central pillar of our under-
standing of the world. Throughout the text we inform the reader
of various historical snippets associated with the evolution of the
subject and a little about individual number pioneers. This culmi-
nates in Chapters 9 and 10 where we summarize the development
that took place in Europe during the formative period from the
16th to the end of the 19th centuries.

And we do look at direct applications of numbers, most notably
in Chapter 8, which is all about chance, and again in Chapter 12
that concerns itself with the clandestine world of codes and secret
ciphers, which have proved the major new field of applications of
pure number ideas.
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The book is written to be read straight through by any interested
reader although dipping and browsing might be equally rewarding.
We do however provide one final chapter, For Connoisseurs, in
which some of the particular claims and examples in the text are
worked through in mathematical language for the benefit of those
readers who would appreciate complete explanation. An asterisk in
the text indicates that more is said on the topic in the notes of the
final chapter. This is the only chapter of the book that makes free
use of mathematical notation and ideas. The level of difficulty here
varies as determined by the nature of the material in question but
all readers will be able to glean something from examining some
of the notes at the end of the book. Finally there is a short closing
section giving direction to other fine books and Web sites for you
to enjoy.

I hope this little book will allow my readers to grasp something
of a very big story, the Story of Numbers.

Colchester, England, 2007 Peter M Higgins
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chapter 1

Th e F i r s t N u m b e r s

‘All is number’, said Pythagoras over 2,500 years ago. By this he
meant that, at its deepest level, reality is mathematical in nature
and could be expressed in terms of numbers and the ratios between
them. Was he right? The short answer is no, as he himself is said to
have discovered.

It is true that the disciples of Pythagoras revealed how aspects
of the world were governed by number. Pythagoras is best known
for his celebrated theorem that explains how the lengths of the
sides of a right-angled triangle are related to one another. The
modern interpretation of this is that the exact distance between
two points can be found from their co-ordinates. This discovery
provided a tool allowing the precise calculation of spatial sepa-
ration from other measurements and so represented a real break-
through. More surprisingly perhaps, Pythagoras is said to have dis-
covered that pure musical harmony is determined by simple ratios.
Flushed with success, it must have seemed to the Pythagoreans that
any aspect of the world would yield to analysis through number,
for these were astonishing revelations. The clarity and simplicity

1
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offered by the laws of Pythagoras was of a kind never previously
encountered.

It came therefore as a shock when Pythagoras found that num-
bers themselves rebelled against his rule, for he is credited with also
discovering that certain lengths constructed in his geometry were
impossible to express as simple fractions the way his philosophy
demanded. In particular, he found that you cannot measure the
diagonal of a square with the same units with which you measure
the sides. However fine you make the scale, the tip of your diagonal
will always lie between two of your scale marks. This is due to
the fundamental nature of numbers, and has nothing to do with
limitations on the accuracy of your ruler or the sharpness of your
vision. It is a mathematical fact of life. What might be dismissed by
us however as an annoying curiousity was viewed as a catastrophe
by the Pythagoreans, for it undermined their whole outlook by
which they sought to explain nature through simple number ratios.
Even from these early classical times then, there were problems
with the view that everything could be reduced to numbers.

Despite their limitations however, numbers have not retreated
but rather crowd into our lives relentlessly. As far back as the
early 17th century, Galileo advocated as a guiding principle that
we should measure everything we can and learn to measure those
things we cannot. Embracing this philosophy has yielded rich
results and in calling for a measurement we are being asked to
produce a number.

There is however a natural resentment provoked when this
seems to be taken too far. Attempts to call upon numbers as a tool
for understanding music and poetry often meet with scorn. The
very idea spoils the magic and it is natural to sneer at the possiblity
and hope for failure. In this it still seems that we are on safe ground
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as numbers rapidly begin to lose authority in the artistic realms.
To be sure, music has a mathematical side to it, as Pythagoras
discovered, and that aspect is well worth understanding. However,
a purely analytical approach to the arts yields pretty thin results.
Good music is not produced by calculations, and the more this
avenue is explored the poorer the offerings produced.

