Advances in Geophysical and Environmental Mechanics and Mathematics

Ishan Sharma

Shapes and
Dynamics of
Granular Minor Planets

The Dynamics of Deformable Bodies Applied to Granular Objects in the Solar System

Advances in Geophysical and Environmental Mechanics and Mathematics

Series editors

Kolumban Hutter, Zürich, Switzerland
Holger Steeb, Stuttgart, Germany

More information about this series at http://www.springer.com/series/7540

Ishan Sharma

Shapes and Dynamics of Granular Minor Planets

The Dynamics of Deformable Bodies Applied to Granular Objects in the Solar System

Springer

Ishan Sharma
Mechanics and Applied Mathematics Group
Department of Mechanical Engineering
Indian Institute of Technology Kanpur
Kanpur, Uttar Pradesh
India

ISSN 1866-8348
ISSN 1866-8356 (electronic)
Advances in Geophysical and Environmental Mechanics and Mathematics
ISBN 978-3-319-40489-9
ISBN 978-3-319-40490-5 (eBook)
DOI 10.1007/978-3-319-40490-5
Library of Congress Control Number: 2016943448
© Springer International Publishing Switzerland 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

आकृष्टशक्तिश्च मही तया यत् खस्थं गुरुं स्वाभिमुखं स्वशक्त्या | आकृष्यते तत् पततीव भाति समे समन्तात् क्व पतत्वियं खे ॥
 - भास्कराचार्य (१२ शताब्दी)

The earth possesses the power of attraction; Through its own power, whatever heavy substance in the space it attracts towards it, seem to fall [towards it]. This happens from all sides simultaneously;
[So much so] where would this [Earth] fall in space?

- Bhaskaracarya ($12^{\text {th }} \mathrm{CE}$)

This book is dedicated to Indian Astronomy, whose science continues to surprise.

Foreword

This book was born when advances in astronomical techniques permitted, for example, the shapes and spins of asteroids to be determined using radar (see, e.g., Ostro et al. 2002), just as interest in the mechanics and physics of granular materials was being renewed in the mid-1980s. The much-publicized tidal fragmentation of comet Shoemaker-Levy in 1994 as it passed Jupiter stimulated the development of numerical simulations. Asteroids, by their sheer number and variety, provide a natural laboratory in which the translational and rotational motion of deformable solid bodies can be investigated. Relatively high-resolution dynamic imaging made it clear that at least some and, perhaps, many near-Earth asteroids were not monolithic rocks, but likely consisted of discrete solid elements held together by their mutual gravity. The advances in the mechanics of granular materials provided a means to treat the collisional interactions between the elements that transferred momentum and dissipated the energy associated with them. The advances in both subjects made it possible for the two of us to develop our common interest in their dynamics.

Ishan Sharma, a gifted graduate student in the Department of Theoretical and Applied Mechanics at Cornell University, was the intellectual agent of this development. He shared our interest and enthusiasm for the subject and we benefited from his intelligence and energy. Starting with his doctoral work with us, Sharma restricted attention to affine deformations of extended bodies and employed a volume-averaged approach to determine their equations of motion. In doing this, he followed Chandrasekhar (1969), who introduced this technique in his famous work on the equilibrium shapes of spinning fluid ellipsoids. In a series of research papers in Icarus initially with us and, later, independently, Sharma also adopted and made more transparent elements of the dynamics of deforming bodies introduced by Cohen and Muncaster (1988). Sharma (2004) first determined the equilibrium and failure of a spinning asteroid and placed existing results by Holsapple (2001) in a dynamical context. Sharma also phrased and numerically solved the equations that describe planetary fly-bys of asteroids of a less tightly packed granular
aggregate in which the elements interacted through collisions, so as to obtain results similar to those of the molecular dynamics simulations of Richardson et al. (1998) and others.

Since completing his dissertation (2004), Sharma has extended the results on to the equilibrium and failure of an exhaustive list of asteroids and satellites. He has also made important steps in characterizing the stability of their equilibrium states. Finally, he has completed a refined analysis of planetary fly-bys. These elements are collected in this volume. However, the resulting volume is much more than this. It is, also, a compact introduction to continuum mechanics of deformable bodies and, further, a rather complete treatment of the dynamics of self-gravitating deformable bodies, when they are treated, in first approximation, as having uniform material properties and deforming homogeneously. This makes the volume, on the one hand, a valuable general introduction to the dynamics of deformable bodies and, on the other hand, a detailed treatment of the multitude of objects in the solar system for which dynamics is likely to be coupled with deformation. We are proud to have been involved in the beginning of the scholarly activity that led to this manuscript. We believe it to be a worthy successor to the classic work of Chandrasekhar (1969).

Ithaca, NY, USA
Jim Jenkins
September 2015
Joe Burns

References

S. Chandrasekhar, Ellipsoidal Figures of Equilibrium (Yale Univ. Press, New Haven, CT, 1969)
H. Cohen, R.G. Muncaster, The Theory of Pseudo-Rigid Bodies (Springer-Verlag, New York, 1988)
K.A. Holsapple, Equilibrium configurations of solid cohesionless bodies. Icarus 154, 432-448 (2001)
S.J. Ostro et al. Asteroid radar astronomy, in Asteroids III ed. by W.F. Bottkeet al. (U. Arizona Press, 2002), pp. 151-168
D.C. Richardson, W. F. Bottke Jr., S.G. Love, Tidal distortion and disruption of Earth-crossing asteroids. Icarus 134, 47-76 (1998)
I. Sharma, Rotational dynamics of deformable ellipsoids with application to asteroids. Ph.D. dissertation, (Cornell University, 2004)

Preface

Starting about twenty years ago, astronomers gradually realized that many of the small bodies in the solar system (asteroids, comets and satellites) are rubble piles, i.e., granular aggregates. The first unequivocal evidence for this came when the comet Shoemaker-Levy nine broke apart, apparently by tides, into dozens of pieces as it passed close to Jupiter. Numerical simulations of self-gravitating granular aggregates were developed and they exhibited such fragmentation during close planetary encounters. Around the same time, researchers recognized that very few asteroids were found with spin periods of less than a few hours, and that this could be understood simply as the consequence of the fragility of fast-spinning bodies to centrifugal breakup. Furthermore, other asteroids and a few close-on satellites of the giant planets were observed in radar "images" and spacecraft images, respectively, to have smooth elongated shapes, suggesting rotational and tidal distortion.

