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Foreword

This book was born when advances in astronomical techniques permitted, for
example, the shapes and spins of asteroids to be determined using radar (see, e.g.,
Ostro et al. 2002), just as interest in the mechanics and physics of granular materials
was being renewed in the mid-1980s. The much-publicized tidal fragmentation of
comet Shoemaker–Levy in 1994 as it passed Jupiter stimulated the development of
numerical simulations. Asteroids, by their sheer number and variety, provide a
natural laboratory in which the translational and rotational motion of deformable
solid bodies can be investigated. Relatively high-resolution dynamic imaging made
it clear that at least some and, perhaps, many near-Earth asteroids were not
monolithic rocks, but likely consisted of discrete solid elements held together by
their mutual gravity. The advances in the mechanics of granular materials provided
a means to treat the collisional interactions between the elements that transferred
momentum and dissipated the energy associated with them. The advances in both
subjects made it possible for the two of us to develop our common interest in their
dynamics.

Ishan Sharma, a gifted graduate student in the Department of Theoretical and
Applied Mechanics at Cornell University, was the intellectual agent of this
development. He shared our interest and enthusiasm for the subject and we bene-
fited from his intelligence and energy. Starting with his doctoral work with us,
Sharma restricted attention to affine deformations of extended bodies and employed
a volume-averaged approach to determine their equations of motion. In doing this,
he followed Chandrasekhar (1969), who introduced this technique in his famous
work on the equilibrium shapes of spinning fluid ellipsoids. In a series of research
papers in Icarus initially with us and, later, independently, Sharma also adopted and
made more transparent elements of the dynamics of deforming bodies introduced
by Cohen and Muncaster (1988). Sharma (2004) first determined the equilibrium
and failure of a spinning asteroid and placed existing results by Holsapple (2001) in
a dynamical context. Sharma also phrased and numerically solved the equations
that describe planetary fly-bys of asteroids of a less tightly packed granular
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aggregate in which the elements interacted through collisions, so as to obtain results
similar to those of the molecular dynamics simulations of Richardson et al.
(1998) and others.

Since completing his dissertation (2004), Sharma has extended the results on to
the equilibrium and failure of an exhaustive list of asteroids and satellites. He has
also made important steps in characterizing the stability of their equilibrium states.
Finally, he has completed a refined analysis of planetary fly-bys. These elements are
collected in this volume. However, the resulting volume is much more than this. It
is, also, a compact introduction to continuum mechanics of deformable bodies and,
further, a rather complete treatment of the dynamics of self-gravitating deformable
bodies, when they are treated, in first approximation, as having uniform material
properties and deforming homogeneously. This makes the volume, on the one hand,
a valuable general introduction to the dynamics of deformable bodies and, on the
other hand, a detailed treatment of the multitude of objects in the solar system for
which dynamics is likely to be coupled with deformation. We are proud to have
been involved in the beginning of the scholarly activity that led to this manuscript.
We believe it to be a worthy successor to the classic work of Chandrasekhar (1969).

Ithaca, NY, USA Jim Jenkins
September 2015 Joe Burns
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Preface

Starting about twenty years ago, astronomers gradually realized that many of the
small bodies in the solar system (asteroids, comets and satellites) are rubble piles,
i.e., granular aggregates. The first unequivocal evidence for this came when the
comet Shoemaker–Levy nine broke apart, apparently by tides, into dozens of pieces
as it passed close to Jupiter. Numerical simulations of self-gravitating granular
aggregates were developed and they exhibited such fragmentation during close
planetary encounters. Around the same time, researchers recognized that very few
asteroids were found with spin periods of less than a few hours, and that this could
be understood simply as the consequence of the fragility of fast-spinning bodies to
centrifugal breakup. Furthermore, other asteroids and a few close-on satellites of the
giant planets were observed in radar “images” and spacecraft images, respectively,
to have smooth elongated shapes, suggesting rotational and tidal distortion.

