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Preface

The European Conference on Numerical Mathematics and Advanced Applications
(ENUMATH) is a series of conferences held every 2 years to provide a forum for
discussion on recent aspects of numerical mathematics and scientific and indus-
trial applications. The previous ENUMATH meetings took place in Paris (1995),
Heidelberg (1997), Jyvaskyla (1999), Ischia (2001), Prague (2003), Santiago de
Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011), and Lausanne
(2013).

This book contains a selection of invited and contributed lectures of the
ENUMATH 2015 organized by the Institute of Applied Mathematics, Middle East
Technical University, Ankara, Turkey, September 1418, 2015. It gives an overview
of recent developments in numerical analysis, computational mathematics, and
applications by leading experts in the field. The conference attracted around 300
participants from around the world including 11 invited talks by:

* Assyr Abdulle (EPF Lausanne, Switzerland), Reduced Basis Multiscale Methods

e Rémi Abgrall (Universitit Zirich, Switzerland), Recent Progress on Non-
Oscillatory Finite Element Methods for Convection Dominated Problems

e Burak Aksoylu (TOBB University of Economics and Technology, Ankara,
Turkey), Incorporating Local Boundary Conditions into Nonlocal Theories

* Mark Ainsworth (Brown University, Providence, USA), Multigrid at Scale?

* Willi Freeden (TU Kaiserslautern, Germany), Principles in Geomathematically
Reflected Numerics and Their Application to Inverse Potential Methods in
Geothermal Exploration

* Des Higham (University of Strathclyde, Glasgow, UK), Models and Algorithms
for Dynamic Networks

* Yvon Maday (UniversitéA Pierre et Marie Curie, Paris, France), Towards a Fully
Scalable Balanced Parareal Method: Application to Neutronics

o Kaisa Miettinen (University of Jyviskyld, Finland), Examples of Latest Interac-
tive Method Developments in Multiobjective Optimization

e Mario Ohlberger (Universitidt Miinster, Germany), Localized Model Reduction
for Multiscale Problems
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* Anders Szepessy (KTH, Stockholm, Sweden), On Global and Local Error with
Application to Adaptivity, Inverse Problems and Modeling Error

* Eugene E. Tyrtyshnikov (Russian Academy of Sciences, Moscow, Russia), Ten-
sor Decompositions and Low-Rank Matrices in Mathematics and Applications

There were 119 minisymposia presentations in 20 sessions, and 89 contributed
talks covering a broad spectrum of numerical mathematics. This ENUMATH 2015
proceeding will be useful for a wide range of readers giving them a state-of-the-art
overview of advanced techniques, algorithms, and results in numerical mathematics
and scientific computing. This book contains a selection of 61 papers by the invited
speakers and from the minisymposia as well as the contributed sessions. It is
organized in IX parts as follows:

Part I Space Discretization Methods for PDEs

Part IT Finite Element Methods

Part ITI Discontinuous Galerkin Methods for PDEs

Part IV Numerical Linear Algebra and High Performance Computing
Part V Reduced Order Modeling

Part VI Problems with Singularities

Part VII Computational Fluid Dynamics

Part VIII Computational Methods for Multi-Physics Phenomena

Part IX Miscellaneous Topics

We would like to thank all the participants for their valuable contributions and
scientific discussions during the conference and to the minisymposium organizers
for helping to shape the core structure of the meeting. The members of the Scientific
Committee have helped us tremendously in reviewing the contributions to this
proceedings. This conference would not have been possible without all the work and
guidance provided by the program committee: Franco Brezzi, Miloslav Feistauer,
Roland Glowinski, Gunilla Kreiss, Yuri Kuznetsov, Pekka Neittaanmaki, Jacques
Periaux, Alfio Quarteroni, Rolf Rannacher, Endre Siili, and Barbara Wohlmuth.
We also thank our sponsors for their generous support: Middle East Technical
University, Scientific Human Resources Development Program (OYP) of Ministry
of Development, Turkish Academy of Sciences, Oxford University Press, and
Springer Verlag. We would like to acknowledge the tireless effort of ATAK Tours;
Murat Uzunca, who coordinated the edition of this Proceedings; all the staff of
the Institute of Applied Mathematics for their tremendous help in organizing this
conference; and our students who have helped us in many ways.
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University.
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DRBEM Solution of MHD Flow and Electric
Potential in a Rectangular Pipe with a Moving
Lid

