International Series in Operations Research & Management Science

Thomas Hanne Rolf Dornberger

Computational Intelligence in Logistics and Supply Chain Management

International Series in Operations Research & Management Science

Volume 244

Series Editor

Camille C. Price Stephen F. Austin State University, TX, USA

Associate Series Editor

Joe Zhu Worcester Polytechnic Institute, MA, USA

Founding Series Editor

Frederick S. Hillier Stanford University, CA, USA

More information about this series at http://www.springer.com/series/6161

Thomas Hanne • Rolf Dornberger

Computational Intelligence in Logistics and Supply Chain Management

Thomas Hanne Institute for Information Systems University of Applied Sciences and Arts Northwestern Switzerland Olten, Switzerland Rolf Dornberger Institute for Information Systems University of Applied Sciences and Arts Northwestern Switzerland Basel, Switzerland

ISSN 0884-8289 ISSN 2214-7934 (electronic) International Series in Operations Research & Management Science ISBN 978-3-319-40720-3 ISBN 978-3-319-40722-7 (eBook) DOI 10.1007/978-3-319-40722-7

Library of Congress Control Number: 2016943140

© Springer International Publishing Switzerland 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland

Preface

Over the last decades, logistics and supply chain management (SCM) have become one of the most often and intensively discussed fields in management and economics. Although many ideas and concepts used in logistics and SCM are reasonably old, much effort has been undertaken to transfer them into practice and to improve them further. Many publications, in academia as well as in application-oriented literature, have appeared. Logistics and SCM have become fields which are rich in terms of innovation and progress.

Despite these promising developments, there are still obstacles to bring advanced visions of improved planning and cooperation along logistics processes and supply chains into reality. On the one hand, there are many practical issues such as the availability and transparent processing of information, difficulties in establishing cooperation, or because of an increasingly uncertain or rapidly changing planning environment. On the other hand, it has become more and more apparent that the underlying planning problems are very complex and hard to solve even in the case that respective data is fully retrievable and complete.

From a computational point of view, many of these problems can be characterized as NP-hard, which means that the number of possible solutions is increasing exponentially with the problem size and that presumably no algorithms exist, which can solve them exactly within acceptable time limits—at least when the problems are "rather large." Unfortunately, most real-world problems can be considered rather large.

Especially during the last 20 years, these problems have been investigated intensively in the academic literature, and many suitable solution approaches have been suggested. As the problems usually cannot be solved exactly within an acceptable time, these methods allow to find sufficiently good, although not necessarily, optimal solutions.

One of the still growing streams of methods belongs to the field of computational intelligence (CI), which comprises mostly approaches inspired by concepts found in nature, e.g., the natural evolution or the behavior of swarms. These methods are based on general heuristic ideas and concepts for problem solving, which

can—with some adaptations—be applied to a wide range of problems. To distinguish these methods from simple heuristics, which are often very specific to a single type of problem, they are also denoted as metaheuristics.

Although the respective computational intelligence methods have been studied in numerous applications related to logistics and supply chain management, they are hardly discussed in general textbooks in these fields. Often, the treatment of formal planning problems in these books does not go much beyond some rather simple and general results, which are often not applicable in real-world settings, for instance, the more than 100-year-old equation for calculating economic order quantities.

The book is intended to reduce this gap between general textbooks in logistics and supply chain management and recent research in formal planning problems and respective algorithms. It focuses on approaches from the area of computational intelligence and other metaheuristics for solving the complex operational and strategic problems in these fields.

Thus, the book is intended for readers who want to proceed from introductory texts about logistics and supply chain management to the scientific literature, which deals with the usage of advanced methods. For doing so, state-of-the-art descriptions of the corresponding problems and suitable methods for solving them are provided. The book mainly addresses students and practitioners as potential readers. It can be used as additional reference for undergraduate courses in logistics, supply chain management, operations research, or computational intelligence or as a main teaching reference for a corresponding postgraduate level course. Practitioners may read the book to become familiar with advanced methods that may be used in their area of work. For a reader, a basic understanding of mathematical notation and algebra is suggested as well as introductory knowledge on operations research (e.g., on the simplex algorithm or graphs).

The book is organized as follows: The first two chapters provide general introductions to logistics and supply chain management on the one hand and to computational intelligence on the other hand. The subsequent chapters cover specific fields in logistics and supply chain management, work out the most relevant problems found in those fields, and discuss approaches for solving them. In Chap. 3, problems in transportation planning such as different types of vehicle routing problems are considered. Chapter 4 discusses problems in the field of production and inventory management. Chapter 5 considers planning activities on a finer level of granularity, which is usually denoted as scheduling. While Chaps. 3 to 5 rather discuss planning problems, which appear on an operative level, Chap. 6 discusses the strategic problems with respect to the design of a supply chain or network. The final chapter provides an overview of academic and commercial software and information systems for the discussed applications.

