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  Pref ace   

 This book represents one volume—focused on biology and basic science—of a tril-
ogy exploring the functional role of microRNAs from molecular biology to clinical 
practice. Of the other two volumes, one addresses cancer while the other provides 
an ample overview on the importance of microRNA in the clinical scenario. 

 This volume provides a state-of-the-art outline of microRNA pathophysiology. It 
covers up-to-date basic notions on these tiny molecules, discussed by leading scien-
tists in the fi eld. An introductory chapter discussing the emerging role of microR-
NAs, epigenetics, and micropeptidomics opens the book, followed by a thorough 
description of the microRNA machinery. Then, specifi c aspects of these fundamen-
tal molecules are investigated at different levels: in distinctive processes (such as 
lipid metabolism, hematopoiesis, aging), in diverse tissues (including the cardiovas-
cular system and endometrium), cell types (pancreatic beta cells, endothelial cells, 
smooth muscle cells), organelles (mitochondria), and also in the complex interac-
tion with single proteins (as in the chapter dedicated to NF kappa B). An elegant 
outline summarizing the principles of microRNA target prediction alongside with 
the most up-to-date and effective computational approaches concludes this fi rst 
volume. 

 As mentioned above, chapters are contributed by worldwide renowned experts, 
working in prestigious universities including: Harvard, Yale and Oxford; Mount 
Sinai School of Medicine; Ohio and Ohio State Universities; University of Texas 
MD Anderson Cancer Center; University of South Alabama; Cedars-Sinai Medical 
Center in Los Angeles; The Scripps Research Institute (La Jolla, CA); Institute for 
Stem Cell Research in Santa Fe Springs (CA); Laval University in Canada; Kyoto 
University; Akita University; Nippon Medical School; Nagoya City and Okayama 
University in Japan; National Neuroscience Institute in Singapore; the Hong Kong 
Baptist University; the HKBU Institute for Research and Continuing Education in 
Shenzhen, China; Institute for Communicative and Cognitive Neuroscience in 
Kavalappara; University of Hyderabad in India; Federation University in Australia; 
Hebrew University in Jerusalem; and prominent European Institutions including 
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Universities of Pavia, Turin, Lausanne, Montpellier, Oviedo, Aveiro, Vienna, 
Ljubljana and Tartu, the National University of Ireland, St. James’s Hospital in 
Dublin, and the Royal College of Surgeons in Ireland. 

 Throughout these chapters, the authors spotlight forthcoming opportunities for 
research in basic pathophysiology and in prevention/therapy, in addition to detailed 
and exhaustive overviews of the current literature pertaining to microRNAs. 

 The book includes numerous color photographs, schemes, and diagrams of 
molecular pathways and tables that support and complement the text. 

 The comprehensive and systematic overview provided within these volumes is 
expected to assist the reader in comprehending the importance of taking into account 
the functional roles of microRNAs and also to address questions and unresolved 
issues regarding their importance in diagnosis and treatment of several disorders. 

 Finally, the editor would like to express his sincere appreciation to all the con-
tributors for their dedicated collaboration in this project. I also wish to thank my 
family and the Springer team, especially Aleta, Jeff, and Diana, for their patient, 
professional, and constant support. I sincerely hope this book will enable readers to 
connect basic research principles with up-to-date clinical knowledge, thereby 
encouraging future discoveries and developments of new therapeutic strategies.  

  New York, NY, USA     Gaetano     Santulli, M.D., Ph.D.      

 The original version of the editor affi liation has been revised. An erratum can be found at   
DOI   10.1007/978-3-319-22380-3_13     

Preface

http://dx.doi.org/DOI�10.1007/978-3-319-22380-3_13
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  The complexity of gene regulation by proteins alone was so enormous that I never imagined—and 
nobody I knew imagined—that we needed to look for new kinds of regulatory molecules . 

  Victor Ambros   JCB  2013;201:492 

  But it is important to continue to explore the diversity of biology, and not become myopic about 
translating biological discovery to humans via, for example, more research on our closer 
relatives . 