Around the same time, the masses of dozens of asteroids began to be measured, usually by observing the orbital periods of binary asteroids, or by mutual gravitational perturbations of distant asteroids on Mars or another asteroid, or by spacecraft flybys. For those asteroids, comets and a few satellites that had known sizes, their densities were immediately available. More often than not, these measured densities were remarkably low, sometimes less than $0.5 \mathrm{~g} / \mathrm{cm}^{3}$ for comets and small satellites, or often $1-2 \mathrm{~g} / \mathrm{cm}^{3}$ for asteroids and satellites. Because the likely constituents of these bodies (water, ice and rock) have greater densities, the low bulk densities required significant pore space and, accordingly, implied granular aggregates held together primarily by self-gravity, rather than monolithic rocks. Such a loose character is not unexpected for objects that accreted gravitationally in a cold environment.

This book investigates the equilibrium, stability and dynamics of these rubble solar-system bodies. It is clear that any careful investigation will need to consider these bodies as objects with finite extent, and not as mere point masses, and as a granular medium, distinct in its constitutive response from solids and fluids. This book pays particular attention to these aspects.

In this book, we develop a framework for analyzing the dynamics of rotating complex materials; this is predicated on the systematic approximations of the system's kinematics. We apply the method to investigate rotating and self-gravitating granular aggregates in space. Here, we limit the kinematic approximation to, at most, an affine deformation, so that the most general shape that an object can take is that of an ellipsoid. Necessary governing equations may be obtained by a variety of methods, but we prefer to follow the virial method, or volume-averaging, employed by Chandrasekhar (1969). We do this primarily for historical continuity and for greater general familiarity with that method, but also because the current research was motivated to a great extent by Chandrasekhar's treatise that explored similar questions in the context of inviscid fluids.

The constitutive model that we employ depends on the situation. For example, when considering equilibrium, or its stability, the granular aggregate is modeled as a rigid-perfectly-plastic material obeying a pressure-dependent yield criterion, e.g., the Drucker-Prager yield criterion, and deforming post-yield as per an appropriate flow rule. However, when studying the disruptive effects of a tidal flyby, the aggregate is taken to be an ensemble of dissipative spheres whose macroscopic behavior is determined through an application of kinetic theory. The current framework has the advantage that it allows us to improve the kinematic approximation in a structured manner as well as to explore a wide variety of constitutive laws.

The book is divided into four parts. The first part introduces the necessary mathematics and continuum mechanics, as well as, describes affine dynamics that forms the basis of all subsequent development. Part II investigates the equilibrium of rubble asteroids, satellites, and binaries, and applies it to known or suspected cases. Equilibrium, here, refers to possible ellipsoidal shapes that a rubble asteroid can take, and to both shape and orbital separation for granular satellites and binaries. In Part III, we develop a linear stability criterion specifically for rotating granular aggregates, which is then applied to the equilibria obtained in Part I. Finally, in Part IV we provide a pair of examples of dynamical evolution. These relate to the disruption and possible re-agglomeration of rubble piles during tidal flybys.

Finally, I confess to some nervousness. It is dangerous to write a book that may be viewed by some as a would-be successor to Chandrasekhar's classic treatise. Followers in the footsteps of giants risk sinking or getting lost. But then, there are worse ways to go.

Kanpur, India
Ishan Sharma
September 2015

Reference

Acknowledgements

This book would not have been possible without the help and guidance of Profs. Joseph A. Burns and James T. Jenkins of Theoretical \& Applied Mechanics at Cornell University. It was they who introduced me to this research area during my Ph.D., and later inspired me to write this book. They also read through the book and provided critical feedback that has helped improve this work significantly. The parts of this book that may appeal to the reader are directly a result of their academic influence; the errors, of course, are entirely my own.

I am also grateful to Prof. Kolumban Hutter who, as editor, gave me the opportunity to write this book as part of the Springer series on Advances in Geophysical and Environmental Mechanics and Mathematics. Not only did his regular prompting help me complete this book, but his thorough review of the final manuscript was extremely helpful.

It is also a pleasure to thank many colleagues from the Mechanics \& Applied Mathematics Group (www.iitk.ac.in/mam) at the Indian Institute of Technology Kanpur: S. Mahesh, Shakti Singh Gupta, Sovan Lal Das, Anindya Chatterjee, Chandrashekhar Upadhyay, Prakash M. Dixit, P. Venkitinarayanan, Sumit Basu, Pankaj Wahi, Anurag Gupta, Mahendra K. Verma, V. Shankar, and Basant Lal Sharma. Several of them have, possibly unknowingly, helped this work since our time together at the Department of Theoretical \& Applied Mechanics, Cornell. Other member of the larger IIT Kanpur fraternity whose support has been critical through the last decade while I was writing this book include, in no particular order, Profs. Asok Mallik, K. Muralidhar, (Late) Himanshu Hatwal, V. Eswaran, B.N. Banerjee, Amitabha Ghosh, C. Venkatesan, P.K. Panigrahi, N.N. Kishore, Muthukumar T., Jayant K. Singh, Koumudi P. Patil, Sunil Simon, Preena Samuel, Akash Anand, Shikha Prasad, Anandh Subrahmaniam, Brijesh Eshpuniyani, Dr. Bhuvana T., Shirolly Anand, and Dr. Ashish Bhateja. I would also like to mention the help and support of Satya Prakash Mishra, Bharat Singh, Ram Lakhan, and Lakshmi.

There are several others who have, directly or indirectly, contributed towards the completion of this book. They are, again in no particular order: Dr. Anil Bhardwaj (Director, Space Physics Laboratory, Vikram Sarabhai Space Centre, Indian Space Research Organization); Prof. Devang V. Khakhar (IIT Bombay); Prof. Indranil Manna (IIT Kharagpur); Prof. C.-Y. Hui, Prof. Subrata Mukherjee, Prof. Andy L. Ruina and Prof. Timothy J. Healey (T\&AM, Cornell U.); Prof. S.V.S. Murty and Prof. Debabrata Banerjee (PLANEX, Physical Research Laboratory, Ahmedabad); Prof. E. John Hinch, Prof. M. Grae Worster, Prof. Herbert E. Huppert and Prof. John E. Willis (DAMTP, U. Cambridge); Prof. V. Kumaran and Prof. Prabhu Nott (IISc. Bangalore); Prof. P. Chandramouli and Prof. S. Narayanan (IIT Madras); Prof. Sanjeev Sanghi and Prof. S Veeravalli (IIT Delhi); Dr. Alessandro Morbidelli (Observatory of Nice); Prof. Daniel J. Scheeres (U. Colorado at Boulder); Prof. Derek C. Richardson (U. Maryland, College Park); Dr. Anthony R. Dobrovolskis (Lick Observatory, UC Santa Cruz); Dr. Michael Efroimsky (US Naval Observatory); Swati Meherishi (Springer, India); Dr. Annett Buettner, Abirami Purushothaman, Sudeshna Das and other members of the Springer team.