Around the same time, the masses of dozens of asteroids began to be measured,
usually by observing the orbital periods of binary asteroids, or by mutual gravita-
tional perturbations of distant asteroids on Mars or another asteroid, or by space-
craft flybys. For those asteroids, comets and a few satellites that had known sizes,
their densities were immediately available. More often than not, these measured
densities were remarkably low, sometimes less than 0.5 g/cm3 for comets and small
satellites, or often 1–2 g/cm3 for asteroids and satellites. Because the likely con-
stituents of these bodies (water, ice and rock) have greater densities, the low bulk
densities required significant pore space and, accordingly, implied granular
aggregates held together primarily by self-gravity, rather than monolithic rocks.
Such a loose character is not unexpected for objects that accreted gravitationally in
a cold environment.

This book investigates the equilibrium, stability and dynamics of these rubble
solar-system bodies. It is clear that any careful investigation will need to consider
these bodies as objects with finite extent, and not as mere point masses, and as a
granular medium, distinct in its constitutive response from solids and fluids. This
book pays particular attention to these aspects.
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In this book, we develop a framework for analyzing the dynamics of rotating
complex materials; this is predicated on the systematic approximations of the
system’s kinematics. We apply the method to investigate rotating and
self-gravitating granular aggregates in space. Here, we limit the kinematic
approximation to, at most, an affine deformation, so that the most general shape that
an object can take is that of an ellipsoid. Necessary governing equations may be
obtained by a variety of methods, but we prefer to follow the virial method, or
volume-averaging, employed by Chandrasekhar (1969). We do this primarily for
historical continuity and for greater general familiarity with that method, but also
because the current research was motivated to a great extent by Chandrasekhar’s
treatise that explored similar questions in the context of inviscid fluids.

The constitutive model that we employ depends on the situation. For example,
when considering equilibrium, or its stability, the granular aggregate is modeled as
a rigid-perfectly-plastic material obeying a pressure-dependent yield criterion, e.g.,
the Drucker–Prager yield criterion, and deforming post-yield as per an appropriate
flow rule. However, when studying the disruptive effects of a tidal flyby, the
aggregate is taken to be an ensemble of dissipative spheres whose macroscopic
behavior is determined through an application of kinetic theory. The current
framework has the advantage that it allows us to improve the kinematic approxi-
mation in a structured manner as well as to explore a wide variety of constitutive
laws.

The book is divided into four parts. The first part introduces the necessary
mathematics and continuum mechanics, as well as, describes affine dynamics that
forms the basis of all subsequent development. Part II investigates the equilibrium
of rubble asteroids, satellites, and binaries, and applies it to known or suspected
cases. Equilibrium, here, refers to possible ellipsoidal shapes that a rubble asteroid
can take, and to both shape and orbital separation for granular satellites and
binaries. In Part III, we develop a linear stability criterion specifically for rotating
granular aggregates, which is then applied to the equilibria obtained in Part I.
Finally, in Part IV we provide a pair of examples of dynamical evolution. These
relate to the disruption and possible re-agglomeration of rubble piles during tidal
flybys.

Finally, I confess to some nervousness. It is dangerous to write a book that may
be viewed by some as a would-be successor to Chandrasekhar’s classic treatise.
Followers in the footsteps of giants risk sinking or getting lost. But then, there are
worse ways to go.

Kanpur, India Ishan Sharma
September 2015
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Chapter 1
Mathematical Preliminaries

In this chapter, we quickly summarize necessary tensor algebra and calculus, and
introduce the notation employed in this text. We assume familiarity with matrix
algebra and indical notation. More information may be obtained from standard texts
such as Strang (2005) or Knowles (1998).

1.1 Coordinate Systems

We will exclusively employ right-handed cartesian coordinate systems. The coordi-
nate system of choice may be stationary, translating, or rotating, or both. We will
employ calligraphic capital letters to identify coordinate systems. In this text we will
typically employ three coordinate systemsO,P andS with associated unit vectors
êi, ê

′
i and ê′′

i , respectively. This will be indicated by, e.g.,
{
O, êi

}
.