Miinevver Tezer-Sezgin and Canan Bozkaya

Abstract We present the dual reciprocity boundary element method (DRBEM)
solution of the system of equations which model magnetohydrodynamic (MHD)
flow in a pipe with moving lid at low magnetic Reynolds number. The external
magnetic field acts in the pipe-axis direction generating the electric potential. The
solution is obtained in terms of stream function, vorticity and electric potential in
the cross-section of the pipe, and the pipe axis velocity is also computed under a
constant pressure gradient. It is found that fluid flow concentrates through the upper
right corner forming boundary layers with the effect of moving lid and increased
magnetic field intensity. Electric field behavior is changed accordingly with the
insulated and conducting portions of the pipe walls. Fluid moves in the pipe-axis
direction with an increasing rate of magnitude when Hartmann number increases.
The boundary only nature of DRBEM provides the solution at a low computational
expense.

1 Introduction

MHD is the study of the interaction of electrically conducting fluids and electro-
magnetic forces. It has a widespread applications in designing cooling systems
with liquid metals, MHD generators, accelerators, nuclear reactors, blood flow
measurements, pumps, flow meters and etc. The most widely-known applications
such as MHD flow of liquid metals are considered at low magnetic Reynolds
number neglecting induced magnetic field in the fluid. The corresponding physical
applications are usually MHD flows inside the pipes. When the external magnetic
field applies in the pipe-axis direction, due to the interaction with the electrically
conducting fluid, the electric potential is generated which can be made use of in
MHD generators.

M. Tezer-Sezgin (><) » C. Bozkaya
Department of Mathematics, Middle East Technical University, 06800, Ankara, Turkey
e-mail: munt@metu.edu.tr; bcanan @metu.edu.tr
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The DRBEM is a technique that offers a great advantage to solve MHD
flow equations treating all the terms (including nonlinear) other than diffusion as
inhomogeneity. The studies carried by BEM and DRBEM for solving the MHD
equations in pipes of several cross-sections are given in [1-6]. The externally
applied magnetic field in these works is taken parallel to the cross-section plane
with different orientations. Han Aydin et al. [7] and Tezer-Sezgin et al. [8] have
presented also stabilized FEM and BEM-FEM solutions for MHD flow in ducts and
for biomagnetic fluids, respectively. Biomagnetic fluid flow in cavities (ducts) is also
studied by Tzirtzilakis [9-11] by using pressure-linked pseudotransient method on
a collocated grid and finite volume method with SIMPLE algorithm, respectively.

In this paper, MHD flow in a pipe imposed to an external magnetic field in the
direction of the pipe-axis is simulated using DRBEM in the cross-section of the
pipe as a two-dimensional problem. The electric potential and pipe-axis velocity are
also obtained with DRBEM. The boundary only nature of DRBEM gives efficient
solution even by using constant elements with considerably small computational
cost compared to other numerical methods.

2 The Physical Problem and Mathematical Formulation

The steady flow of an incompressible, electrically conducting, viscous fluid in a
pipe in the presence of an external magnetic field acting in the pipe-axis direction is
considered.

The governing dimensionless MHD equations are [12, 13]

1 1 1
N(u.V)u—M2V2u+NVp:BxV¢+Bx(Bxu) (1)
Vu=0, VB=0 E=-V¢, V> =div(uxB) )

where u = (uy,uy, u;), p, B = (0,0,By), ¢ are the fluid velocity, pressure,
magnetic field and the electric potential, respectively. M and N are Hartmann and

v

o L
Stuart numbers given by M = ByL , N = CTB% where o, p, v are the
Vpv pUo

electrical conductivity, density and kinematic viscosity of the fluid, L and Uy are the
characteristic length and the velocity, and By is the intensity of the applied magnetic
field. Induced magnetic field is neglected due to the low magnetic Reynolds number,
and M? = N Re, Re being fluid Reynolds number.

Flow is two-dimensional in the cross-section of the pipe (see Fig. 1) giving

=0 3)

1 (Mx oy +u, E;ux) 1 V2 1 dp . _3¢ o @
y
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Fig. 1 (a) Problem domain

and (b) cross-section of the (a)
pipe
y ,
e
il e
0z X
v
z
(b)
y
u=1
0. 1) (1,1)
x
(0,0) (1,0)

1 du, du, 1 ldp 0¢
N (ux 8; + uy }) Vzuy + = —uy

) m Ndy  ox

1 u ou 1 1 0P
X : N B szz_

N(“ 3x+u}8y) w2 T TN

&)

(6)

where the pressure P = p(x,y) + P,(z) is divided into the cross-section pressure

p(x,y) and, the pipe-axis pressure P,(z) with constant _ *

Introducing stream function and vorticity in two-dimensional cross-section as

Y oy Ouy  Ouy
Uy ) Uy = — ) = -
ay Y ox v ox ay
we have
Vzw = —w
Vi =w
1 ow ow 1
. . Viw =0
N (” ox W 3y) m "

(N
®)

€))

(10)
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On the boundary of the cavity, stream function is a constant due to the known
velocity value, electric potential or its normal derivative is zero according to
insulated or conducting portions, and the vorticity is not known.