I would also like to acknowledge the following grants that helped sustain research during the period that the book was being written: Department of Science \& Technology (DST) grant SR/S3/CE/0053/2010 (G), and grant PRL/ADM-AC/PB/2013-14 under the PLANEX program from the Physical Research Laboratory.

Finally, no goal may possibly be reached without the best wishes and prayers of one's immediate and extended family, and close friends, and I thank each and every one of them. I mention my late grandparents - Prof. Govind Chandra Pande, Major (retd.) Gokul Chandra Sharma and Smt. Sarah Sharma - who would have been the happiest to see this book in print, but desist from mentioning anyone else by name in order to save the publisher ten or so pages.

Contents

Part I Toolbox
1 Mathematical Preliminaries 3
1.1 Coordinate Systems 3
1.2 Vectors 3
1.3 Tensors. 4
1.3.1 Second-Order Tensors 4
1.3.2 Third- and Fourth-Order Tensors 9
1.4 Coordinate Transformation 10
1.5 Calculus 11
1.5.1 Gradient and Divergence. Taylor's Theorem 11
1.5.2 The Divergence Theorem 12
1.5.3 Time-Varying Fields 12
References 13
2 Continuum Mechanics 15
2.1 Introduction. 15
2.2 Motion in a Rotating Coordinate System. 16
2.2.1 Vectors and Tensors 16
2.2.2 Velocity and Acceleration 17
2.3 Kinematics 18
2.4 Simple Motions 20
2.4.1 Example 1: Pure Rotation 20
2.4.2 Example 2: General Rigid Body Motion 21
2.4.3 Example 3: Homogeneous Motion 22
2.4.4 Example 4: Affine Motion 22
2.5 Local Motion 23
2.5.1 Strain. Surface Change. Volume Change 24
2.5.2 Rate of Local Motion 25
2.5.3 Transport Theorem. Mass Balance 27
2.6 Further Analysis of Simple Motions 29
2.6.1 Example 3: Homogeneous Motion 29
2.6.2 Example 4: Affine Motion 31
2.7 Stress 32
2.8 Moments of the Stress Tensor 33
2.9 Power Balance. 36
2.10 Constitutive Laws 37
2.10.1 Rigid-Perfectly Plastic Materials 38
2.10.2 Material Parameters 44
References 48
3 Affine Dynamics 51
3.1 Introduction. 51
3.2 Governing Equations: Structural Motion 53
3.2.1 Statics 55
3.3 Moment Tensors 56
3.3.1 Gravitational-Moment Tensor. 57
3.3.2 Tidal-Moment Tensor 59
3.4 Governing Equations: Orbital Motion 62
3.4.1 Circular Tidally-Locked Orbits 64
3.5 Conservation Laws 67
3.5.1 Angular Momentum Balance 67
3.5.2 Power Balance 68
3.5.3 Total Energy of a Deformable Gravitating Ellipsoid 70
References 71
Part II Equilibrium
4 Asteroids 75
4.1 Introduction 75
4.2 Governing Equations 76
4.2.1 Average Stresses 76
4.2.2 Non-dimensionalization 78
4.2.3 Coordinate System 78
4.3 Equilibrium Landscape 79
4.3.1 Oblate Asteroids 83
4.3.2 Prolate Asteroids 84
4.3.3 Triaxial Asteroids 84
4.4 Discussion 86
4.5 Applications 88
4.5.1 Material Parameters 88
4.5.2 Near-Earth Asteroid Data 88
4.5.3 Equilibrium Shapes. 89
4.6 Summary 92
References 92
5 Satellites 95
5.1 Introduction 95
5.2 Governing Equations 96
5.2.1 Average Stress 97
5.2.2 Orbital Motion 98
5.2.3 Non-dimensionalization 98
5.2.4 Coordinate System 100
5.3 Example: Satellites of Oblate Primaries 101
5.3.1 $\quad \mathrm{B}_{P}^{(0)}$ and $\mathscr{B}_{P}^{(1)}$ 102
5.3.2 The Orbital Rate $\omega_{E}^{\prime \prime}$ 103
5.3.3 Equilibrium Landscape 103
5.4 Application: The Roche Problem 110
5.4.1 Material Parameters 111
5.4.2 Moons of Mars 112
5.4.3 Alternate Yield Criteria and Previous Work 113
5.5 Application: Satellites of the Giant Planets 116
5.5.1 Satellite Data 118
5.5.2 Locations 120
5.5.3 Discussion. 120
5.6 Summary 125
References 126
6 Binaries 129
6.1 Introduction 129
6.2 Governing Equation 130
6.2.1 Average Stresses 131
6.2.2 Orbital Motion 132
6.2.3 Non-dimensionalization 132
6.2.4 Coordinate Systems 134
6.3 Example: Prolate Binary System 135
6.3.1 $\quad \mathbf{B}^{(0)}, \mathscr{B}^{(1)}$ and $\mathbf{B}^{(2)}$ 136
6.3.2 The Orbital Rate ω_{B} 137
6.4 Equilibrium Landscape 137
6.5 Example: Fluid Binaries and the Roche Binary Approximation 145
6.6 Application: Binary Asteroids 148
6.6.1 216 Kleopatra 151
6.6.2 25143 Itokawa 154
6.6.3 624 Hektor 155
6.6.4 90 Antiope 157
6.7 Summary 158
References 158
Part III Stability
7 Granular Materials 163
7.1 Introduction. 163
7.2 Stability 164
7.2.1 Coordinate System 165
7.2.2 Energy Criterion 167
7.2.3 Compatibility and Normality 172
7.2.4 Stability at First-Order 173
7.2.5 Stability at Second-Order 175
7.2.6 Stability to Finite Perturbations 175
References 177
8 Asteroids 179
8.1 Introduction 179
8.2 Asteroid Dynamics 180
8.3 Stability 182
8.3.1 Coordinate System 182
8.3.2 Energy Criterion 185
8.4 Example: Rubble-Pile Asteroids 187
8.4.1 Compatible Perturbations 189
8.4.2 Local Stability 190
8.4.3 Stability to Finite Perturbations 193
8.5 Application: Near-Earth Asteroids 196
8.5.1 Near-Earth Asteroid Data 196
8.5.2 Local Stability 198
8.5.3 Planetary Encounters 200
8.6 Summary 204
References 205
9 Satellites 207
9.1 Introduction. 207
9.2 Satellite Dynamics 208
9.2.1 Structural Deformation 208
9.2.2 Orbital Motion 210
9.3 Stability 211
9.3.1 Coordinate System 211
9.3.2 Energy Criterion. 213
9.4 Example: Rubble-Pile Planetary Satellites 218
9.4.1 Orbital Stability 218
9.4.2 Structural Stability 221
9.4.3 Local Stability 222
9.4.4 Stability to Finite Structural Perturbations 225
9.5 Application: Planetary Satellites 228
9.5.1 Local Stability 228
9.5.2 Stability to Finite Structural Perturbations 233
9.6 Summary 235
References 236
10 Binaries 237
10.1 Introduction. 237
10.2 Binary Dynamics 238
10.2.1 Structural Motion 239
10.2.2 Orbital Motion 241
10.3 Stability 242
10.3.1 Coordinate System 243
10.3.2 Admissible Perturbations 245
10.3.3 Energy Criterion. 247
10.4 Components 250
10.5 Example: Planar Binary with Near-Spherical, Rigid Members 250
10.6 Example: Rigid Binaries 252
10.6.1 Orbital Kinetic Energy 254
10.6.2 Structural Kinetic Energy 255
10.6.3 Perturbations 256
10.6.4 Stability 256
10.7 Example: Rubble-Pile Binaries. 261
10.7.1 Orbital Kinetic Energy 261
10.7.2 Structural Kinetic Energy 263
10.7.3 Perturbations 264
10.7.4 Local Stability 265
10.7.5 Stability to Finite Structural Perturbations 270
10.8 Application: Near-Earth Binaries 272
10.8.1 216 Kleopatra 272
10.8.2 25143 Itokawa 275
10.8.3 624 Hektor 276
10.8.4 90 Antiope 276
10.8.5 Stability to Finite Structural Perturbations 277
10.9 Summary 281
References 281
Part IV Dynamics
11 Formation 285
11.1 Introduction. 285
11.2 Governing Equations 285
11.2.1 Non-dimensionalization 288
11.2.2 Components 289
11.3 Example: Prolate Asteroids 290
11.3.1 Switching States. 291
11.3.2 Numerical Algorithm 292
11.3.3 Application: Equilibrium Shapes 293
11.3.4 Discussion: Dynamics of a Homogeneously Deforming Rigid—Plastic Ellipsoid 298
11.4 Summary 305
References 305
12 Tidal Flybys 307
12.1 Introduction. 307
12.2 Setup 308
12.3 Governing Equations 310
12.4 Material Behavior 312
12.4.1 A Kinetic Theory Based Model for Loose Granular Aggregates 312
12.4.2 Transition Criterion 315
12.5 Results 316
12.5.1 Outcomes with the Tensile Criterion 317
12.5.2 The Roche Limit 319
12.5.3 Further Analysis of Flybys 321
12.5.4 Outcomes with the Mohr-Coulomb Criterion 328
12.5.5 The Effect of Rotation Direction. 329
12.5.6 Different Initial Rotation Rates 333
12.6 Summary 334
References 334
Appendix A: Rate of Change of the Gravitational Shape Tensor 337
Appendix B: The Tidal Shape Tensor 341
Appendix C: Rate of Change of the Tidal Shape Tensor 345
Index 349