1.2 Vectors

A vector a is represented as thus. The components of a in O will be denoted by ai
and inP by a′

i, so that we have the identities

a = (a · êi)êi = aiêi = (a · ê′
i)ê

′
i = a′

iê
′
i, (1.1)

where ‘ · ’ is the usual vector dot product. The magnitude or norm of a is

|a| = (a · a)1/2 = (aiai)
1/2 = (

a′
ia

′
i

)1/2
. (1.2)
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We now collect several useful formulae:

a · b = |a||b| cos θ = aibi, (1.3a)

a × b = −b × a = |a||b| sin θ êc = εijk êiajbk, (1.3b)

a · (b × c) = b · (c × a) = c · (a × b) = εijkaibjck (1.3c)

and a × (b × c) = (a · c)b − (a · b)c = εijkεklmêiajblcm. (1.3d)

where θ is the angle between vectors a and b, êc is a unit vector normal to the plane
containing a and b, and εijk is the alternating tensor defined by

εijk =
⎧
⎨

⎩

1 if i, j and k are an even permutation
−1 if i, j and k are an odd permutation
0 otherwise;

(1.4)

cf. Sect. 1.3.2.
We will typically limit ourselves to three-dimensional vectors.

1.3 Tensors

Afirst-order tensor is simply a vector.A second-order tensor is a linear transformation
that maps a vector to another vector. Third- and fourth-order tensors relating lower-
order tensors to other lower-order tensors may be similarly defined.

1.3.1 Second-Order Tensors

A second-order tensor A is probed by its action ‘ · ’ on vectors. We employ the same
symbol as for the dot-product of vectors because of similarities between the two
operations. We define the resultant b of A’s operation, specifically a right-operation,
on a by

b = A · a.

Similarly a left-operation may be defined. As with vectors, we will typically limit
ourselves to second-order tensors that operate on and result in three-dimensional
vectors.

The addition A + B and multiplication A · B of two tensors A and B result in
tensors C and D, respectively, that are defined in terms of how they operate on some
vector a, i.e.,

(A + B) · a = C · a := A · a + B · a (1.5a)

and (A · B) · a = D · a := A · (B · a). (1.5b)
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It is understood that the two tensors A and B relate vectors belonging to the same set.
To better understand tensors, it is useful to generalize the concept of a unit vec-

tor to a tensorial basis. Such a generalization is furnished by the tensor product
a ⊗ b of two vectors a and b. The entity a ⊗ b is a second-order tensor that can act
on another vector c in two different ways – the left- and right- operations – to yield
another vector:

(a ⊗ b) · c = (c · b)a and c · (a ⊗ b) = (c · a)b , (1.6)

where the ‘·’ on the left-hand sides denotes a tensor operation, and the usual vector
dot product on the right-hand sides. Contrasting the computation

a ⊗ b = aiêi ⊗ bj êj = (aibj)êi ⊗ êj (1.7)

with (1.1), suggests that a tensorial basis may be constructed by taking appropriate
order tensor products of the unit vectors. We note that the above represents the linear
combination of êi ⊗ êj. Thus, a second-order tensorial basis in the coordinate system
O is given by the nine unit tensors êi ⊗ êj. A second-order tensor A may then be
written as

A = Aij êi ⊗ êj, (1.8)

in terms of A’s components Aij in O . These components, obtained by appealing to
(1.6), are given by the equations

Aij = êi · A · êj, (1.9)

that are reminiscent of analogous ones for vector components; see (1.1).Wewill refer
to the nine Aij’s as the “matrix of A in

{
O, êi

}
” denoted by [A]. In another coordinate

system, sayP , the tensorial basis is given by ê′
i ⊗ ê′

j, whileA
′
ij = ê′

i · A · ê′
j constitute

the “matrix of A in
{
P, ê′

i

}
” denoted by [A]′. A second-order tensor’s interactions

with vectors and other second-order tensorsmay be obtained by repeated (if required)
application of (1.6). These operations are summarized below:

A · a = Aij êi ⊗ êj · amêm = Aijaj êi, (1.10a)

a · A = amêm · Aij êi ⊗ êj = aiAij êj, (1.10b)