  Gary Ruvkun   Nat Med  2008;14:1041 
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    Chapter 1   
 A Fleeting Glimpse Inside microRNA, 
Epigenetics, and Micropeptidomics       

       Gaetano     Santulli     

    Abstract     MicroRNAs (miRs) are important regulators of gene expression in 
numerous biological processes. Their maturation process is herein described, includ-
ing the most updated insights from the current literature. Circa 2000 miR sequences 
have been identifi ed in the human genome, with over 50,000 miR-target interactions, 
including enzymes involved in epigenetic modulation of gene expression. Moreover, 
some “pieces of RNA” previously annotated as noncoding have been recently found 
to encode micropeptides that carry out critical mechanistic functions in the cell. 
Advanced techniques now available will certainly allow a precise scanning of the 
genome looking for micropeptides hidden within the “noncoding” RNA.  

  Keywords     miRNA   •   Micropeptides   •   ORF   •   Micropeptidome   •   Mitochondria   
  Myogenin   •   Humanin   •   SERCA   •   MOTS-c   •   Micropeptidomics   •   RISC   
•   Pharmacogenomics   •   Drosha   •   Dicer   •   METTL3   •   Exportin   •   TargetScan   •   miRWalk   
•   miRBase   •   EpimiR   •   Transcriptome   •   Precision medicine  

         Introduction 

  MicroRNAs (miRs)   are an evolutionarily conserved family of small (~22 nucleo-
tides) generally [ 1 – 4 ] noncoding RNAs, fi rst discovered in  Caenorhabditis elegans  
[ 5 – 8 ]. They represent a vital component of genetic regulation, existing in virtually 
all organisms, suggesting thereby a pivotal role in biological processes. Undeniably, 
miRs are important regulators of gene expression in a plethora of biological pro-
cesses including cellular proliferation, differentiation, and tumorigenesis [ 9 – 26 ]. 
Other examples of noncoding RNAs are reported in Table  1.1 .

        G.   Santulli ,  M.D., Ph.D.      (*) 
  Columbia University Medical Center ,  New York Presbyterian 
Hospital—Manhattan ,   New York ,  NY ,  USA   

  “Federico II” University Hospital ,   Naples ,  Italy   
 e-mail: gsantulli001@gmail.com  

 The original version of this chapter was revised. The erratum to this chapter is available at: 
DOI   10.1007/978-3-319-22380-3_13     
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   Table  1.1     Characteristics of  noncoding RNAs   within the cell   

 Abbreviation  Complete name  Main functions  Length (nt)  Ref. 

 miRNA  MicroRNA  Gene silencing  21–25  [ 4 ] 
 rRNA  Ribosomal RNA  Translation  120–4700  [ 88 ] 
 tRNA  Transfer RNA  Translation  70–100  [ 89 ] 
 aRNA  Antisense RNA  Transcriptional 

attenuation 
 >30  [ 90 ,  91 ] 

 eRNA  Enhancer-like 
ncRNA (1D/2D) 

 Transcriptional 
enhancers 

 50–2000  [ 92 ,  93 ] 

 lincRNA  Long intergenic 
RNA 

 Transcriptional 
and 
posttranscriptional 
regulation 

 <50 kb  [ 94 ] 

 piRNA  PIWI-interacting 
RNA 

 Genome 
stabilization 

 24–30  [ 95 ] 

 shRNA  Short hairpin RNA  Gene silencing  19–29  [ 96 ] 
 siRNA  Short interfering 

RNA 
 Gene silencing  21–25  [ 97 ] 

 snRNA  Small nuclear 
RNA 

 Splicing 

 snoRNA  Small nucleolar 
RNA 

 Methylation 
(C/D box), 
pseudouridylation 
(H/ACA box) 

 ~20–24  [ 98 ] 

 SRP-RNA  Signal recognition 
particle RNA 

 Translocation of 
proteins across the 
endoplasmic 
reticulum 

 tiRNA  Transcription 
initiation RNA 

 Transcriptional 
regulation 

 18  [ 99 ] 

 Y RNA  Y RNA  DNA replication 
and RNA 
processing 
(repressor of 
Ro60) 

 83–112  [ 100 ,  101 ] 

 CUT  Cryptic unstable 
transcript 

 Gene regulation  200–800  [ 102 ] 

 NAT  Natural antisense 
transcript 

 RNA interference  Variable  [ 103 ,  104 ] 

 PALR  Promoter-
associated long 
RNA 

 Transcriptional 
regulation 

 200–1000  [ 105 – 107 ] 