Part I
Toolbox

Nilkaṇtha's $15^{\text {th }}$ century cosmological model showing the five planets in eccentric motion about a mean Sun. This sthe best that can be arrived at by naked-eye observation. This model predates the better known Tychonic system.

From Tantrasañgraha of Nilkaṇṭha Somayäji
by K. Ramasubramaniam and M. S. Sriram
[Image: Koumudi Patil, IIT Kanpur]

Chapter 1
 Mathematical Preliminaries

In this chapter, we quickly summarize necessary tensor algebra and calculus, and introduce the notation employed in this text. We assume familiarity with matrix algebra and indical notation. More information may be obtained from standard texts such as Strang (2005) or Knowles (1998).

1.1 Coordinate Systems

We will exclusively employ right-handed cartesian coordinate systems. The coordinate system of choice may be stationary, translating, or rotating, or both. We will employ calligraphic capital letters to identify coordinate systems. In this text we will typically employ three coordinate systems \mathscr{O}, \mathscr{P} and \mathscr{S} with associated unit vectors $\hat{\mathbf{e}}_{i}, \hat{\mathbf{e}}_{i}^{\prime}$ and $\hat{\mathbf{e}}_{i}^{\prime \prime}$, respectively. This will be indicated by, e.g., $\left\{\mathscr{O}, \hat{\mathbf{e}}_{i}\right\}$.

1.2 Vectors

A vector \mathbf{a} is represented as thus. The components of \mathbf{a} in \mathscr{O} will be denoted by a_{i} and in \mathscr{P} by a_{i}^{\prime}, so that we have the identities

$$
\begin{equation*}
\mathbf{a}=\left(\mathbf{a} \cdot \hat{\mathbf{e}}_{i}\right) \hat{\mathbf{e}}_{i}=a_{i} \hat{\mathbf{e}}_{i}=\left(\mathbf{a} \cdot \hat{\mathbf{e}}_{i}^{\prime}\right) \hat{\mathbf{e}}_{i}^{\prime}=a_{i}^{\prime} \hat{\mathbf{e}}_{i}^{\prime} \tag{1.1}
\end{equation*}
$$

where '. ' is the usual vector dot product. The magnitude or norm of \mathbf{a} is

$$
\begin{equation*}
|\mathbf{a}|=(\mathbf{a} \cdot \mathbf{a})^{1 / 2}=\left(a_{i} a_{i}\right)^{1 / 2}=\left(a_{i}^{\prime} a_{i}^{\prime}\right)^{1 / 2} \tag{1.2}
\end{equation*}
$$

We now collect several useful formulae:

$$
\begin{align*}
\mathbf{a} \cdot \mathbf{b} & =|\mathbf{a}||\mathbf{b}| \cos \theta=a_{i} b_{i}, \tag{1.3a}\\
\mathbf{a} \times \mathbf{b} & =-\mathbf{b} \times \mathbf{a}=|\mathbf{a}||\mathbf{b}| \sin \theta \hat{\mathbf{e}}_{c}=\varepsilon_{i j k} \hat{\mathbf{e}}_{i} a_{j} b_{k}, \tag{1.3b}\\
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) & =\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})=\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})=\varepsilon_{i j} a_{i} b_{j} c_{k} \tag{1.3c}\\
\text { and } \quad \mathbf{a} \times(\mathbf{b} \times \mathbf{c}) & =(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}=\varepsilon_{i j k} \varepsilon_{k l m} \hat{\mathbf{e}}_{i} a_{j} b_{l} c_{m} .
\end{align*}
$$

where θ is the angle between vectors \mathbf{a} and $\mathbf{b}, \hat{\mathbf{e}}_{c}$ is a unit vector normal to the plane containing \mathbf{a} and \mathbf{b}, and $\varepsilon_{i j k}$ is the alternating tensor defined by

$$
\varepsilon_{i j k}=\left\{\begin{array}{cc}
1 & \text { if } i, j \text { and } k \text { are an even permutation } \tag{1.4}\\
-1 & \text { if } i, j \text { and } k \text { are an odd permutation } \\
0 & \text { otherwise }
\end{array}\right.
$$

cf. Sect. 1.3.2.
We will typically limit ourselves to three-dimensional vectors.