A · B = Aij êi ⊗ êj · Bmnêm ⊗ ên = AijBjnêi ⊗ ên (1.10c)

and A : B = Aij êi ⊗ êj : Bmnêm ⊗ ên = Aij êi · Bjnên = AijBji, (1.10d)

where the first two operations produce vectors, the next another second-order tensor,
and the third a scalar. The double-dot product ‘:’, as its form suggests, denotes a
sequential application of dot products, as illustrated above. The tensor A’s actions
on higher-order tensors may be analogously defined. When there is no confusion,
second-order tensors are referred to simply as tensors.
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The transpose AT of a tensor A is defined by the following formula

(A · a) · b = a · (AT · b), (1.11)

for any two vectors a and b. The above results in [AT ]ij = Aji = [A]ji. From the above
definition of a tensor’s transpose the following identities are easily proved:

(A + B)T = AT + BT and (A · B)T = BT · AT . (1.12)

The trace of a tensor Awith components Aij is obtained by contracting the indices
i and j:

trA = Aii = A11 + A22 + A33. (1.13)

We see below that the trace of a tensor is independent of the coordinate system in
which it is computed. The following identities regarding transposes are easily proved:

trA = trAT ⇒ tr
n∏

i=1

Ai = tr

(
1∏

i=n

AT
i

)

, (1.14a)

tr
n∏

i=1

Ai = tr

(
n∏

i=n−k

Ai ·
n−k−1∏

i=1

Ai

)

, 0 � k � n − 1, and
0∏

i=1

Ai = 1, (1.14b)

where
∏n

i=1 Ai = A1 · A2 · · · · · An.
A tensor is said to be symmetric ifA = AT , andanti- / skew- symmetric ifA = −AT .

Given an arbitrary tensor A we define its symmetric part

sym A = 1

2

(
A + AT

)
, (1.15)

and anti-symmetric part

asym A = 1

2

(
A − AT

)
, (1.16)

so that any tensor A may be written as a sum of a symmetric and anti-symmetric
tensor

A = sym A + asym A. (1.17)

An anti-symmetric tensor has at most three independent components in any coor-
dinate system. Thus, for any anti-symmetric tensor W, it is possible to associate an
axial vector denoted by w with the property that for all vectors b,

W · b = w × b. (1.18)
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The operations of constructing anti-symmetric tensors from vectors and extract-
ing axial vectors from anti-symmetric tensors are denoted by sk w (= W) and
ax W (= w), respectively. The relationship between w and W may be expressed
in indical notation employing the alternating tensor of (1.4):

axW = w = −1

2
εijkWjk êi and skw = W = −εijkwiêj ⊗ êk . (1.19)

Employing (1.3b), it is straightforward to check that the above prescription for axW
and skw will satisfy (1.18).

For most tensors, and almost all tensors occurring in this book, it is possible to
find three unit vectors that are simply scaled under that tensor’s operation, i.e., given
A, there (almost always) exist three unit vectors v̂i and correspondingly three scalars
λi, such that

A · v̂i = λiv̂i (no sum). (1.20)

These special vectors v̂i are the eigenvectors of A, and the corresponding scalings λi

are A’s eigenvalues. In the coordinate system described by the three eigenvectors, the
tensor’s matrix is diagonalized with the tensor’s eigenvalues as the diagonal entries.
This simple diagonal nature makes employing the eigen-coordinate system very
tempting for computation. Unfortunately, there is no guarantee that the eigenvector
triad are mutually orthogonal, so that the coordinate system they describe may not
be cartesian. However, if the tensor is symmetric, it is always possible to diagonalize
it, and, moreover, the eigenvectors are orthogonal, so that the coordinate system
they describe is frequently a convenient operational choice. Thus, given a symmetric
tensor S, it is possible to find three eigenvectors v̂i and corresponding eigenvalues
λi, so that S is simply

S =
3∑

i=1

λiv̂i ⊗ v̂i. (1.21)

The operation of a symmetric S therefore corresponds to a linear scaling along three
mutually orthogonal eigen-directions.