We hope to provide the readers a comprehensive overview with specific details about using computational intelligence in logistics and supply chain management.

Olten, Switzerland Basel, Switzerland Thomas Hanne Rolf Dornberger

Acknowledgments

The authors would like to express their gratitude to their employer, the University of Applied Sciences and Arts Northwestern Switzerland, particularly the School of Business, for supporting the proofreading of the book. Our dedicated thanks go to Christine Lorgé, assistant at our Institute for Information Systems, who read this rather scientific book about computational intelligence and logistics with great passion, although she is not coming from these disciplines.

Our deep gratitude goes to our beloved families, i.e., our wives and children. As professors who are active in research and teaching, with Rolf additionally being head of the institute and Thomas being head of one of its competence centers, we spend so much time with working issues that we always feel that our families are missing out. Therefore, we wish to express to them our highest thanks for their great understanding and their never-ending support! Thomas additionally thanks his wife Doris for proofreading some of the chapters, for discussion of some contents, and for support with the lists of symbols and acronyms.

Contents

1	Intr	oductio	on to Logistics and Supply Chain Management	1
	1.1	The C	Concept of Logistics and Supply Chain Management	1
	1.2	A Sho	ort History of Logistics	4
	1.3	Recen	t Trends and the Modern Importance of Logistics	5
	1.4	The N	leed for a Better Planning	10
	Refe	erences		12
2	Con	nputati	onal Intelligence	13
	2.1	Found	lations of Computational Intelligence	14
		2.1.1	Artificial and Computational Intelligence and Related	
			Techniques	14
		2.1.2	Properties of Computational Intelligence	17
		2.1.3	The Big Picture of Computational Intelligence	18
		2.1.4	Application Areas of Computational Intelligence	20
	2.2	Metho	ods of Computational Intelligence	22
		2.2.1	Evolutionary Computation	22
		2.2.2	Evolutionary Algorithms	23
		2.2.3	Swarm Intelligence	32
		2.2.4	Neural Networks	35
		2.2.5	Fuzzy Logic	36
		2.2.6	Artificial Immune System	36
		2.2.7	Further Related Methods	36
	Refe	erences		39
3	Tra	nsporta	ation Problems	43
	3.1	Assig	nment Problems	44
	3.2	Shorte	est Paths	45
	3.3	The T	ravelling Salesman Problem	47

	3.4	Methods for Solving the Travelling Salesman Problem	50
		3.4.1 Heuristics for the Travelling Salesman Problem	50
		3.4.2 Evolutionary Algorithms for the Travelling	
		Salesman Problem	51
		3.4.3 Other Metaheuristics and Neural Networks	
		for the Travelling Salesman Problem	55
		3.4.4 On the Performance of Solution Approaches	56
	3.5	The Vehicle Routing Problem	57
	0.0	3.5.1 The Vehicle Routing Problem	6,
		with Time Windows	59
		3.5.2 The Vehicle Routing Problem	
		with Multiple Vehicles	59
		3.5.3 The Vehicle Routing Problem	
		with Multiple Depots	60
		3 5 4 More Differentiated Problem Variants	61
	36	Solution Approaches for Vehicle Routing Problems	62
	37	The Pickup and Delivery Problem	65
	3.8	Network Flow Problems	67
	Refe		68
	nen		00
4	Inve	entory Planning and Lot-Sizing	73
	4.1	The Need for Inventory Planning	73
	4.2	Economic Order Quantities and Safety Stocks	75
	4.3	Capacitated Lot-Sizing Problems	79
	4.4	Solution Approaches for Capacitated	
		Lot-Sizing Problems	83
	4.5	Planning Warehouse Operations	85
	4.6	Storage Locations	87
	4.7	Inventory Routing	88
	Refe	erences	94
5	Sch	aduling	00
5	5 1	Introduction	99
	5.1	Circula Dulas and Hamistics	100
	5.2 5.2	Simple Rules and neurisics	100
	5.5		105
		5.3.1 Job Snop Scheduling	105
		5.3.2 Flow Shop Scheduling	106
	~ .	5.3.3 Open Shop Scheduling	107
	5.4	Specific Scheduling Problems in Logistics	108
	5.5	Solving Scheduling Problems with Computational	
		Intelligence Techniques	110
		5.5.1 Encoding Issues	110
		5.5.2 Usage of Metaheuristics in Scheduling	115
	Refe	erences	117