1.3 Tensors

A first-order tensor is simply a vector. A second-order tensor is a linear transformation that maps a vector to another vector. Third- and fourth-order tensors relating lowerorder tensors to other lower-order tensors may be similarly defined.

1.3.1 Second-Order Tensors

A second-order tensor A is probed by its action ' . ' on vectors. We employ the same symbol as for the dot-product of vectors because of similarities between the two operations. We define the resultant \mathbf{b} of A's operation, specifically a right-operation, on a by

$$
\mathbf{b}=\mathrm{A} \cdot \mathbf{a} .
$$

Similarly a left-operation may be defined. As with vectors, we will typically limit ourselves to second-order tensors that operate on and result in three-dimensional vectors.

The addition $A+B$ and multiplication $A \cdot B$ of two tensors A and B result in tensors C and D, respectively, that are defined in terms of how they operate on some vector \mathbf{a}, i.e.,

$$
\begin{equation*}
(\mathrm{A}+\mathrm{B}) \cdot \mathbf{a}=\mathrm{C} \cdot \mathbf{a}:=\mathrm{A} \cdot \mathbf{a}+\mathrm{B} \cdot \mathbf{a} \tag{1.5a}
\end{equation*}
$$

and

$$
\begin{equation*}
(\mathrm{A} \cdot \mathrm{~B}) \cdot \mathbf{a}=\mathrm{D} \cdot \mathbf{a}:=\mathrm{A} \cdot(\mathrm{~B} \cdot \mathbf{a}) \tag{1.5b}
\end{equation*}
$$

It is understood that the two tensors A and B relate vectors belonging to the same set.
To better understand tensors, it is useful to generalize the concept of a unit vector to a tensorial basis. Such a generalization is furnished by the tensor product $\mathbf{a} \otimes \mathbf{b}$ of two vectors \mathbf{a} and \mathbf{b}. The entity $\mathbf{a} \otimes \mathbf{b}$ is a second-order tensor that can act on another vector \mathbf{c} in two different ways - the left- and right- operations - to yield another vector:

$$
\begin{equation*}
(\mathbf{a} \otimes \mathbf{b}) \cdot \mathbf{c}=(\mathbf{c} \cdot \mathbf{b}) \mathbf{a} \text { and } \mathbf{c} \cdot(\mathbf{a} \otimes \mathbf{b})=(\mathbf{c} \cdot \mathbf{a}) \mathbf{b}, \tag{1.6}
\end{equation*}
$$

where the ' \because ' on the left-hand sides denotes a tensor operation, and the usual vector dot product on the right-hand sides. Contrasting the computation

$$
\begin{equation*}
\mathbf{a} \otimes \mathbf{b}=a_{i} \hat{\mathbf{e}}_{i} \otimes b_{j} \hat{\mathbf{e}}_{j}=\left(a_{i} b_{j}\right) \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \tag{1.7}
\end{equation*}
$$

with (1.1), suggests that a tensorial basis may be constructed by taking appropriate order tensor products of the unit vectors. We note that the above represents the linear combination of $\hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j}$. Thus, a second-order tensorial basis in the coordinate system \mathscr{O} is given by the nine unit tensors $\hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j}$. A second-order tensor A may then be written as

$$
\begin{equation*}
\mathrm{A}=A_{i j} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \tag{1.8}
\end{equation*}
$$

in terms of A's components $A_{i j}$ in \mathscr{O}. These components, obtained by appealing to (1.6), are given by the equations

$$
\begin{equation*}
A_{i j}=\hat{\mathbf{e}}_{i} \cdot \mathrm{~A} \cdot \hat{\mathbf{e}}_{j}, \tag{1.9}
\end{equation*}
$$

that are reminiscent of analogous ones for vector components; see (1.1). We will refer to the nine $A_{i j}$'s as the "matrix of A in $\left\{\mathscr{O}, \hat{\mathbf{e}}_{i}\right\}$ " denoted by [A]. In another coordinate system, say \mathscr{P}, the tensorial basis is given by $\hat{\mathbf{e}}_{i}^{\prime} \otimes \hat{\mathbf{e}}_{j}^{\prime}$, while $A_{i j}^{\prime}=\hat{\mathbf{e}}_{i}^{\prime} \cdot \mathrm{A} \cdot \hat{\mathbf{e}}_{j}^{\prime}$ constitute the "matrix of A in $\left\{\mathscr{P}, \hat{\mathbf{e}}_{i}^{\prime}\right\}$ " denoted by $[\mathrm{A}]^{\prime}$. A second-order tensor's interactions with vectors and other second-order tensors may be obtained by repeated (if required) application of (1.6). These operations are summarized below:

$$
\begin{align*}
\mathrm{A} \cdot \mathbf{a} & =A_{i j} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \cdot a_{m} \hat{\mathbf{e}}_{m}=A_{i j} a_{j} \hat{\mathbf{e}}_{i}, \tag{1.10a}\\
\mathbf{a} \cdot \mathrm{~A} & =a_{m} \hat{\mathbf{e}}_{m} \cdot A_{i j} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j}=a_{i} A_{i j} \hat{\mathbf{e}}_{j}, \tag{1.10b}\\
\mathrm{~A} \cdot \mathrm{~B} & =A_{i j} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \cdot B_{m n} \hat{\mathbf{e}}_{m} \otimes \hat{\mathbf{e}}_{n}=A_{i j} B_{j n} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{n} \tag{1.10c}\\
\text { and } \quad \mathrm{A}: \mathrm{B} & =A_{i j} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j}: B_{m n} \hat{\mathbf{e}}_{m} \otimes \hat{\mathbf{e}}_{n}=A_{i j} \hat{\mathbf{e}}_{i} \cdot B_{j n} \hat{\mathbf{e}}_{n}=A_{i j} B_{j i}, \tag{1.10d}
\end{align*}
$$

where the first two operations produce vectors, the next another second-order tensor, and the third a scalar. The double-dot product ' \because ', as its form suggests, denotes a sequential application of dot products, as illustrated above. The tensor A's actions on higher-order tensors may be analogously defined. When there is no confusion, second-order tensors are referred to simply as tensors.