If in case all the eigenvalues of a symmetric tensor are non-zero and positive, the
symmetric tensor is said to be positive definite. Finally, it is important to mention
that for any tensor the number of eigenvalues equals the dimension of the under-
lying space, whether or not it is diagonalizable. For example, in three dimensions,
every tensor has three eigenvalues even if it doesn’t have three eigenvectors. These
eigenvalues are either all real, or a mixture of real and complex conjugate pairs.

While the components of a tensor depend on the coordinate system, its eigen-
values do not. Therefore, functions of these eigenvalues, called principal invariants,
also remain unaffected by the choice of the coordinate system; the number of these
invariants equaling the dimension of the underlying space. In three dimensions, a
second-order tensor A with eigenvalues λi has the three invariants
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IA =
3∑

i=1

λi = Aii = tr A, (1.22a)

IIA =
∑

i �=j

λiλj = 1

2

(
I2A − IA2

)
(1.22b)

and IIIA = =
3∏

i=1

λi = detA, (1.22c)

where the last invariant represents the determinant of A that may also be computed
via standard formulae after finding A’s matrix in any coordinate system. Finally, as
for vectors, it is possible to measure the magnitude of a tensor, by employing the
double-dot product ‘ : ’ introduced in (1.10). The norm of a tensor A is defined by

|A| :=
√
A : AT = √

IA2 = √
AijAij. (1.23)

Frequently, and again, for all tensors considered in this book, it is possible to
define associated inverse tensors, i.e., given A taking a to b, the inverse tensor A−1

brings b back to a. It is easy enough to see that a tensor and its inverse share the same
eigenvectors, but inverse eigenvalues. Thus, if A has a zero eigenvalue, its inverse
does not exist. The following identities regarding inverses are easily verified:

A · A−1 = A−1 · A = 1, (1.24a)

(A · B)−1 = B−1 · A−1, (1.24b)

detA−1 = (detA)−1 (1.24c)

and (AT )−1 = (A−1)T = A−T . (1.24d)

An important class of tensors thatwill occur frequently in the text is the orthogonal
tensor Q that has the property that given any vector a,

|Q · a| = |a|, (1.25)

i.e., Q preserves a vector’s length. From this the following properties follow:

Q−1 = QT and detQ = ±1. (1.26)

In applications to follow, all orthogonal tensors will have determinant one. Such
proper orthogonal tensors are called rotation tensors. Physically, as its name sug-
gests, a rotation tensor represents rotation about the origin. It may be shown that of a
rotation tensor’s three eigenvalues, two are complex conjugates of norm one and the
third is unity; see e.g., Knowles (1998, p. 51). The eigenvector corresponding to the
unitary eigenvalue provides the axis of rotation. The amount of rotation is provided
by the argument of the complex eigenvalue.
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Symmetric and rotation tensors come together in the polar decomposition theorem
(Knowles 1998, p. 57), which states that for any tensorAwith det A > 0, it is possible
to find a rotation tensor R and positive definite tensors U and V, so that

A = R · U = V · R (1.27)

uniquely. Thus, U = RT · V · R, and U and V share the same eigenvalues, while their
eigenvectors are related through R. We recall that transformation via a symmetric
tensor’s operation corresponds to linearly and independently scaling three mutually
perpendicular directions. Any linear transformation may thus be viewed as a rotation
followed (preceded) by three scalings along the orthogonal eigen-coordinate system
of V (U).

We have already mentioned the tensor product of two vectors in (1.7). Amongst
other things, the tensor product helps in “tensorizing” the vector operations of taking
dot- and cross- products, viz.,

a · b = tr a ⊗ b = a ⊗ b : 1, (1.28a)

and a × b = −2 ax sk a ⊗ b. (1.28b)

Some additional identities that are easily proved, and will often be used are

a ⊗ A · b = a ⊗ b · AT , (1.29a)

a · A · b = a ⊗ b : AT , (1.29b)

skA : B = skA : symB + skA : skB = ax skA · ax skB, (1.29c)

A · B : C = C · A : B = B · C : A (1.29d)

and S : W = tr (S · W) = 0, (1.29e)

where S and W are, respectively, symmetric and anti-symmetric tensors.

