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Supervisor’s Foreword

A physicist’s view of the world used to be rather deterministic 200 years ago. If the
state of all particles and the forces acting between them were known, Laplace
hypothesised, a ‘being’ vast enough to project forward these laws could calculate all
future states of the universe. This concept of a Laplacian daemon is of course
hopelessly out of date. The discovery of quantum mechanics has fundamentally
changed our view of the world; the way we think about determinism and pre-
dictability is rather different than at the times of Newton and later Laplace.
Quantum physics describes randomness which is (as far as we know) intrinsic to
nature, and which cannot be overcome, no matter how hard we try.

Perhaps as important as such aleatoric uncertainty is a second source of ran-
domness in mathematical models of the world around us. Towards the late nine-
teenth century revolutionary ideas about how one might describe systems with large
numbers of interacting particles were developed by heroic figures such as
Boltzmann and Gibbs. The theory of ‘statistical mechanics’ was born. These
concepts are founded on the idea that the detailed trajectories of each and every
particle in a large system are not all that interesting. Instead it is the behaviour of the
system as a whole that we care about. The logical consequence is to study
ensembles of particles, and their ‘statistics’. Unlike in Newtonian physics we no
longer ask: Where is this particular particle going to be at a later time? Instead we
ask: If the initial distribution of particles is this, what is the probability to find a
given particle in a certain area of space, or with a given speed?

This leads to stochastic descriptions of the laws of physics, the equations gov-
erning the dynamics are now subject to noise. This is so-called ‘epistemic noise’, it
originates from the way we model those ensembles of particles. Leaving quantum
physics aside, epistemic uncertainty could be eliminated by making a more detailed
model and including all forces and interactions in a Laplacian sense. But as sta-
tistical physicists we decide not to, because these are not the relevant questions.
What is relevant is how global large-scale behaviour emerges from microscopic
interaction, not the microscopic trajectories as such.
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In order to do this a whole new theory—the theory of stochastic processes—had
to be invented. Much of the twentieth century was spent on trying to understand and
classify the equilibrium states interacting particle systems reach in the long term.
This work is now largely complete, and the focus has moved to systems out of
equilibrium. These are systems which do not settle down, they are subject to
driving, fluxes, and coupling to the external surroundings. No coherent theory exists
for the physics far from equilibrium, but at the same time many pressing challenges
rely on progress in this field. This includes turbulence, plasma fusion, active matter,
quantum materials, and most notably the physics of life. Biology is inherently out
of equilibrium and based on transport of nutrients, energy, the absorption of light,
sudden changes, large deviations, the dynamics of evolution and changing envi-
ronments. It is no surprise that physicists have been able to make remarkable
contributions, and that ideas from statistical physics and the theory of stochastic
processes have delivered important advances.

Peter joined this adventure in 2012, his thesis focuses on the dynamics of
fixation in models of interacting individuals. Peter has investigated several prob-
lems at the boundary of theoretical physics and biology. The thesis contains the
study of an evolutionary model of populations in switching environments, relevant
for example for antibiotic treatment in colonies of bacteria. He has also analysed
metastable states in a model of cancer initiation, and the relation of so-called mixing
times and the dynamics of fixation in birth–death processes. Chapter 6 of his thesis
presents a pedagogical account of the so-called WKB method, a technique from
semi-classical physics used to study phenomena including epidemics, ecosystems
and, in Peter’s thesis, models of cancer evolution.

While I mention the words ‘cancer’, ‘bacteria’ and ‘evolution’ we should be
clear: this is a thesis in statistical physics. It contains mathematics and long
equations, things are complicated and subtle. The problems Peter looks at are
motivated in biology, but the true beauty of this thesis is in the beauty of the
underlying mathematical structures and the theoretical concepts and ideas used to
unveil them.

Santiago de Compostela, Spain Dr. Tobias Galla
April 2016
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Abstract

Individual-based models have been applied to study a broad spectrum of problems
across multiple disciplines, such as the spread of epidemics or the outcome of social
dilemma. They are used to investigate the macroscopic effects that arise from the
microscopic dynamics of interacting individuals. Fixation describes the taking over
of the population by a single type of individual or species. It is a prominent feature
in the field of population genetics, which interprets many biological scenarios of
evolution. Equilibration describes the process of reaching a heterogeneous steady
state. In this thesis we analyse these macroscopic features through techniques
derived from statistical physics and the theory of stochastic processes.

Birth–death processes are used to describe the interaction of two types of indi-
vidual in a population, such as competing strains of bacteria. These interactions are
often specified using the framework of evolutionary game theory. The environment
in which the population evolves can have a crucial impact on selection. In systems
where the environment switches between multiple states we develop a general theory
to calculate the fixation time statistics of a mutant individual in a population of
wild-types, as well as the stationary distributions when mutations are present in the
dynamics. In some birth–death processes, and in particular those described by
evolutionary game theory, the mean fixation time contains only limited information.
By diagonalising the master equation that describes the process, we are able to obtain
closed-form expressions for the complete fixation time distributions.