The transpose A^{T} of a tensor A is defined by the following formula

$$
\begin{equation*}
(\mathrm{A} \cdot \mathbf{a}) \cdot \mathbf{b}=\mathbf{a} \cdot\left(\mathrm{A}^{T} \cdot \mathbf{b}\right), \tag{1.11}
\end{equation*}
$$

for any two vectors \mathbf{a} and \mathbf{b}. The above results in $\left[\mathrm{A}^{T}\right]_{i j}=A_{j i}=[\mathrm{A}]_{j i}$. From the above definition of a tensor's transpose the following identities are easily proved:

$$
\begin{equation*}
(\mathrm{A}+\mathrm{B})^{T}=\mathrm{A}^{T}+\mathrm{B}^{T} \text { and }(\mathrm{A} \cdot \mathrm{~B})^{T}=\mathrm{B}^{T} \cdot \mathrm{~A}^{T} . \tag{1.12}
\end{equation*}
$$

The trace of a tensor A with components $A_{i j}$ is obtained by contracting the indices i and j :

$$
\begin{equation*}
\operatorname{tr} \mathrm{A}=A_{i i}=A_{11}+A_{22}+A_{33} . \tag{1.13}
\end{equation*}
$$

We see below that the trace of a tensor is independent of the coordinate system in which it is computed. The following identities regarding transposes are easily proved:

$$
\begin{align*}
\operatorname{tr} \mathrm{A} & =\operatorname{tr} \mathrm{A}^{T} \Rightarrow \operatorname{tr} \prod_{i=1}^{n} \mathrm{~A}_{i}=\operatorname{tr}\left(\prod_{i=n}^{1} \mathrm{~A}_{i}^{T}\right) \tag{1.14a}\\
\operatorname{tr} \prod_{i=1}^{n} \mathrm{~A}_{i} & =\operatorname{tr}\left(\prod_{i=n-k}^{n} \mathrm{~A}_{i} \cdot \prod_{i=1}^{n-k-1} \mathrm{~A}_{i}\right), 0 \leqslant k \leqslant n-1, \text { and } \prod_{i=1}^{0} \mathrm{~A}_{i}=1,(1 \tag{1.14b}
\end{align*}
$$

where $\prod_{i=1}^{n} \mathrm{~A}_{i}=\mathrm{A}_{1} \cdot \mathrm{~A}_{2} \cdots \mathrm{~A}_{n}$.
A tensor is said to be symmetric if $\mathrm{A}=\mathrm{A}^{T}$, and anti-/skew-symmetric if $\mathrm{A}=-\mathrm{A}^{T}$. Given an arbitrary tensor A we define its symmetric part

$$
\begin{equation*}
\operatorname{sym} A=\frac{1}{2}\left(A+A^{T}\right), \tag{1.15}
\end{equation*}
$$

and anti-symmetric part

$$
\begin{equation*}
\operatorname{asym} \mathrm{A}=\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{T}\right), \tag{1.16}
\end{equation*}
$$

so that any tensor A may be written as a sum of a symmetric and anti-symmetric tensor

$$
\begin{equation*}
A=\operatorname{sym} A+\operatorname{asym} A . \tag{1.17}
\end{equation*}
$$

An anti-symmetric tensor has at most three independent components in any coordinate system. Thus, for any anti-symmetric tensor W , it is possible to associate an axial vector denoted by \mathbf{w} with the property that for all vectors \mathbf{b},

$$
\begin{equation*}
W \cdot \mathbf{b}=\mathbf{w} \times \mathbf{b} . \tag{1.18}
\end{equation*}
$$

The operations of constructing anti-symmetric tensors from vectors and extracting axial vectors from anti-symmetric tensors are denoted by $\mathrm{sk} \mathbf{w}(=\mathrm{W})$ and ax $\mathrm{W}(=\mathbf{w})$, respectively. The relationship between \mathbf{w} and W may be expressed in indical notation employing the alternating tensor of (1.4):

$$
\begin{equation*}
\operatorname{ax} \mathrm{W}=\mathbf{w}=-\frac{1}{2} \varepsilon_{i j k} W_{j k} \hat{\mathbf{k}}_{i} \text { and sk } \mathbf{w}=\mathrm{W}=-\varepsilon_{i j k} w_{i} \hat{\mathbf{e}}_{j} \otimes \hat{\mathbf{e}}_{k} \tag{1.19}
\end{equation*}
$$

Employing (1.3b), it is straightforward to check that the above prescription for ax W and sk w will satisfy (1.18).

For most tensors, and almost all tensors occurring in this book, it is possible to find three unit vectors that are simply scaled under that tensor's operation, i.e., given A, there (almost always) exist three unit vectors $\hat{\mathbf{v}}_{i}$ and correspondingly three scalars λ_{i}, such that

$$
\begin{equation*}
\mathrm{A} \cdot \hat{\mathbf{v}}_{i}=\lambda_{i} \hat{\mathbf{v}}_{i} \quad \text { (no sum). } \tag{1.20}
\end{equation*}
$$

These special vectors $\hat{\mathbf{v}}_{i}$ are the eigenvectors of A, and the corresponding scalings λ_{i} are A's eigenvalues. In the coordinate system described by the three eigenvectors, the tensor's matrix is diagonalized with the tensor's eigenvalues as the diagonal entries. This simple diagonal nature makes employing the eigen-coordinate system very tempting for computation. Unfortunately, there is no guarantee that the eigenvector triad are mutually orthogonal, so that the coordinate system they describe may not be cartesian. However, if the tensor is symmetric, it is always possible to diagonalize it, and, moreover, the eigenvectors are orthogonal, so that the coordinate system they describe is frequently a convenient operational choice. Thus, given a symmetric tensor S , it is possible to find three eigenvectors $\hat{\mathbf{v}}_{i}$ and corresponding eigenvalues λ_{i}, so that S is simply

$$
\begin{equation*}
\mathrm{S}=\sum_{i=1}^{3} \lambda_{i} \hat{\mathbf{v}}_{i} \otimes \hat{\mathbf{v}}_{i} \tag{1.21}
\end{equation*}
$$

The operation of a symmetric S therefore corresponds to a linear scaling along three mutually orthogonal eigen-directions.

If in case all the eigenvalues of a symmetric tensor are non-zero and positive, the symmetric tensor is said to be positive definite. Finally, it is important to mention that for any tensor the number of eigenvalues equals the dimension of the underlying space, whether or not it is diagonalizable. For example, in three dimensions, every tensor has three eigenvalues even if it doesn't have three eigenvectors. These eigenvalues are either all real, or a mixture of real and complex conjugate pairs.