 PROMPT  Promoter 
upstream 
transcript 

 Gene transcription  long  [ 108 ] 

 RNase P  Ribonuclease P  Endonucleolytic 
5′ cleavage of 
tRNA precursors 
(ribozyme) 

 354–417  [ 109 ,  110 ] 

(continued)

G. Santulli
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       Biogenesis 

  Classically, miRs are  regarded   as negative regulators of gene expression that inhibit 
translation and/or promote mRNA degradation by base pairing to complementary 
sequences within the 3′-untranslated region (3′-UTR) of protein-coding mRNA 
transcripts [ 27 ,  28 ]—mRNA degradation accounts for the majority of miR activity 
[ 29 ]. By altering levels of key regulators within complex genetic pathways, miRs 
provide a posttranscriptional level of control of homeostatic and developmental 
events [ 30 – 32 ]. 

 Specifi c structural aspects of miRs are discussed in detail in Chap.   2     of this book. 
Briefl y, maturation of miRs involves a multi-step process [ 33 – 35 ] that starts from the 
transcription (mainly operated by RNA polymerase II) of single-stranded nonprotein- 
coding RNAs, which are either transcribed as stand-alone transcripts ( intergenic  
miRs), often encoding various miRs, or generated by the processing of introns of 
protein-coding genes ( intragenic  or intronic miRs). Transcription of intergenic miRs 
leads to the formation of primary miRs (pri-miRs) with a characteristic hairpin or 
stem–loop structure [ 36 ], which are subsequently processed by the nuclear RNase III, 
Drosha [ 37 ], and its partner proteins, including the DiGeorge Syndrome Critical 
Region 8 (DGCR8, known as Pasha in invertebrates), named for its association with 
DiGeorge Syndrome [ 38 ,  39 ], to become precursor miRs (pre- miRs). On the other 
hand, intronic miRs are obtained by the regular transcription of their host genes and 
then spliced to form looped pre-miRs, bypassing thereby the Drosha pathway [ 33 , 
 40 ]. Recently, Claudio Alarcón and colleagues discovered that the addition of an m6A 
mark to primary miRs by  methyltransferase-like 3 (METTL3)   is required for their 
recognition by DGCR8 [ 41 ]. They also proved that METTL3 is suffi cient to enhance 

Table  1.1  (continued)

 Abbreviation  Complete name  Main functions  Length (nt)  Ref. 

 RNase MRP  Mitochondrial 
RNA processing 
ribonuclease 

 Mitochondrial 
DNA replication 
and rRNA 
maturation 
(ribozyme) 

 265–340  [ 111 ,  112 ] 

 SINE  Short interspersed 
repetitive elements 

 Transcriptional 
suppressor (e.g. 
Alu element) 

 <500  [ 113 ,  114 ] 

 TERC  Telomerase RNA 
component 

 Telomere 
synthesis 

 451  [ 115 ,  116 ] 

 T-UCR  Transcribed 
ultra-conserved 
region 

 Transcriptional 
enhancer 

 >200  [ 117 ,  118 ] 

 vlincRNAs  Very long 
intergenic RNA 

 Transcriptional 
and 
posttranscriptional 
regulation 

 >50 kb  [ 119 ,  120 ] 

1 A Fleeting Glimpse Inside microRNA, Epigenetics, and Micropeptidomics
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miR maturation in a global and non-cell-type-specifi c manner, acting as a strategic 
posttranscriptional modifi cation that promotes the initiation of miR biogenesis. 

 Pre-miRs are exported from the nucleus in the cytoplasm in a process involving 
the Ran-GTP-dependent shuttle Exportin-5 [ 42 ]. Once in the cytosol, the pre-miR 
hairpin is cleaved by the RNase III enzyme Dicer [ 43 ,  44 ], yielding a mature 
miR:miR* duplex about 22 nucleotides in length, which is subsequently  incorporated 
into the protein complex called  RNA-induced silencing complex (RISC)   to form 
miRISC [ 45 ,  46 ]. At this point, one of the double strands, the guide strand, is 
selected by the argonaute protein [ 47 ], the catalytically active RNase in the RISC 
complex, on the basis of the thermodynamic stability of the 5′ end. In particular, the 
strand with a less thermodynamically stable 5′ end is commonly chosen and loaded 
into the RISC complex [ 48 ], serving as a guide for mRISC to fi nd its complemen-
tary motifs in the 3′-UTR of the target mRNA(s). Although either strand of the 
mature duplex may potentially act as a functional miR, only one strand is usually 
incorporated into the RISC where the miR and its mRNA target interact [ 49 ,  50 ]. 
Such a binding inhibits the translation of the protein that the target mRNA encodes 
or promotes gene silencing via mRNA degradation [ 51 ,  52 ]. 