Individual-based models can also be used to describe the accumulation of
mutations in a cell. This has important consequences for the initiation and pro-
gression of cancer. We find that such systems exhibit metastable states in the
dynamics, and we can exploit the separation of timescales between relaxing to the
quasi-stationary state and reaching fixation to characterise these phenomena. In this
scenario we employ the WKB method to describe the population-level dynamics.
Although this method has been used to describe numerous stochastic processes, a
clear and coherent description is lacking in the literature. Through the use of
multiple examples, including the aforementioned cancer initiation model, we
carefully explain the multitude of constructs and equations that result from the
application of this method.
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The analytical characterisation of the evolutionary dynamics that are observed in
these stochastic processes has resulted in a greater understanding of fixation and
equilibration. This thesis promotes the benefits of analytical, or even
semi-analytical methods, and on a more general level contributes towards a more
complete understanding of evolutionary processes.

x Abstract
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Chapter 1
Introduction

Over the next 200 or so pages I will explore how tools and concepts developed
within theoretical physics can be applied to problems in other sciences. Although
more emphasis in this thesis will be directed to biological applications, the successes
of this field can also be seen in social science [1, 2], economics [3, 4], and many
other disciplines where so-called complex systems are a prominent feature.

My motivation for working in this area is the freedom you have to explore these
numerous disciplines, and the satisfaction that arises from solving a long-standing
problem by approaching it from an unconventional point of view. Interactions with
academics from these various backgrounds has provided hours of intellectual con-
versation and brainstorming that have greatly enhanced my knowledge of the world
outside of physics. But ultimately the main reason for joining this area, and choosing
to continue my career in this field, is because the analysis is fun! The benefits of
the approaches I use lie not only in their predictive power, but they are enjoyable,
satisfying, stimulating and infuriating in equal measures.

The success of theoretical physics across multiple disciplines comes from its
ability to break down objects to their fundamental constituents. Analysis of the
inner workings then allows the practitioner to obtain a more complete understanding
of the world. An experimentalist works with the real-world system, or a synthetic
in vitro analogue. Their understanding of this system is achieved through the collec-
tion and analysis of data. Theorists, however, obtain an understanding by considering
a representation of the real-world system, which I will refer to as a model.

For biological systems an exactmodel representation is often impossible due to the
inherent complexity of many interacting entities. If a model is almost as complicated
as the experimental system, it will be just as intractable. In the end you would have
the same data set, but generated in silico, and no new insight or understanding will
have been gained. As the level of abstraction from the real world increases, so does
the level of tractability. The balance between accuracy and tractability is a choice
to be made by the modeller. In the case of this thesis, Occam’s Razor prevails;
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2 1 Introduction

I will focus on the simplest models which reproduce observed behaviours, but can
be applied to a wide range of problems. These models can highlight the underlying
mechanisms that result in the observed phenomenon, something that may not be
immediately obvious from simply conducting an experiment.

One of the most profound examples of this in the biosciences is the explanation
of the regular structures on the coats of animals [5]. The colouration was known
to be caused by melanin in the skin, but there was no explanation for the origin of
the pattern of this colouration in animals such as zebras and leopards. The seminal
work of Alan Turing (1912–1954) provided part of the answer. Turing proposed that
diffusive chemicals can settle into a stable, spatially-inhomogeneous state through
the excitation of the now-called Turing instability [6]. Although the true mechanism
is more complex than the idea proposed by Turing [7], the same basic principles
were applied to reproduce observed animal coat patterns [8].

The class of systems in which my interest lies is not the continuous reaction–
diffusion systems as studied by Turing, but systems that contain a finite number of
discrete, interacting ‘particles’ or individuals. Such systems are ubiquitous in nature,
where particles could represent proteins,molecules, cells, bacteria, animals or people.
The dynamics of the particles can be governed by events such as production (birth),
degradation (death), predation or infection, to name but a few. The discreteness
of the particles, and the nature of the dynamics, are responsible for the observed
stochasticity; that is, there is an intrinsic source of randomness in these systems,
often referred to as demographic noise.

The discreteness of the particles, and with it the intrinsic stochasticity, is retained
when modelling these systems. However, information about the behaviour of every
individual particle is not necessary. Instead, the simplifying assumption that two
particles of the same type are indistinguishable is made. The behaviour of the system
can then be described by the statistics of the group of particles. This procedure is the
basis of statistical mechanics, and the approach is poetically summarised by James
Clerk Maxwell (1831–1879):

And here Iwish to point out that, in adopting this statisticalmethod of considering the average
number of groups of molecules selected according to their velocities, we have abandoned
the strict kinetic method of tracing the exact circumstances of each individual molecule in
all its encounters.