While the components of a tensor depend on the coordinate system, its eigenvalues do not. Therefore, functions of these eigenvalues, called principal invariants, also remain unaffected by the choice of the coordinate system; the number of these invariants equaling the dimension of the underlying space. In three dimensions, a second-order tensor A with eigenvalues λ_{i} has the three invariants

$$
\begin{align*}
\mathrm{I}_{\mathrm{A}} & =\sum_{i=1}^{3} \lambda_{i}=A_{i i}=\operatorname{tr} \mathrm{A}, \tag{1.22a}\\
\mathrm{II}_{\mathrm{A}} & =\sum_{i \neq j} \lambda_{i} \lambda_{j}=\frac{1}{2}\left(\mathrm{I}_{\mathrm{A}}^{2}-\mathrm{I}_{\mathrm{A}^{2}}\right) \tag{1.22b}\\
\mathrm{III}_{\mathrm{A}} & ==\prod_{i=1}^{3} \lambda_{i}=\operatorname{det} \mathrm{A} \tag{1.22c}
\end{align*}
$$

and
where the last invariant represents the determinant of A that may also be computed via standard formulae after finding A's matrix in any coordinate system. Finally, as for vectors, it is possible to measure the magnitude of a tensor, by employing the double-dot product ' : ' introduced in (1.10). The norm of a tensor A is defined by

$$
\begin{equation*}
|\mathrm{A}|:=\sqrt{\mathrm{A}: \mathrm{A}^{T}}=\sqrt{\mathrm{I}_{\mathrm{A}^{2}}}=\sqrt{A_{i j} A_{i j}} . \tag{1.23}
\end{equation*}
$$

Frequently, and again, for all tensors considered in this book, it is possible to define associated inverse tensors, i.e., given A taking \mathbf{a} to \mathbf{b}, the inverse tensor A^{-1} brings \mathbf{b} back to \mathbf{a}. It is easy enough to see that a tensor and its inverse share the same eigenvectors, but inverse eigenvalues. Thus, if A has a zero eigenvalue, its inverse does not exist. The following identities regarding inverses are easily verified:
and

$$
\begin{align*}
A \cdot A^{-1} & =A^{-1} \cdot A=1, \tag{1.24a}\\
(A \cdot B)^{-1} & =B^{-1} \cdot A^{-1}, \tag{1.24b}\\
\operatorname{det} A^{-1} & =(\operatorname{det} A)^{-1} \tag{1.24c}\\
\left(A^{T}\right)^{-1} & =\left(A^{-1}\right)^{T}=A^{-T} . \tag{1.24d}
\end{align*}
$$

An important class of tensors that will occur frequently in the text is the orthogonal tensor Q that has the property that given any vector a,

$$
\begin{equation*}
|Q \cdot \mathbf{a}|=|\mathbf{a}|, \tag{1.25}
\end{equation*}
$$

i.e., Q preserves a vector's length. From this the following properties follow:

$$
\begin{equation*}
\mathrm{Q}^{-1}=\mathrm{Q}^{T} \quad \text { and } \quad \operatorname{det} \mathrm{Q}= \pm 1 \tag{1.26}
\end{equation*}
$$

In applications to follow, all orthogonal tensors will have determinant one. Such proper orthogonal tensors are called rotation tensors. Physically, as its name suggests, a rotation tensor represents rotation about the origin. It may be shown that of a rotation tensor's three eigenvalues, two are complex conjugates of norm one and the third is unity; see e.g., Knowles (1998, p. 51). The eigenvector corresponding to the unitary eigenvalue provides the axis of rotation. The amount of rotation is provided by the argument of the complex eigenvalue.

Symmetric and rotation tensors come together in the polar decomposition theorem (Knowles 1998, p. 57), which states that for any tensor A with $\operatorname{det} \mathrm{A}>0$, it is possible to find a rotation tensor R and positive definite tensors U and V , so that

$$
\begin{equation*}
A=R \cdot U=V \cdot R \tag{1.27}
\end{equation*}
$$

uniquely. Thus, $\mathrm{U}=\mathrm{R}^{T} \cdot \mathrm{~V} \cdot \mathrm{R}$, and U and V share the same eigenvalues, while their eigenvectors are related through R. We recall that transformation via a symmetric tensor's operation corresponds to linearly and independently scaling three mutually perpendicular directions. Any linear transformation may thus be viewed as a rotation followed (preceded) by three scalings along the orthogonal eigen-coordinate system of $V(U)$.

We have already mentioned the tensor product of two vectors in (1.7). Amongst other things, the tensor product helps in "tensorizing" the vector operations of taking dot- and cross- products, viz.,

$$
\begin{align*}
\mathbf{a} \cdot \mathbf{b} & =\operatorname{tr} \mathbf{a} \otimes \mathbf{b}=\mathbf{a} \otimes \mathbf{b}: 1, \tag{1.28a}\\
\mathbf{a} \times \mathbf{b} & =-2 \mathrm{ax} \operatorname{sk} \mathbf{a} \otimes \mathbf{b} . \tag{1.28b}
\end{align*}
$$

and
Some additional identities that are easily proved, and will often be used are

$$
\begin{align*}
\mathbf{a} \otimes A \cdot \mathbf{b} & =\mathbf{a} \otimes \mathbf{b} \cdot A^{T}, \tag{1.29a}\\
\mathbf{a} \cdot \mathrm{~A} \cdot \mathbf{b} & =\mathbf{a} \otimes \mathbf{b}: A^{T}, \tag{1.29b}\\
\operatorname{sk} A: B & =\operatorname{sk} A: \operatorname{sym} B+\operatorname{sk} A: \operatorname{sk} B=\operatorname{ax} \operatorname{sk} A \cdot \operatorname{ax} \operatorname{sk} B, \tag{1.29c}\\
A \cdot B: C & =C \cdot A: B=B \cdot C: A \tag{1.29d}
\end{align*}
$$

and $S: W=\operatorname{tr}(S \cdot W)=0$,
where S and W are, respectively, symmetric and anti-symmetric tensors.

1.3.2 Third- and Fourth-Order Tensors

First, consider third-order tensors. In terms of the third-order tensorial bases, $\hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \otimes \hat{\mathbf{e}}_{k}$ in $\left\{\mathscr{O}, \hat{\mathbf{e}}_{i}\right\}$, a third-order tensor is defined as

$$
\begin{equation*}
\mathscr{A}=A_{i j k} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \otimes \hat{\mathbf{e}}_{k}, \tag{1.30}
\end{equation*}
$$

so that $A_{i j k}$ are \mathscr{A} 's components in this coordinate system. The actions of \mathscr{A} on vectors and other tensors of various orders are defined in a manner similar to that of a secondorder tensor (1.10), e.g.,

$$
\begin{align*}
\mathscr{A} \cdot \mathbf{a} & =A_{i j} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \otimes \hat{\mathbf{e}}_{k} \cdot a_{m} \hat{\mathbf{e}}_{m}=A_{i j k} a_{k} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \tag{1.31a}\\
\mathbf{a} \cdot \mathscr{A} & =a_{m} \hat{\mathbf{e}}_{m} \cdot A_{i j k} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \otimes \hat{\mathbf{e}}_{k}=a_{i} A_{i j k} \hat{\mathbf{e}}_{j} \otimes \hat{\mathbf{e}}_{k} \tag{1.31b}
\end{align*}
$$

and
An important example of a third-order tensor is the alternating tensor that has already been defined by (1.4).