Mistakes along these lines are in any case far from new. Right
throughout history and across cultures we can find examples where
numerical ideas are introduced in a misguided way that eventually
leads to nothing of interest. To simply assert, for example, that
even numbers are female and odd numbers male, or the reverse, is
not helpful. Artificial attempts to make up the laws of nature have
never worked and say more about the human mind than they do
about the real world: simple ideas designed to appeal to our fancy
may be comforting and even fun, but are rarely true.

As a backlash to the constant call for numbers and percentages,
there is an agressive tendency in the arts today to reject anything
to do with systematic or scientific thinking. This is a frame of
mind that some great artists, Leonardo da Vinci for one, would
have found puzzling. I wonder if this yearning to be released from
the straitjacket of logical thinking is more born of frustration,
stemming from a lack of creativity, which is blamed on the way
numbers have taken over our lives. Constantly measuring things
seems to be the very opposite of spontaneity, leading to a dislike of
numbers that are seen as a tiresome and inhibiting burden. Perhaps
the very way we think has become enslaved by the rule of numbers
that acts as a limitation on us all, retarding freedom of thought and
spirit.

Let me assure you nonetheless that numbers are not evil but
rather are naturally interesting. The problems we may have with
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them, and the destructive uses they may be put to, are of our own
making. It is best on the one hand to appreciate that there are going
to be limitations to their legitimate uses but, on the other, admit
that it is not always easy to tell in advance where those limitations
will lie. One surprising facet of numbers is the odd way they have of
invading other branches of math and science, quite out of the blue.
For example, until around 30 years ago no-one had any idea that
the so-called trapdoor functions on which our internet security
codes are based would come about through ideas about ordinary
numbers, but more of that part of the story later.

Galileo (1564–1642) was right in his belief in the value of mea-
surement1—perhaps we should however add the modern caveat
that we should resist the temptation to pretend that we have mea-
sured something when we have not. How often, for instance, do
we hear in modern life an expert say that he is 90% sure of an
outcome—not 92% or 88%, but 90%. The figure lacks true mean-
ing if there is no way of calculating it. However, we often feel
obliged to produce a number even when we do not have one so
we can fall into the trap of simply making them up in order to
sound more authoritative. In the absence of real information, a
vague statement may be correct and a precise one with a number in
it merely a form of wishful thinking made in order to sound more
informed and convincing in the face of uncertainty.

Most times when we meet up with numbers, we are called on
to interpret them in a particular context, which might be about
money, people, or the pressure of a gas. However, the subject of
this book is the numbers themselves and how our understanding

1 Although a relatively minor figure, Nicholas of Cusa (1401–1464) had advocated two
centuries earlier that knowledge must be based on measurement.
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of them continues to evolve. It is only right that we begin by exam-
ining the kind of thoughts we have when we come across these
mysterious things called numbers.

How Should We Think About Numbers?

When we mention a particular number, let us say for example,
sixteen, all of us have a mental picture of the two numerals 16.
This is somewhat unfair to the number in question as we are
immediately stereotyping sixteen as 10 + 6. Why should we think
of sixteen as 10 + 6 when it could equally well be described as 9 + 7
or, more symmetrically as 8 + 8? This habit, of course, comes from
our unswerving use of the number ten as the base of our number
system: our expression of a number implicitly displays it as a sum
of powers of the number ten. For instance, when we write 2008
we mean 2 × 1000 + 0 × 100 + 0 × 10 + 8 × 1. As you may know,
we would be equally entitled to use another base such as twelve
for our number system and different civilizations of the past did
indeed use different bases: the Mayans sometimes used twenty,
the Babylonians employed base sixty, while modern computing
systems are based on two or small powers of two such as four, eight,
and sometimes even base sixteen, which is known as hexadecimal.
Since 16 × 16 = 256 we can cover that many possibilities with two
symbols in base 16 (although we need to introduce new individual
symbols for the six numbers normally denoted by 10, 11, 12, 13,
14, and 15). Two hexadecimal digits are all you need to represent
any number in the range from 0 to 255 inclusive, a common spread
used, for example, to specify colors. As we shall see in a later chap-
ter, comparison of numbers in different bases can also be used in
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subtle ways to reveal the nature of how numbers order themselves
into a line.