It is therefore possible that we may arrive at results which, though they fairly represent the
facts as long as we are supposed to deal with a gas in mass, would cease to be applicable if
our faculties and instruments were so sharpened that we could detect and lay hold of each
molecule and trace it through all its course.

James Clerk Maxwell, The Theory of Heat [9].

Here Maxwell is referring to the original derivation of the Maxwell–Boltzmann
distribution, which describes the distribution of speeds of molecules of a contained
ideal gas [10].1

1Ludwig Boltzmann (1844–1906) later derived this result from the kinetic theory of gases [11].
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To model the particles in the discrete systems in mass they are treated like mole-
cules of a gas. The interactions then take a form which is similar to that of chemical
reactions. These reactions are dependent on the number of reactants (molecules)
available and the rate at which the gas molecules interact [12]. These models are
referred to as individual-based models, and they have been applied to study epi-
demic outbreaks [13], social dilemma [14], predator–prey interaction [15], and the
list can go on and on. This thesis, however, is not dedicated to a particular system
or application. Instead I will investigate particular phenomena that are observed in a
variety of stochastic systems. These are:

Fixation: The process of a single type of individual taking over thewhole population.
The term originates from the field of population genetics, where the fixation of an
allele was a central topic [16–19]. In this case fixation occurs when all other alleles
are irreversibly lost from the gene pool, and only a single fixed allele remains.
The terminology is now used outside of population genetics and the study of gene
frequencies, for example to describe the eradication of a disease or reaching a
social consensus.

Equilibration: The process of reaching a stable stationary state. If fixation is not
possible in a system, as is the case if individuals can change their type stochas-
tically, then the success of a type of individual is no longer characterised by the
probability that it takes over the population. Instead success can be measured
by its relative concentration at long times. This is described by the stationary
probability distribution. The time to approach this stable state is also of interest.

These two effects are closely linked; if a systemfixates then nomore dynamics can
occur and hence the fixated state is stationary. They are also related if fixation takes
a very long time, such that the system can initially relax into a quasi-stationary state
before fixation occurs. These links will be investigated closely in Chaps. 4 and 5.

A concrete understanding of the effects of fixation and equilibration, and the inter-
play between them, will greatly contribute to our understanding of the process of
evolution. This field of investigating evolution through mathematical approaches has
been dubbed evolutionary dynamics, and it describes the change of populations over
time subject to spontaneous mutation, selection, and random events [14, 20]. Differ-
ent types of individual in the population, which wewill sometimes call phenotypes in
linewith the biological literature, can emerge spontaneously bymutation, i.e. through
errors during reproduction of the pre-existing wild-types. In many cases, wild-type
andmutant individuals are characterised by heritable differences in behavioural traits
or strategies [14]. Selection acts on different (pheno)types and their associated traits
to change the population composition.

One of the great successes of evolutionary dynamics is the quantitative analysis
of cancer, which is a genetic disease and according to Cancer Research UK, “1 in 2
people in the UK born after 1960 will be diagnosed with some form of cancer during
their lifetime” [21]. Mathematical investigations have contributed profoundly to our
understanding of “the emperor of all maladies” [22]. Numerous studies throughout
the 20th century have addressed the kinetics of cancer initiation and progression
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[23–28]. In Ref. [23], it was first proposed that “several successive mutations in the
same cell […] would be necessary [for cancer to initiate]”. Empirical observations
of mortality rates across a range of cancer types agreed with this hypothesis [24].
For some varieties of cancer it was shown by Alfred Knudson (1922–) that tumours
can be induced by as few as two mutations, corresponding to the inactivation of both
copies of a specific tumour suppressor gene (TSG) [26]. The data that confirmed
this hypothesis is presented in Fig. 1.1. This is data for the diagnosis of tumours, or
retinoblastomas, in the eyes of children. Knudson hypothesised that if the tumours
required two mutations, we would observe a quadratic incidence rate. However, if
the child had inherited a defective gene, the incidence curve should be linear and
there is a much larger probability that the cancer will be present in both eyes, which
is referred to as bilateral. The data clearly favours Knudson’s interpretation, and this
is the celebrated two-hit hypothesis [26].

The age of stochastic modelling of cancer initiation began in earnest with the
introduction of the branching process, as shown in Fig. 1.2 [28]. Similar models
have been used extensively to describe various aspects of carcinogenesis [29, 30],

Fig. 1.1 Fraction of cases of
retinoblastoma not yet
diagnosed as a function of
the children’s age. The
one-hit (bilateral) curve is
log S = −t/30, and the
two-hit (unilateral) curve is
log S = 4× 10−5t2, where S
is the fraction of cases not
diagnosed and t is the
children’s age in months.
This figure is from Ref. [26]