Fourth-order tensors are formed in a manner analogous to third-order tensors,

$$
\begin{equation*}
\mathbf{A}=A_{i j k l} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \otimes \hat{\mathbf{e}}_{k} \otimes \hat{\mathbf{e}}_{l}, \tag{1.32}
\end{equation*}
$$

and their operations on vectors and tensors of various orders may be developed by following (1.10) and (1.31), for example,

$$
\begin{equation*}
\mathbf{A}: \mathrm{B}=A_{i j k l} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \otimes \hat{\mathbf{e}}_{k} \otimes \hat{\mathbf{e}}_{l}: B_{m n} \hat{\mathbf{e}}_{m} \otimes \hat{\mathbf{e}}_{n}=A_{i j k l} B_{l k} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} . \tag{1.33}
\end{equation*}
$$

1.4 Coordinate Transformation

We will need to find the components of vectors and second-order tensors in one coordinate system, say $\left\{\mathscr{O}, \hat{\mathbf{e}}_{i}\right\}$, given its matrix in the other, say $\left\{\mathscr{P}, \hat{\mathbf{e}}_{i}^{\prime}\right\}$. This may be done by expressing the unit vectors of \mathscr{P} in terms of those of \mathscr{O} as,

$$
\hat{\mathbf{e}}_{j}^{\prime}=\left(\hat{\mathbf{e}}_{i} \cdot \hat{\mathbf{e}}_{j}^{\prime}\right) \hat{\mathbf{e}}_{i},
$$

and substituting this relationship into (1.1) and (1.9). It may be proved that the tensor

$$
\begin{equation*}
\mathrm{R}=\left(\hat{\mathbf{e}}_{i} \cdot \hat{\mathbf{e}}_{j}^{\prime}\right) \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \tag{1.34}
\end{equation*}
$$

is, in fact, a rotation tensor with the property that

$$
\begin{equation*}
\hat{\mathbf{e}}_{i}^{\prime}=\mathrm{R} \cdot \hat{\mathbf{e}}_{i} . \tag{1.35}
\end{equation*}
$$

This represents the geometrically intuitive fact that, because both \mathscr{O} and \mathscr{P} are righthanded Cartesian coordinate systems, it is possible to obtain one from the other by a rotation. The components of R are

$$
\begin{equation*}
R_{i j}=\hat{\mathbf{e}}_{i} \cdot \hat{\mathbf{e}}_{j}^{\prime} . \tag{1.36}
\end{equation*}
$$

Substituting the previous two equations into (1.1) and (1.9), we obtain the coordinate transformation rules

$$
\begin{equation*}
[\mathbf{a}]=[\mathrm{R}][\mathbf{a}]^{\prime}, \quad \text { so that } a_{i}=R_{i j} a_{j}^{\prime} \tag{1.37a}
\end{equation*}
$$

and

$$
\begin{equation*}
[\mathrm{A}]=[\mathrm{R}][\mathrm{A}]^{\prime}[\mathrm{R}]^{T}, \quad \text { so that } A_{i j}=R_{i k} A_{k l}^{\prime} R_{j l}, \tag{1.37b}
\end{equation*}
$$

for vector and second-order tensor components, respectively. As a special case, when $A=R$, we find that

$$
\begin{equation*}
[\mathrm{R}]=[\mathrm{R}]^{\prime}, \quad \text { so that } \quad R_{i j}=R_{i j}^{\prime} \tag{1.38}
\end{equation*}
$$

i.e., the rotation tensor R has the same components in the two frames that it relates.

Higher-order tensor transformation formulae may be developed similarly when required.

1.5 Calculus

1.5.1 Gradient and Divergence. Taylor's Theorem

Let $\Phi(\mathbf{x})$ be a n th-order tensor field defined over three-dimensional space with \mathbf{x} being a position vector. The gradient of Φ is defined by

$$
\begin{equation*}
\nabla \Phi=\frac{\partial \Phi(\mathbf{x})}{\partial \mathbf{x}}=\Phi,_{i} \hat{\mathbf{e}}_{i} \tag{1.39}
\end{equation*}
$$

where the comma denotes differentiation and

$$
\nabla(\cdot)=\frac{\partial(\cdot)}{\partial \mathbf{x}}=\frac{\partial(\cdot)}{\partial x_{i}} \hat{\mathbf{e}}_{i}=\frac{\partial(\cdot)}{\partial x_{1}} \hat{\mathbf{e}}_{1}+\frac{\partial(\cdot)}{\partial x_{2}} \hat{\mathbf{e}}_{2}+\frac{\partial(\cdot)}{\partial x_{3}} \hat{\mathbf{e}}_{3}
$$

is the gradient operator. In particular, we have the formulae

$$
\begin{equation*}
\nabla a=\frac{\partial a}{\partial x_{i}} \hat{\mathbf{e}}_{i}, \quad \nabla \mathbf{b}=\frac{\partial b_{i}}{\partial x_{j}} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \quad \text { and } \quad \nabla C=\frac{\partial C_{i j}}{\partial x_{k}} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \otimes \hat{\mathbf{e}}_{k} \tag{1.40}
\end{equation*}
$$

where a, \mathbf{b} and \mathbf{C} are, respectively, scalar, vector and tensor fields. Contracting any two free indices of the gradient of Φ, we obtain its divergence denoted by $\nabla \cdot \Phi$; this, therefore, is applicable only when Φ is not a scalar field. We obtain the formulae

$$
\begin{equation*}
\nabla \cdot \mathbf{b}=\frac{\partial b_{i}}{\partial x_{i}}=b_{i, i} \quad \text { and } \quad \nabla \cdot \mathrm{C}=\frac{\partial C_{i j}}{\partial x_{j}} \hat{\mathbf{e}}_{i}=C_{i j}, j \hat{\mathbf{e}}_{i} . \tag{1.41}
\end{equation*}
$$

Note that in the last equation we could have alternatively defined $\nabla \cdot \mathrm{C}$ as $C_{i j, i} \hat{\mathbf{e}}_{j}$. The gradient of a field identifies the direction of steepest change through its eigenvectors, while its divergence is an estimate of the field's local flux.

A field $\Phi(\mathbf{x})$ may be expanded in a Taylor's series about a location \mathbf{x}_{0} provided some smoothness conditions are satisfied; see, e.g., Sokolnikoff (1980, p. 311). The expansion may be expressed as