We shall say more about this in due course but we should first
ask the more fundamental question: Why do we introduce a base at
all when we want to deal with numbers? You might think that there
is no way of coping with number matters without referring to some
base or other. However, we do just that more often than you may
realize in everyday life. Suppose for example we have a childrens’
party where we want to give every child a toy. All that matters is
that there are at least as many toys as children and we can check
this without counting: we could simply write each child’s name
on a toy and as long as we don’t run out of toys before we have
exhausted all their names, no-one will go away disappointed. In
doing this we establish that the number of toys is at least as great
as the number of children and we do it without counting up either
collection. We do not need to know how many children or how
many toys we have in order to show that the number of toys is
sufficient. We therefore have solved this problem about numbers
without introducing base ten or any other base to do our calcula-
tion. This example also serves to show that number is very much
about pairing members of one set with another, a very important
idea.

Use of a particular base does allow us however to express num-
bers in an efficient and uniform manner that makes it easy to
compare one number to another and to perform the arithmetical
operations that arise through counting. A base of a number system
is akin to placing a grid scale on a map. It is not intrinsic to the
object but is rather like a system of co-ordinates imposed on top as
an instrument of control. Our choice of base is arbitrary in charac-
ter and the exclusive use of base ten saddles us all with a blinkered
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view of the set of counting numbers, 1, 2, · · ·. Only by lifting this
veil can we see numbers face-to-face for what they truly are.

Various local number systems cropped up in many cultures, but
all exploited the grouping of collections into equal size lots, often
of size ten. The efficacy of a base in your arithmetic only comes into
its own once you introduce the positional principle in representing
numbers where the value of a numeral depends on its place within
the number string. No ancient society, not even the sophisticated
Greeks, developed a complete positional numbering system such
as we have where the value of a numeral depends on its position
within the number and full use is made of a zero symbol to indicate
that a certain power of the base is absent (recall our example of
2008). It was in the early centuries of the first millenium that such
a complete numbering system came into being in India, with a
symbol for 0 called sunya, which is the Hindi word for empty. It
passed to Europe via the Arabs so that our number system is known
as Hindu–Arabic.

Not having a proper positional approach to arithmetic is a
real handicap for most practical purposes. Yet not being mentally
trapped in a base ten world did make it easier and more natural
to study numbers in their own right. The freedom the Ancients
enjoyed by default we may reclaim for ourselves simply by shed-
ding the base ten mantle for a time and thinking of numbers in
terms of the intrinsic properties they may or may not enjoy.

Having emancipated ourselves in this way, we see that it is more
natural to focus on the special factorization properties of a number
as these correspond to appealing geometric displays. The number
sixteen for example is a perfect square, naturally represented by
a four-by-four square of dots, and since four is itself a square
we notice that sixteen is a perfect fourth power as it is equal to
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24 = 2 × 2 × 2 × 2. In fact sixteen is the first number after 1 that
is a perfect fourth power, making it very special indeed. This is a
reason why it is often used as a base itself in computing systems,
as opposed to base ten, which is the traditional base we use for the
accidental reason that we have ten digits on our hands.

If we suspend the habit of thinking of numbers simply as ser-
vants of the science of measurement, and take a little time to
study them without reference to anything else, much is revealed
that otherwise would remain hidden. The natures of individual
numbers can manifest themselves in ordered patterns in nature,
like the spiral head of a sunflower, (which represents a so-called
Fibonacci Number), and so are worthy of a thorough investiga-
tion in their own right. Simple questions about numbers, such
as how they may be written as the sum of squares, have led to
mathematical structures of great beauty and intricacy. Instinctively
mathematicians will follow signposts of that kind as they often lead
to very unexpected destinations that would not be stumbled upon
in any other way.