3 DRBEM Application

DRBEM treats all the right hand side terms of Egs.(7), (8), (9), and (10) as
inhomogeneity, and an approximation for this inhomogeneous term as proposed [14]
is

K+L K+L

b o4 ZO{I]; = Zajvzitj
j=1

Jj=1

where K and L are the numbers of boundary and interior nodes, «; are sets of initially
unknown coefficients, and the f; are approximating radial basis functions linked
to particular solutions #&; with Vzﬁj = f;. The radial basis functions f; are usually
chosen as polynomials of distance between the source point (x;,y;) and the field
point (x;, y;) as rjj = /(xi — x;)% + (i — y,)2.

DRBEM transforms differential equations defined in a domain 2 to integral
equations on the boundary 0£2. For this, differential equation is multiplied by the
fundamental solution u* = —In(r)/2n of Laplace equation and integrated over
the domain. Using Divergence theorem for the Laplacian terms on both sides of the
equation, domain integrals are transformed to boundary integrals.

For the discretization of the boundary, constant elements are used to obtain
DRBEM matrix-vector form for Egs. (7), (8), (9), and (10) as

0 n A
(Hy -G a‘ﬂ) = (HU = GQ)F ' {~w} (1D
n
d¢ A Ay 1
(H¢>—Gan) = (HU-GQF ™ {w} 12)
N (w-6") = @0 —coyr 1, 4, (13)
w2\ on) R dy
N du, n AL du, du, 0P,
Hu,— G = (HU — GQ)F » < . 14
Mz(uZ 3n) ( 9 %u 3x+uy3y+3z (14)
Equations (11), (12), (13), and (14) are solved iteratively with an initial vorticity.
0
With the computed ¥, the velocity components u, = 5 and u, = — Bw are
y X



DRBEM Solution of MHD Flow and Electric Potential 7

computed using coordinate matrix F* with entries f;; = 1 + r; as

oF

F'y, uy= _OF
dy B

x = F !
u PV
and substituted in the vorticity and pipe-axis velocity equations. All the other space

derivatives are computed using F matrix.

4 Numerical Results

The problem geometry is the lid-driven cavity £2 = [0, 1] x [0, 1] which is the
cross-section of the pipe where the top layer is moving in the positive x-direction.
External magnetic field B = (0,0, By) applies perpendicular to §2 and generates
electric potential interacting with the electrically conducting fluid in the pipe. Fluid

moves with the movement of the lid and the constant pressure gradient 3 ‘=

—8000 opposite to pipe-axis direction. K = 120 and L = 900 constant bourzldary
elements and interior nodes, respectively, are taken to simulate the flow and electric
potential. Solution is obtained, by using linear radial basis functions fj; = 1 + r;; in
the F matrix, for increasing values of Hartmann number M, keeping Stuart number
N = 16 fixed. Effect of M on the pipe axis-velocity u, is also visualized.

In Fig. 2 we present streamlines, equivorticity and equipotential lines in the case
of electrically conducting pipe wall (¢ = 0) for Hartmann number values M = 20,
100, 150, 200 which correspond to Reynolds numbers Re = 25, 625, 1406, 2500,
respectively, since M?> = N Re. It is observed that an increase in the strength of the
applied magnetic field (increase in M) causes the primary vortex of streamlines to
move through the center of the cavity. Recirculations appear at the lower corners and
finally at the left upper corner with further increase in M and the movement of the lid
to the right. Vorticity moves away from the cavity center towards the walls indicating
strong vorticity gradients. The fluid begins to rotate with a constant angular velocity
and it flows creating boundary layers near the top and right walls through the upper
right corner. Electric potential has the same pattern and magnitudes of streamlines
since V2¢ = w, V2 = —w and both ¥ and ¢ are zero for this case on the cavity
walls.