6	Loca	ation P	lanning and Network Design	121
	6.1	Locati	ion Planning as Multicriteria Decision Problems	121
	6.2	Discre	ete Location Problems	123
		6.2.1	The p-Median Problem	124
		6.2.2	The p-Center Problem	128
		6.2.3	The Uncapacitated Facility Location	
			Problem (UFLP)	130
		6.2.4	The Capacitated Facility Location Problem (CFLP)	133
	6.3	Conti	nuous Location Problems	135
		6.3.1	The Uncapacitated Multi-facility	
			Weber Problem (UMWP)	135
		6.3.2	The Capacitated Multi-facility Weber	
			Problem (CMWP)	138
	6.4	Locati	ion Routing Problems	141
	6.5	Hub L	Location Problems	144
	6.6	Multi-	Echelon Network Design	145
	6.7	Concl	usions	146
	Refe	erences		146
_	_			
7	Inte	lligent	Software for Logistics	153
	7.1	Gener	al-Purpose Optimization Software	153
		7.1.1	Setting Up a Suitable Model for the Optimization	
			Software	155
		7.1.2	Integration of Optimization Software with Logistics	
			Applications	156
		7.1.3	Adapting the Method to the Problem	
			Under Consideration	157
	7.2	7.2 Software Providing Specific Optimization Algorithms		
		or Sup	oporting Particular Optimization Problems	157
	7.3	Gener	al-Purpose Business Software	160
	7.4	Logist	tics Software	163
		7.4.1	Warehouse Management Systems	163
		7.4.2	Software for Transportation Planning	165
		7.4.3	Packing and Loading Software	166
	7.5	Concl	usions	167
	Refe	erences		168
Aι	ithors	s Brief	Biographies	171
T۳	dov			172
111	UCA .			175

List of Symbols

π Number of offspring (parameter of an evolution strate π Permutation	egy)
π Permutation	
P Cot of real numbers	
Set of real numbers	
ρ Number of recombined parents (parameter of an evolu	tion strategy)
σ Standard deviation, prediction error	
σ_d Standard deviation for demand	
σ_{LT} Standard deviation for lead time	
μ Number of parents (parameter of an evolution strategy	y)
A (Feasible) set of alternatives, search space	
<i>A</i> , <i>B</i> Start and destination location of a transport	
<i>a</i> Capacity requirement per unit	
<i>a_i</i> Capacity requirement at location <i>i</i>	
(a_{i1}, a_{i2}) Coordinates of customer <i>i</i>	
a_{ij} Influence factors (in particle swarm optimization)	
<i>a_p</i> Capacity requirement per unit of item <i>p</i>	
at_i Arrival time of job <i>i</i>	
<i>b</i> Capacity requirement per setup	
C, C_i Completion time (of job <i>i</i>)	
c, c_t Costs, unit costs	
c_i^{best}, c_i^{global} Acceleration factors (in particle swarm optimization)	
c_{ij} Transport costs (between <i>i</i> and <i>j</i>)	
C _{max} Makespan	
<i>D</i> Total required quantity (in the time horizon)	
d(.,.) Distance function	
dd_i Due date of job <i>i</i>	
d_{ii} Distance between <i>i</i> and <i>j</i>	
dl_i Deadline of job <i>i</i>	
d_p Demand of item p	
d_t Demand in t	

\hat{d}_t	Predicted demand in t
\overline{d}	Average demand
Ε	Set of edges (arcs) of a graph
ea	Earliness
e_i	Edge of a graph
f(.)	Objective function
f_i	Finishing time
f_i	Setup costs of facility <i>j</i>
G = (V, E)	Graph
G = (V, E, c)	Graph with weights (which correspond to costs)
h, h_t, h_p	(Unit) holding costs
h^r	Holding cost rate
i _{pt}	Inventory of product <i>p</i> in <i>t</i>
i^A_{pt}, i^B_{pt}	Inventory of product p at location $A(B)$ in t
i_t	Inventory in <i>t</i>
Ĺ	Set of locations
L^C	Set of customer locations
L^D	Set of depot locations
LT	Lead time
\overline{LT}	Average lead time
la	Lateness
l_i	Location
l_i^C	Customer location
l_i^D	Depot location
M	Large constant number
m	Number of neurons
N(0, σ)	Normal distribution with expected value 0 and standard deviation σ
n	Number of variables (e.g., locations in a tour)
n!	Factorial function of <i>n</i>
O(.)	Run time complexity of an algorithm (big O notation)
Р	Subset of locations
р	Price per unit
р	Number of facilities to open in a p-median problem
p^{global}	Global best position of a particle (in particle swarm optimization)
p_i	Particle <i>i</i> (in particle swarm optimization)
p_i^{best}	Best previous position of particle <i>i</i> (in particle swarm optimization)
p_{ij}	Processing time of job i (on machine j)
q, q_j	Capacity (e.g., of a vehicle or a facility)
q_{ij}	Transported quantity between two locations
RP	Reorder point
r_i^{best}, r_i^{global}	Random coefficients (in particle swarm optimization)
S	Set of facility locations
SS	Safety stock
S _i	Start time of job <i>i</i>