For convenience I shall still write the individual numbers that I
call your attention to in the usual way in base ten but we will not
be emphasising that representation: rather we shall regard it more
as a name for the number we are presently thinking about.

The Structure of Numbers

One of the glories of numbers is a fact so self-evident that it may
easily be overlooked—they are all different. Each number has its
own structure, its own character if you like and the personality
of individual numbers is important. Take the number six. Six is
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a product of two smaller numbers, namely two and three, and so
forms what we might call a rectangular number: one that can be
represented as a rectangular array of dots. A number n that can be
written as a product of two smaller numbers, n = a × b say, can
be drawn as an a × b rectangle of dots. (We normally save time
and space by writing the product a × b of a pair of unspecified
numbers, a and b, simply as ab.) Rectangular numbers are more
often called composite numbers as they are composed of smaller
factors. Numbers that are not rectangular in this way are known as
primes. Prime numbers such as 2, 7, and 101 cannot be displayed as
a proper rectangle but rather only as a single line of dots. In words,
a number is prime if it cannot be written as the product of two
smaller factors. (A definition that precludes 1 from joining the list
of primes: the first prime is 2.) The primes are structurally impor-
tant as they form the multiplicative building blocks from which all
numbers can be put together: for example 60 is a composite num-
ber that is a product of prime numbers: 60 = 2 × 2 × 3 × 5. Any
composite number can be broken down into a product of factors
which, if not themselves prime, can be broken down further until
we recover the prime factorization of our number. It turns out that
this factorization is unique—there is only one way to factor a num-
ber as a product of primes. However you attack the factorization
of your number, if you keep factoring its factors you will always
end up with the same collection of prime factors. This is a crucial
property of numbers that is exploited in diverse applications of the
subject from coding to logic. Indeed perhaps the greatest unsolved
problem in all mathematics is the Riemann Conjecture, which is
intimately connected with this so called Fundamental Theorem of
Arithmetic that says that the prime factorization of a number is
unique.∗
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It is hard to over emphasise the importance of the uniqueness
of prime factorization. Reading this, you may wonder at the fuss.
To be sure, if prime factorization were not unique, everyone would
have heard about it by now. True as that is, the following example
shows that it is not the kind of thing that can be taken for granted.
Consider the numbers in the sequence, 1, 5, 9, 13, 17, 21, · · ·: that
is the numbers of the form 1 + 4n, as n takes on the successive
values 0, 1, 2, 3, 4, 5, · · ·. This collection of numbers forms a mul-
tiplicative number system in its own right in that if we multiply any
two numbers from this sequence together, we remain within the
sequence: for example 9 × 17 = 153 = 1 + (4 × 38). Some num-
bers, like 153, can be factorized into a product of other numbers
in the set of numbers formed by the sequence. Some however
cannot, in which case let us call the number primal. Ordinary
primes in the sequence, such as 5 and 13 are primal, as is 9, as
9 cannot be factorized within the set (9 = 3 × 3 but 3 is not in
our set).

It is clear that any number in this sequence can be broken down
into a product of primal numbers: we argue just as with primes
for either the given number is already primal, or it is not, in which
case it can be broken into smaller factors from the set that we break
down further until this can be done no more and we are left with
a product of primal numbers. However, primal factorization is not
always unique: 693 = 21 × 33 = 9 × 77, which gives two different
primal factorizations of 693 = 1 + (4 × 173).

The moral of the story is that uniqueness of prime factorization
is special, and, although familiar, is not self-evident for here we
have a similar number system in which it does not apply.