Figure 3 shows the increase in the magnitude of the pipe-axis velocity u, with

P
an increase in M when _ ° = —8000. The damping in the magnitude of u, is seen
Z
close to the moving lid as M increases (M = 20, 50, 100, 150).
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M =20,Re =25

625

100, Re =

M=

150, Re = 1406

M=

200, Re = 2500

M=

Fig. 2 Effect of Hartmann number on ¥, w and ¢ when ¢ = 0 on the walls
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(a) M =20 (b) M = 50

\w.\\\

I 'I" u‘
f’ "r o\ TR

U
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AU AN
:g?:““ "‘“\\ bk f % .‘ \
f' . . o * ‘
’ff.r “. O S : ff;ﬁf , ":‘:"“\“ !

00

Fig. 3 Pipe-axis velocity u, when ¢ = 0 on the walls: (a) M = 20, (b) M = 50, (¢) M = 100,
dM =150

When the cavity walls are partly insulated and partly conducting, electric
potential leaves the behavior of the flow and obeys boundary conditions on the walls
for small values of M. It is seen from Fig. 4 that insulated vertical walls force the
potential to touch these walls and then both the increased magnetic intensity and
moving lid cause it to regain the flow behavior. On the other hand, insulated top
and bottom walls give completely different pattern for the flow as traveling electric
waves from the bottom to the top. Increasing Hartmann number does not change
this behavior much but tends to concentrate through the upper right corner.

5 Conclusion

The MHD flow in a pipe generates electric potential when the external magnetic
field applies in the pipe-axis direction. Increasing Hartmann number shows the same
behavior on the flow as if increasing Reynolds number. This is the development of
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)
v le=0.1 = 0 (middle) and ¢
n

el
Fig. 4 Effect of Hartmann number on ¥ and ¢ when

n ly=01 =0
(right)

secondary flows near the lower corners and third flow close to upper right corner.
This behavior is reached for much smaller Re values with the effect of applied
magnetic field. Vorticity develops gradients on the moving lid and the right wall.
Electric potential has the same behavior of the flow only when pipe walls are
conducting. Pipe-axis velocity increases in magnitude with an increase in M.
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DRBEM Solution of the Double Diffusive
Convective Flow

Canan Bozkaya and Miinevver Tezer-Sezgin

Abstract A numerical investigation of unsteady, two-dimensional double diffusive
convection flow through a lid-driven square enclosure is carried on. The left
and bottom walls of the enclosure are either uniformly or non-uniformly heated
and concentrated, while the right vertical wall is maintained at a constant cold
temperature. The top wall is insulated and it moves to the right with a constant
velocity. The numerical solution of the coupled nonlinear differential equations is
based on the use of dual reciprocity boundary element method (DRBEM) in spatial
discretization and an unconditionally stable backward implicit finite difference
scheme for the time integration. Due to the coupling and the nonlinearity, an
iterative process is employed between the equations. The boundary only nature of
the DRBEM and the use of the fundamental solution of Laplace equation make
the solution process computationally easier and less expensive compared to other
domain discretization methods. The study focuses on the effects of uniform and
non-uniform heating and concentration of the walls for various values of physical
parameters on the double-diffusive convection in terms of streamlines, isotherms
and isoconcentration lines.

1 Introduction

Double-diffusive convection describes a form of convection driven by two different
density gradients which have different rates of diffusion. In this sense, the double-
diffusive convection generally refers to a fluid flow generated by buoyancy effects
due to both temperature and solute concentration gradients. This type of flow is
encountered in many engineering and geophysical applications, such as nuclear
reactors, solar ponds, geothermal reservoirs, solar collectors, crystal growth in
liquids, electronic cooling and chemical processing equipments. Thus, a clear under-
standing of the interaction between the thermal and mass or solute concentration
buoyancy forces is necessary in order to control these processes.
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In the literature, the double-diffusive heat and mass transfer problems are studied
mostly for square or rectangular geometries with different thermal and solute
boundary conditions by using several experimental and numerical techniques. Lee
et al. [1] studied experimentally the steady natural convection of salt-water solution
due to horizontal temperature and concentration gradients. Cooper et al. [2] carried
experiments to see the effect of buoyancy ratio R, on the development of double-
diffusive finger convection in a Hele-Shaw cell. They observed that, for low R,
fingers are rapidly developed and merge with adjacent fingers, while at higher R,
fingers are slower to evolve and do not interact as dynamically as in the lower R,
system. On the other hand, the unsteady double-diffusive convection in a square
cavity was solved by Zhan et al. [3] to investigate the advantage of a hybrid method
over commercial CFD codes. A finite volume approach was employed for the
solution of double-diffusion flow in a cavity in [4, 5]. The effect of uniform and
non-uniform heating of the walls on the double-diffusive convection in a lid-driven
square cavity was analyzed by using a staggered grid finite difference method by
Mahapatra et al. [6]. Alsoy et al. [7] solved the mixed convective in a lid-driven
cavity and through channels with backward-facing step by the use of DRBEM.