1.3.2 Third- and Fourth-Order Tensors

First, consider third-order tensors. In terms of the third-order tensorial bases, êi ⊗ êj ⊗ êk
in

{
O, êi

}
, a third-order tensor is defined as

A = Aijk êi ⊗ êj ⊗ êk, (1.30)

so that Aijk areA ’s components in this coordinate system. The actions ofA on vectors
and other tensors of various orders are defined in a manner similar to that of a second-
order tensor (1.10), e.g.,
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A · a = Aijk êi ⊗ êj ⊗ êk · amêm = Aijkak êi ⊗ êj (1.31a)

and a · A = amêm · Aijk êi ⊗ êj ⊗ êk = aiAijk êj ⊗ êk . (1.31b)

An important example of a third-order tensor is the alternating tensor that has already
been defined by (1.4).

Fourth-order tensors are formed in a manner analogous to third-order tensors,

A = Aijkl êi ⊗ êj ⊗ êk ⊗ êl, (1.32)

and their operations on vectors and tensors of various orders may be developed by
following (1.10) and (1.31), for example,

A : B = Aijkl êi ⊗ êj ⊗ êk ⊗ êl : Bmnêm ⊗ ên = AijklBlk êi ⊗ êj. (1.33)

1.4 Coordinate Transformation

We will need to find the components of vectors and second-order tensors in one coordi-
nate system, say

{
O, êi

}
, given its matrix in the other, say

{
P, ê′

i

}
. This may be done

by expressing the unit vectors ofP in terms of those of O as,

ê′
j = (êi · ê′

j) êi,

and substituting this relationship into (1.1) and (1.9). It may be proved that the tensor

R = (êi · ê′
j) êi ⊗ êj (1.34)

is, in fact, a rotation tensor with the property that

ê′
i = R · êi. (1.35)

This represents the geometrically intuitive fact that, because both O and P are right-
handed Cartesian coordinate systems, it is possible to obtain one from the other by a
rotation. The components of R are

Rij = êi · ê′
j. (1.36)

Substituting the previous two equations into (1.1) and (1.9), we obtain the coordinate
transformation rules

[a] = [R][a]′, so that ai = Rija
′
j (1.37a)

and [A] = [R][A]′[R]T , so that Aij = RikA
′
klRjl, (1.37b)
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for vector and second-order tensor components, respectively. As a special case, when
A = R, we find that

[R] = [R]′, so that Rij = R′
ij, (1.38)

i.e., the rotation tensor R has the same components in the two frames that it relates.
Higher-order tensor transformation formulae may be developed similarly when

required.

1.5 Calculus

1.5.1 Gradient and Divergence. Taylor’s Theorem

Let Φ(x) be a nth-order tensor field defined over three-dimensional space with x being
a position vector. The gradient of Φ is defined by

∇Φ = ∂Φ(x)
∂x

= Φ,i êi, (1.39)

where the comma denotes differentiation and

∇(·) = ∂(·)
∂x

= ∂(·)
∂xi

êi = ∂(·)
∂x1

ê1 + ∂(·)
∂x2

ê2 + ∂(·)
∂x3

ê3

is the gradient operator. In particular, we have the formulae

∇a = ∂a

∂xi
êi, ∇b = ∂bi

∂xj
êi ⊗ êj and ∇C = ∂Cij

∂xk
êi ⊗ êj ⊗ êk, (1.40)

where a, b and C are, respectively, scalar, vector and tensor fields. Contracting any
two free indices of the gradient of Φ, we obtain its divergence denoted by ∇ · Φ; this,
therefore, is applicable only when Φ is not a scalar field. We obtain the formulae

∇ · b = ∂bi
∂xi

= bi,i and ∇ · C = ∂Cij

∂xj
êi = Cij,j êi. (1.41)

Note that in the last equation we could have alternatively defined ∇ · C as Cij,i êj. The
gradient of a field identifies the direction of steepest change through its eigenvectors,
while its divergence is an estimate of the field’s local flux.

A fieldΦ(x)may be expanded in a Taylor’s series about a location x0 provided some
smoothness conditions are satisfied; see, e.g., Sokolnikoff (1980, p. 311). The expansion
may be expressed as