Returning to our featured number 6, we note that the property
of being rectangular is hardly a remarkable one. However 6 is also a
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triangular number: since 6 = 1 + 2 + 3 it can naturally be regarded
as a triangular array of six dots with one in the first row, two in the
second, and three in the third. The previous triangular number is
3 = 1 + 2 and the next is 10 = 1 + 2 + 3 + 4. We usually allow 1 to
be admitted among the list of triangular numbers as well so that
the first five of them are 1, 3, 6, 10, and 15. The 10 and 15 triangles
can respectively be seen in the pin array of 10-pin bowling and the
15-ball rack of red balls in snooker. Triangular numbers form a
more exclusive set than the class of the very common rectangular
numbers.

The number 6 is also what we might call a choice number: the
number of ways of choosing a pair from a group of four children
numbers six in all. If the children are Alex, Bart, Caroline, and
Daniel the six pairs we may form can be listed as AB, AC, AD, BC,
BD, and CD, where we are paying no regard to the order in which
we list the children within a pair, meaning for example that we
regard AB and BA as representing the same pair. It turns out that
any triangular number is also a choice number in a similar way as
the nth triangular number is also the number of ways of choosing
a pair from a family of n + 1 objects. Again we shall explain this
further in Chapter 4.

The fact that 6 = 1 + 2 + 3 has another interpretation that
occurs much more rarely in the infinity of the number system as
this sum shows that 6 is the sum of all its smaller factors. The
Pythagoreans called such numbers perfect. One should always be
wary of a seductive name but on this occasion it is not misplaced:
for a number to be the sum of its factors in this way does suggest it
has a special internal balance and it is one that is indeed very rare.
The next four perfect numbers are 28, 496, 8128, and 33,550,336.
A lot is known about the even perfect numbers but, to this day,
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no-one has been able to answer the basic question of the Ancients
as to whether there are infinitely many of these special numbers,
although there is a correspondence between them and a particular
class of prime numbers. What is more, no-one has found an odd
one, nor proved that there can be no odd perfect number. Will we
ever find out?

Finally 6 has a truly unique property in that it is both the sum
and product of all of its smaller factors: 6 = 1 × 2 × 3 = 1 + 2 + 3
and it is also the sum and product of a sequence of consecutive
numbers. There is certainly no other number like this. Indeed it
is often easy enough to find peculiar properties of small numbers
that characterize them—for instance 3 is the only number that is
the sum of all the previous numbers while 2 is the only even prime
(making it the oddest prime of all).

The nth triangular number arises from summing all the num-
bers from 1 up to n together. If we replace addition by multiplica-
tion in this idea we get what are known as the factorial numbers.
The first factorial is 1, the second is 2 × 1 = 2, and the third, as we
have already seen, is 3 × 2 × 1 = 6. Factorials come up constantly
in counting and enumeration problems such as the chances of
being dealt a certain type of hand in a card game like poker. For that
reason they have their own notation: the nth factorial is denoted
by n! = n × (n − 1) × · · · × 2 × 1. The triangular numbers grow
reasonably quickly, at about half the rate of the squares, but the
factorials grow much faster and soon pass into the millions and
millions: for example 10! = 3, 628, 800. The exclamation mark, a
notation introduced by Christian Krempe in 1808, alerts us to this
rather alarming rate of growth.

It is fair to say that small numbers tend to be more special than
larger ones—the closer a number is to the beginning of the number
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line, the more likely it is to display some genuinely unique trait.
This however is only a rule of thumb and some large and very
large numbers turn out to be intrinsically special. The number 12
is an abundant number meaning that it is exceeded by the sum
of the factors less than itself: 1 + 2 + 3 + 4 + 6 = 16. It is rare for
an odd number to be abundant and no small odd number is.
However it is possible and the first example turns out to be 945.
Readers might care to check for themselves that when we sum
all the factors of 945 the result is the larger number 975. It is
possible, if you know a bit about these things, to see this coming:
945 = 33 × 5 × 7, a standard formula then gives that the sum of
the factors, including the original number, will then be given by
(1 + 3 + 9 + 27)(1 + 5)(1 + 7) from which, upon subtracting 945,
the figure of 975 results.∗

Mathematicians who are intimately connected with number
theory can get to know individual numbers so well that they
become old friends. A famous conversation between Hardy and
Ramanujan concerned the number 1729 of a taxi cab. When Hardy
carelessly suggested the number was dull, the little Indian genius
immediately disabused him, pointing out that 1729 was the small-
est number that was the sum of two cubes in two distinct ways:
1729 = 13 + 123 = 93 + 103.