It is seemed that, to the best of our knowledge, the double-diffusive convection in
a lid-driven cavity with uniformly and non-uniformly heated and concentrated walls
has not been solved by using the DRBEM which gives the solution at a considerably
low computational expense due to its boundary-only nature. In the present study, we
undertake this task varying the thermal Rayleigh number Rar and the buoyancy ratio
Rp. A comprehensive study of the heat and mass transfer in terms of the flow field,
temperature and concentration distribution is given in details.

2 Governing Equations

The unsteady, laminar, two-dimensional double-diffusive convection flow of an
incompressible, Newtonian and viscous fluid in a lid-driven square cavity is
considered. The thermo-physical properties of the fluid are assumed to be constant
except the density variation in the buoyancy force, which is approximated according
to the Boussinesq approximation. Thus, the non-dimensional unsteady double-
diffusive convection equations in the stream function-vorticity-temperature form are
written as [6]:

VY = —w (D
dw 20 as
Vi = No —
PrV-w y +u.Vw — PrRar (ax +R, BX) 2)
20
V20 = o TUVO 3)
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Here, u = (u,v), ¥, w, 8, S are the velocity field, stream function, vorticity, tem-
perature, concentration, and Pr and Le are the Prandtl number and Lewis number,
respectively. The physical parameters g, o, D, v and [ given in the definitions of
the thermal Rayleigh number (Ray) and the solutal Rayleigh number (Rags) are
respectively the gravitational acceleration, thermal diffusivity, molecular (mass)
diffusivity, kinematic viscosity and side length of the cavity. The temperatures and
the concentrations at the hot and cold walls are denoted by T}, T, and Cj, C,,
respectively. The buoyancy ratio (R,) is a ratio of fluid density contributions by
the two solutes and defines the degree of system disequilibrium.

The corresponding dimensionless boundary conditions when ¢ > 0 are shown
in Fig. 1, while all unknowns are initially (at + = 0) taken as zero (i.e. y = w =
6 =8 =0, 0<uxy<{).The thermally insulated top wall of the cavity moves
to the right with a constant velocity (1, = 1, ¥ = 0), while the no-slip boundary
condition is employed to the remaining walls (¥, = ¥, = 0). Further, the bottom
and left walls of the cavity are either uniformly (¢ = S = 1) or non-uniformly
(@ =S =singxaty =0and § = S = sinzy at x = 0) heated and concentrated,
while the right wall is kept cold. On the other hand, the unknown boundary vorticity

yoay oy 0 3S

dy T 0x Ty Oy
14
v, v,
dy  ax oy
0=185=1 0=0,S=0
or
0, S =sinmy
of ay _dv _ ¢ x
Oy ox

f=S=1lorf =S =sinmx

Fig. 1 Schematic diagram of the problem with boundary conditions
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values will be obtained from the stream function equation Ay = —w by using a
radial basis function approximation.

3 Application of the DRBEM

The governing Egs. (1), (2), (3), and (4) are transformed into the equivalent
boundary integral equations by using DRBEM with the fundamental solution of
the Laplace equation, u* = —1In (r)/2m, and by treating all the terms on the right
hand side as inhomogeneity. An approximation for these inhomogeneous terms is

N+L N+L

~ T — . ZA.

b~ § :O‘ﬂ;— § :O‘JV”J
j=1 j=1

as proposed in [8]. Here, N and L are the numbers of boundary and interior nodes,
a; are sets of initially unknown coefficients, and f; are approximating radial basis
functions linked to particular solutions #; with V2ii; = f;. The radial basis functions
Jf; are chosen as linear polynomials (i.e. f; = 1+ r;), where r; is the distance between
the source and field points.

By the use of Divergence theorem for the Laplacian terms on both sides of
the equation, domain integrals are transformed into the boundary integrals. Then,
constant elements are used for the discretization of the boundary, which results in
the following DRBEM matrix-vector form of Eqgs. (1), (2), (3), and (4)

HY — Gy, = C{—w} | (5)
Ho—Gog=c b ' [%° 4 uve —prrar (20 + 1% (6)
@ @a = Pr| ot uve rRar 0x P ox
HO — GO, = c{ aaf + u.V@} %
35S
HS -GS, = C{Le(at —i—u.VS)} )

where ¥, = 0¥/0n, w, = dw/0n, 8, = 90/0n, S; = 9S/0n, ¢g* = ou*/on and H
and G are the usual DRBEM matrices. The matrix C = (H U— GQ)F ~1in which the
matrices U and Q are constructed by taking each of the vectors i; and g; as columns,
respectively.