 Nearly 2000 miR sequences have been heretofore identifi ed in the human 
genome, with over 50,000 miR-target interactions. Several algorithms and bioinfor-
matics websites, including  TargetScan   and  miRWalk   [ 53 ,  54 ], have been developed 
to predict specifi c mRNA/miR interactions. However, miR binding rules are quite 
complex and not fully understood, resulting in a lack of consensus in the literature. 

 Given all these crucial features, miRs could represent an important way for the cell 
to establish intercellular (with other cells, via secreted miRs) and intracellular (among 
its own genes) communication. Determining direct cause-and-effect links between 
miRs and mRNA targets is essential to understanding the molecular mechanisms 
underlying disease and the subsequent development of targeted therapies [ 55 ,  56 ].   

    Walking through an Apparently Complicated Nomenclature: 
miR,  miR , miR-Xa, miR* 

  Nomenclature of miRs   may appear confusing to the naïve readers. Briefl y, mature 
miRs are named using the non-italicized prefi x “miR-” followed by a roman number 
(with the exception of a few early miRNAs including the let family); stem–loop 
precursor miRs are all named using the italicized prefi x “ mir -”. 

 Similar miR sequences are distinguished by a lettered suffi x, for example, miR- 
200a, miR-200b, and miR-200c, without implying shared targets or functions. 
Identical miR sequences are distinguished by a numerical suffi x: for instance, mir- 
7- 1 (located on chromosome 9), mir-7-2 (located on chromosome 15), and mir-7-3 
(located on chromosome 19) can all produce identical mature miRNAs. Mature 
miRs can be formed from either arm of the stem–loop precursor miRNA (pre-miR). 
In the majority of cases, one arm is more commonly formed than the other (guide 
strand). Previous convention was to name these strands according to their relative 
abundance, with the less common form (“passenger strand”) taking the name  

G. Santulli



5

miR- X*  . However, the latest convention is to name mature miRs by the arm of the 
pre- miR from which they are derived, regardless of their abundance: those from the 
5′ arm are named miR-X-5p and those from the 3′ arm as miR-X-3p. Therefore, 
 miR- 181a is now known as miR-181a-5p and miR-181a* is now known as miR-
181a-3p, avoiding problems with the previous system if the abundance of each arm 
changes between tissues, developmental stages, or species. All of the above naming 
conventions can be preceded by a three-letter code which identifi es the species the 
miRNA is from: hsa =  homo sapiens  (human); rno =  rattus norvegicus  (rat). 
Therefore, miR- 181a- 5p found in humans could be represented as hsa-miR-181a-5p. 
Of note, identical miRNAs are given the same number, regardless of species.  

    Epigenetics and miRs: An Intricate Affair 

    Epigenetics   is the  study   of heritable changes in gene expression caused by mecha-
nisms other than changes in the underlying DNA sequences [ 57 ], including DNA 
methylation [ 58 ] and posttranslational modifi cations of chromatin proteins [ 59 ,  60 ]. 
The main enzymes involved in this process are DNA methyltransferases (DNMT), 
histone demethylases (HDM), histone acetylases (HAT), and histone deacetylases 
(HDAC). Mounting evidence demonstrates that epigenetics and miRs can affect 
each other in an intricate connection [ 61 – 64 ]. Indeed, miRs play a key role in regu-
lating DNA methylation or histone modifi cations through means of directly target-
ing epigenetic enzymes or functional protein complexes. For instance, a global 
DNA hypomethylation is induced by miR-29b leading to marked reduction of the 
expression of DNMT1, DNMT3A, and DNMT3B and subsequent reactivation of 
tumor suppressor genes p15 (INK4b) and ESR1 [ 65 ,  66 ]. Another example is given 
by miR-200a, which upregulates histone H3 acetylation via direct targeting of the 3′ 
untranslated region of the HDAC4 mRNA [ 67 ]. 