There are numbers that are especially annoying such as 561.
It behaves a lot like a prime number without being one. A basic
property of a prime number p that is particularly important in
coding theory is that it satisfies the Fermat Lemma which says that
for any number a , a p leaves the same remainder as does a when
divided by p. For example, if we take the prime p = 5 and put
a = 8 we can check that both the numbers 8 and 85 = 32, 768 leave
the remainder 3 when divided by 5. However this is not generally
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the case for composite numbers p: for example if we replace the
prime 5 by the composite number p = 4 and put a = 7 we see
that the remainders when 7 and 74 = 2401 are divided by 4 are
respectively 3 and 1 and so are not the same. It would be convenient
if this property provided a test for whether or not a number p were
prime but it does not. The composite numbers p that always pass
this test are called the Carmichael Numbers and 561 = 3 × 11 × 17
is the smallest of them. These numbers are rare but, coincidentally
perhaps, Ramanujan’s number, 1729, turns out to be another one,
as is 2821. In the year 1992 it was proved nevertheless by Alford,
Granville, and Pomerance that, as with the primes, Carmichael
numbers continue without end so there is no way past them.

Primes are elusive in a way that some other types of numbers are
not. If we want, for example, a very large square, we just write down
a big number and multiply that number by itself and there we have
it. However, although it has been known since before the time of
Euclid (300BC) that there are infinitely many primes∗, they are not
so easy to generate and it seems that we need to go out hunting
for them. We cannot manufacture primes the way we can with the
squares—we are limited to testing one odd number after another,
although there are various tricks that facilitate the endless search.
On the one hand no-one has proved that it is impossible to find
a way of readily generating primes at will, but on the other hand,
no-one can can claim to have yet succeeded in doing so.

Primes are common enough among the first few thousand
numbers but they slowly become rarer and rarer as we move into
the realm of the very large. This is not surprising as a large number
has potentially more possible factors than a small one. At any time
in the history of mathematics, there is a largest known prime num-
ber. The current champion has over four million digits and would
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take a month just to write down in ordinary base 10 notation. It can
however be written as one less than a power of two: 213,466,917 − 1.
Since there are always larger prime numbers waiting in the wings
to be discovered, the pre-eminent status of this number is but a
passing thing.2

However an example of an extraordinarily large number with a
special status that can never be lost is

8080 17424 79451 28758 86459 90496 17107
57005 75436 80000 00000.

This is the size of the so-called Monster sporadic group. A little
explanation is in order. A group can be thought of for our purposes
as the collection of all symmetries of an object: movements such
as reflections and rotations that leave a patterned object such as a
square or wallpaper design looking as it did before. Mathematical
groups are a topic that only emerged in the early 19th century from
the study of the solutions of certain equations involving powers
of orders higher than two. However they have proved strikingly
pervasive, penetrating almost all of mathematics and physics: crys-
tallography and coding are but two fields where they arise. The
short explanation for this is that they give an algebraic hold on the
geometric notion of symmetry, allowing us to perform calculations
based around that idea.