The unconditionally stable backward difference integration scheme defined by

+1
Jdu ‘n+l _utm ="
ot At
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is used for the time integration. Here n indicates the time level. Thus, the time
discretized form of DRBEM system of algebraic equations for the stream function,
vorticity, temperature and concentration takes the form

Hlp_n-l—l _ Gw;l-l—l — _Cwn , (9)
(H—- ! C—- ! CK)o" ! — Go"t! = — ! Cw" — RayCD,(6" + R,S")
PrAt Pr 4 PrAt * P
(10)
(H - ! C - CK)o"t! —Gortl = — ! cor (11)
At 4 At
Le Le
H—  C—LeCK)S"™' —Gs"t = -7 ¢cs" 12
( A eCK) p At (12)

oF JoF
where K = u"*'D, + v"*'D,, D, = 5 F'and D, = 3 F~!. The resulting

X y
system of coupled Eqgs. (9), (10), (11), and (12) is solved iteratively with initial
estimates of w, 6 and S. In each time level, the required space derivatives of the

. . . . 0
unknowns ¥, @, 6 and S are obtained by using coordinate matrix F as 3 =

X
JoF 0D oF
Flo, = F~'®, where @ represents the unknowns v, @, S or 6. The
ox ady ay

iterative process is terminated when a preassigned tolerance (e.g. 10™°) is reached
between two successive iterations.

4 Numerical Results

The unsteady double-diffusive convection in a lid-driven square cavity with uni-
formly and non-uniformly heated and concentrated walls is analyzed by using
coupling of the DRBEM with constant elements in space with an unconditionally
unstable backward difference scheme in time. The domain of problem is determined
by taking the side length of the cavity £ = 1. The boundary of the cavity is
discretized by using maximum N = 90 constant boundary elements. Numerical
calculations are carried out for various values of Rayleigh number (Rar = 103, 10°)
and buoyancy ratio (—50 < R, < 50) by fixing Pr = 0.7 and Le = 2.

Figure 2 displays the effect of the Rayleigh number on the flow field, temperature
and concentration at R, = 1 when the bottom and left walls of the cavity are
(a) uniformly (b) non-uniformly heated and concentrated. A roll with clockwise
rotation is formed inside the cavity since the fluid rises up and flows down,
respectively, along the hot left and cold right vertical walls. As Ray increases from
103 to 10°, the values of stream function increase in magnitude and the flow becomes
stagnant in the core of the cavity in both uniform and non-uniform cases. On the
other hand, the isotherms and isoconcentration lines are dispersed in the entire cavity
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Fig. 2 Effect of the Rayleigh number Ray on the flow field, temperature and concentration at
R, = 1: bottom and left walls are (a) uniformly (b) non-uniformly heated and concentrated

at Rar = 10°, however, lines are concentrated along the cold left vertical wall with
an increase in Rar to 10° in both cases.

Effect of the buoyancy ratio R, on the flow field, temperature and concentration
at Ray = 103 is shown in Fig. 3 when the bottom and left walls are (a) uniformly
and (b) non-uniformly heated and concentrated. In both uniform and non-uniform
cases, the strength of the flow circulation decreases with a decrease in buoyancy
ratio from R, = 50 to R, = 1 (see Fig. 2), while the stream function values increase
in magnitude with a further decrease from R, = 1 to R, = —50. At R, = 50, the
contours of § and S are mainly concentrated near the cold vertical wall and they
are dispersed towards to right wall at R, = 1 (see Fig.2) in both cases. However,
when R, = —50, the isotherms and the isoconcentration lines are concentrated
near the lower and upper half of the cold and hot vertical walls, respectively. They
are almost parallel to horizontal wall in the middle part of cavity at R, = —50,
indicating that most of the heat transfer is carried out by heat conduction. This is
due to an increase in thermal boundary layer thickness. As R, increases boundary
layer becomes thinner. This change in flow structure significantly influences the
concentration field, which builds up a vertical stratification of enclosure in both
uniform and non-uniform cases. The uniform heating of bottom and left walls
cause a finite discontinuity for temperature distribution at one edge of bottom wall