 On the other hand, epigenetic control is involved in the regulation of miR expres-
sion. DNA methylation of promoter-associated CpG dinucleotides generally corre-
lates with reduced transcription levels of corresponding miRs [ 68 – 70 ], thereby 
inducing the expression of miR target genes. A novel miR-148a/DNMT1 regulatory 
circuit has been identifi ed in hepatocellular carcinogenesis: a member of the miR- 
148/152 family, miR-148a is a tumor suppressor that can be silenced by hypermeth-
ylation and interacts with DNMT1 [ 71 ]. 

 A comprehensive database,  EpimiR  , in which experimentally validated mutual 
interactions between epigenetics and miRs are described, has been recently pub-
lished [ 72 ].    

    The Emerging Functional Role of Micropeptidomics 

  Intriguingly, some so-called “noncoding” pieces of RNA may actually encode short 
proteins (micropeptides) that carry out critical  mechanistic   functions within the 
cell(s). A conserved micropeptide (46 amino acids), named myoregulin, encoded by 

1 A Fleeting Glimpse Inside microRNA, Epigenetics, and Micropeptidomics
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RNA that had been previously misannotated as noncoding, has been recently identifi ed 
by Olson’s group [ 2 ].  Myoregulin   is a skeletal muscle-specific micropeptide 
that forms a transmembrane alpha helix within the membrane of the sarcoplasmic 
reticulum (SR), where it modulates Ca 2+  handling interacting with the  SR Ca 2+  
ATPase (SERCA)  . 

 Such a micropeptide displays a structural resemblance to phospholamban and 
sarcolipin, which inhibit SERCA activity in the heart and in slow-type and develop-
ing skeletal muscle [ 73 ]. The fact that putative long noncoding RNA may harbor 
hidden micropeptides had been suggested by recent genome-wide analyses [ 74 ]. 
However, heretofore the microproteome has largely been overlooked in gene anno-
tations [ 75 ,  76 ]. 

 Due to their small size, micropeptides could not be identifi ed by genome annota-
tion or by protein prediction algorithms whose threshold of detection is relatively 
high: indeed, in scans of the genome, a DNA sequence is usually not considered 
potentially protein-coding unless it can encode a string of more than 100 amino 
acids [ 77 ]. Of note, albeit some short peptides have crucial biological functions, 
these peptides are generally fragments chipped off larger proteins [ 78 ]. More of 
these “mysterious” RNA molecules could produce peptides too small to be consid-
ered true proteins but which nonetheless carry out important functions (Fig.  1.1 ).

   Recently, other nonclassical peptides—encoded by small  open reading frames 
(ORF)  —have been discovered. These micropeptides are translated from ORF 
shorter than 100 amino acids. In contrast to other bioactive peptides, micropeptides 
are not cleaved from a larger precursor protein and lack an amino-terminal signaling 
sequence [ 79 ]. An estimated 40 % of mRNAs in the fruit fl y  Drosophila  melanogaster , 
in which the fi rst micropeptides were identifi ed [ 80 – 82 ], might contain upstream 
ORFs in 5′-regions and some show signs of evolutionary conservation [ 83 ]. 

  Fig. 1.1     Micropeptidomics  : 
 multa paucis  or  hic sunt 
leones ?       
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 Exploring the mitochondrial genome, a compact circular genetic system that 
encodes for 13 proteins essentially dedicated to energy production, Pinchas Cohen 
and colleagues have identifi ed a short ORF encoded within the mitochondrial 12S 
rRNA that yields a bioactive peptide, named MOTS-c (mitochondrial ORF of the 
12S rRNA type-c) involved in the regulation of metabolic homeostasis. The Cohen’s 
laboratory was among the three groups [ 84 – 86 ] that independently discovered 
another important mitochondrial peptide, humanin, encoded in the mitochondrial 
genome by the 16S ribosomal RNA gene, MT-RNR2, which displays fundamental 
cytoprotective effects. 

 Similar short peptides could be hiding in several places in the genome, including 
in transcripts of unknown function. Hence, exploiting state-of-the-art techniques [ 1 , 
 87 ], a major exciting fi eld of research in the next years will be represented by scan-
ning the microproteome embedded in the (previously annotated) “noncoding” RNA.  

 Is this the way toward precision medicine? We’ll see.
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