Mathematics always searches for ways in which complicated
objects are made up of smaller and simpler parts. A simple group

2 Indeed it has passed during the preparation of this book: at the time of writing the
largest known prime is the 44th so called Mersenne prime, 232,582,657 − 1 found in
2006. The record is being broken regularly at present thanks to the international GIMPS
project that has enlisted tens of thousands of enthusiasts working with their computers
searching in parallel. See http://primes.utm.edu/largest.html.
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is to groups what a prime number is to numbers, in that a simple
group cannot be built from smaller groups, in a sense that can be
made precise, but need not concern us here. There are four main
sources of simple groups but, in addition to these types there are
exactly 26 so-called sporadic simple groups that lie outside of the
mainstream. It is now known that there are no more than these
26 exceptional groups. They are simple in the technical sense only
and generally are enormous in size and complexity. The Monster
is the largest of them all and was constructed in 1982 by Robert
Greiss as a group of rotations of 196,883-dimensional space. The
size of the Monster is the 54-digit number given above. That num-
ber is therefore special and will remain special for all time. It is a
permanent feature of the mathematical landscape. The extent of its
significance will only be revealed as years go by and the full story
of numbers unfolds.



chapter 2

D i s c ove r i n g
N u m b e r s

Despite their familiarity, it should be appreciated that numbers
have no physical existence but rather are abstractions elicited from
the real world. Two sets are said to have the same number if the
members of the sets can be paired off, one against the other, as in
Seven Brides for Seven Brothers. The number of one finite set is
less than that of the other if the first can be paired off with just
a portion of the second, as in our example where we gave toys to
the children at the party. This gives the set of counting numbers
a natural ascending order. Since we all have been taught to count
from childhood it is not easy to appreciate what a difficult idea
counting represents. It must have been hard to realise and put into
words that a pair of rabbits and a couple of days are instances of
the same thing. The practical upshot of course is that the man with
the rabbits has one meal for each of the next two days.

Once we have grasped the notion of number it is natural to give
names to the first few of them: one, two, three, four etc are the ones
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we use. If we did not go beyond this stage the process would be little
different than that whereby we recite the letters of the alphabet in a
particular order. The contexts are not entirely parallel however: the
first twenty-six numbers have the natural order mentioned above
whereas the order of the letters of the alphabet is quite arbitrary:
although the names of our numbers could be anything we fancy,
the natural ordering of the numbers is intrinsic and is not some-
thing of our making. It is the arbitrary nature of the order that we
impose on the alphabet that accounts for the effort children are
called on to make so as to remember the order in which letters
appear in the dictionary.

What is adequate for the alphabet however is not good enough
for numbers as the first set is finite—we reach the end after invent-
ing twenty-six names, while the collection of numbers is infinite
and stretches away indefinitely. What is more, in practice we need
to make use of lots of numbers—any civilization will need to be
able to count into the hundreds and thousands on occasion so
there is a call to devise some kind of number identification that
goes beyond the naive approach of creating an ever-growing list of
different words for different numbers.

We can mitigate against this difficulty a little by agreeing that
certain numbers are represented by a single symbol: for instance
in Roman numerals X and V stand for ten and five respectively.
However the fundamental problem would still remain, that being
that it is impractical, indeed impossible to have a single unique
symbol for every number. Sooner or later we are forced to make use
of the Addition Principle whereby some numbers are represented
as the sum of two smaller ones. For instance, in Roman numerals
there is no special symbol for fifteen—we just write XV to indicate
the number that results from taking a group of ten and adjoining
to it a group of five.
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It would seem that the discovery of the Addition Principle is a
very natural one for we see it put to use in all the ancient civiliza-
tions of the Middle East, Europe, and Asia. Additions based on ten
were also prevalent. As mentioned before, the ancient Bablyonians
made use of both base twelve and base sixty from which come the
worldwide practices of dividing the day into twenty-four hours and
the full circle into 360 degrees. Another remnant of base sixty is in
French where there are no new names for numbers past 60 up till
100: 70 is soixante-dix (60 and 10), 80 is quatre-vingt (four twen-
ties), 90 is quatre-vingt-dix etc. Belgian French speakers however
grew tired of this and introduced the new names septante, octante,
nonante etc for these numbers. Most number systems however
took up the option of grouping into tens, which allowed for the
recording of fairly large numbers through use of a short string
of symbols. Unfortunately the Just Good Enough Principle was
generally adopted: once a way of writing numbers was invented
that was adequate for day-to-day business it became completely
entrenched and no effort seemed to have been made to improve
further and certainly not to replace it with one that was better.