S _{ik}	Arrival time of vehicle k at location i
S_i^{max}	Latest arrival time at location <i>i</i> (with specified time window)
S_i^{min}	Earliest arrival time at location <i>i</i> (with specified time window)
Т	Planning horizon, time horizon, total number of periods
t_{ij}	Travel time from <i>i</i> to <i>j</i>
u, u_t, u_p	Fixed costs per order, setup costs of a production process
U_i	Order-up-to level quantity of product <i>i</i>
V	Set of vertices (nodes) of a graph, set of vehicles
Vi	Vertex (node) of a graph, velocity vector of a particle (in particle
	swarm optimization)
Wi	Inertia weight (in particle swarm optimization)
W_L, W_E	Weights (for lateness and earliness)
W _t	Production capacity in period t
$x, x_{ij}, x_{ijk}, x_{pt}$	Decision variables
x_o	Economic order quantity
X_t	Production quantities in t
y_t, y_{pt}	Binary decision variables
Z	Service level
Ζ	Auxiliary variable for objective function values
Z _{it}	Binary variables (denoting whether node i is visited at time t)

List of Abbreviations and Acronyms

2E-VRP	Two-echelon vehicle routing problem
ABC	Artificial bee colony
ACO	Ant colony optimization
AGV	Automated guided vehicles
AI	Artificial intelligence
AIMMS	Advanced interactive multidimensional modeling system
AIS	Artificial immune system
AMPL	A mathematical programming language
ANN	Artificial neural network
AP	Alternating position crossover
APS	Advanced planning systems or advanced planning and scheduling
AS/RS	Automated storage/retrieval system
ATP	Available-to-promise (functionality used in APS for supporting
	order promising and fulfillment)
BA	Bees algorithm
BE	Bionic engineering
BOM	Bill of materials
CCLSP	Coordinated capacitated lot-sizing problem
CFLP	Capacitated facility location problem
CI	Computational intelligence
CMA	Covariance matrix adaption
CMA-ES	Evolution strategy with covariance matrix adaptation
CMWP	Capacitated multi-facility Weber problem
COI	Cube-per-order index
CS	Cuckoo search
CSCMP	Council of supply chain management professionals
CULSP	Coordinated uncapacitated lot-sizing problem
CVRP	Capacitated vehicle routing problem
CX	Cycle crossover

DE	Differential evolution
DLL	Dynamic linked library
DPSO	Discrete particle swarm optimization
DPX	Distance-preserving crossover
EA	Evolutionary algorithm
EC	Evolutionary computation
ELS	Economic lot size
EOQ	Economic order quantity
EP	Evolutionary programming
ER	Genetic edge recombination crossover
ERP	Enterprise resource planning
ERX	Edge recombination crossover
ES	Evolution strategy
FA	Firefly algorithm
FIFO	First-in first-out
FL	Fuzzy logic
FNN	Feedforward neural network
GA	Genetic algorithm
GAMS	General algebraic modeling system
GCLSP	General capacitated lot-sizing problem
GDP	Gross domestic product
GE	Grammatical evolution
GEP	Gene expression programming
GIS	Geographic information systems
GNX	Generalized n-point crossover
GP	Genetic programming
GPS	Global Positioning System
GRASP	Greedy randomized adaptive search procedure
GSO	Glowworm swarm optimization
HNN	Hopfield neural networks
HS	Harmony search
IEEE	Institute of Electrical and Electronics Engineers
ILS	Iterated local search
ILS-FDD	Iterated local search with fitness-distance-based diversification
JiT	Just-in-time
LCS	Learning classifier systems
LGP	Linear genetic programming
LOX	Linear order crossover
LSAP	Linear sum assignment problem
MA	Memetic algorithms
MACS	Multiple ant colony system
MCFP	Multicommodity-flow problem
MCLC	Maximal covering location criterion
MGP	Metagenetic programming