Even the mathematically sophisticated Greeks did not take basic
arithmetic seriously enough to break free of a quite primitive
notation. One explanation for this is that matters of accounting
were considered the province of mere slaves and quite unworthy
of higher study. Whatever the reason, the pattern of reckoning of
the Greeks was little more advanced than in other ancient cultures.
(Indeed the Babylonian system was fundamentally superior, as will
be explained.) It could well have been that ancient accountants
had a host of practical tricks for doing their sums—certainly they
made good use of simple devices such as the abacus (counting
board) and no doubt had their own idiosyncratic methods of men-
tal arithmetic that were communicated to the next generation by
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word of mouth and through example. That part of the History
of Mathematics is largely lost with only accidental glimpses being
available to the modern scholar.

The Greeks represented the numbers 1–9 by the first nine letters
of their alphabet, and used a similar string of symbols for the mul-
tiples of ten from 10–90, while a further set of nine stood for each
of the numbers 100 through to 900. For example, Î and ‚ stood
respectively for 30 and for 2 so that the number 32 was written as
Î‚. At first glance this may look as efficient as our notation but it
is not. The Addition Principle is being exploited but no real use
is being made of position. If we swap the digits of 32 we get the
different number 23. However that does not apply to ‚Î, which
could still only mean 2 + 30 = 32. The Greek version of 23 would
have been Í„, as Í stood for 20, while „ was the third letter of the
Greek alphabet and so could stand for 3. In this way all numbers
up to one thousand can be recorded by strings of length no more
than three. In the early days of the system, that might have proved
fairly adequate. Before too long though, it became necessary to
deal with numbers going into the thousands. Rather than start
from scratch, the old system was modified in an ad hoc fashion in
order to cope. It became understood that putting a comma before a
symbol meant that symbol was to be multiplied by 1000 so that, for
example ,· was the representation of 1000. This must have proved
good enough for practical purposes.

There were sporadic attempts to do better. In the third century
AD the Greek mathematician Diophantus went one step further in
using a dot to indicate that the preceding number was multiplied
by a myriad (10,000). He gave the example ,·ÙÎ·. ,εÛÈ‰ which we
accordingly translate as 13,315,214 as the number 1000 + 300 +
30 + 1 represented by the first group of four symbols is multiplied
by ten thousand because that quartet is followed by a dot, while
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the latter four stand for 5000 + 200 + 10 + 4 in turn. In this way
we see that it is not too difficult to adapt what might appear
a clumsy system to write down numbers running into the mil-
lions. Indeed Archimedes in the 3rd century BC could boast in his
book the Sand Reckoner that he could represent a number greater
than the number of grains of sand required to fill the universe (at
least the universe of the Greek World).

We might still object that this way of representing numbers
would not lend to pen and paper arithmetic. However that is a very
modern objection as the ancient world did not have cheap paper.
Difficult sums were performed on counting frames so their method
of writing numbers only had to be good enough to record the
answers and the ingredients that made them up. Number notation
did not need to go far beyond a shorthand for writing out numbers
in words, and so it never did.

The origin of the system of Roman numerals is very obscure
but was probably Etruscan, which was a civilization that pre-dated
the Romans on what is now the Italian penisula. Roman numer-
als were indeed used by the Romans and persisted right through
medieval times and survive, mainly for decorative purposes, in
modern European culture. In addition to the symbols for one, five
and ten mentioned above were also symbols for fifty, one hundred,
five hundred and one thousand, which were respectively L, C, D,
and M. That a film was made in 2003 is indicated at the end of the
credits by the Roman numerals MMIII, while the year 1673 was
written MDCLXXIII. Similarly to the Greek system, the Romans
embellished their number symbols to indicate multiplication by a
large power of ten. For example two hundred thousand and one
million could be indicated by placing boxes around the symbols II
and X respectively to show these quantities were to be increased by
a factor of one hundred thousand.


