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Preface

This volume is a collective monograph with different contributions. Many of them
are related with the 4th International Conference on Network Analysis held in
Nizhny Novgorod, Russia, May 11-13, 2014. The main focus of these contributions
is the development of modern approaches for network analysis with different
applications. The previous books which cover the similar topics are: [1-4].

According to the covered topics, the volume can be divided into three parts: opti-
mization in networks, network data mining, and economics and other applications.

The first part deals with optimization problems in networks. In the chapter
“Maximally Diverse Grouping and Clique Partitioning Problem with Skewed
General Variable Neighborhood Search,” a new variant of variable neighborhood
search referred to as skewed general variable neighborhood search is used to solve
a maximally diverse grouping problem and a clique partitioning problem. Extensive
computational results show that the developed heuristic significantly outperforms
its competitors.

In the chapter “Test Generation for Digital Circuits Based on Continuous
Approach to Circuit Simulation Using Different Continuous Extensions of Boolean
Functions,” the analysis of continuous extensions of Boolean functions for test
generation using continuous optimization is conducted. It represents the results of
the developed software for a number of ISCAS schemes.

In the chapter “Konig Graphs for 4-Paths II: Wided Cycles,” characterization
of the graphs, whose each induced subgraph has the property that the maximum
number of induced 4-paths is equal to the minimum cardinality of the set of vertices
such as every induced 4-path contains at least one of them, is given. All such graphs
obtained from simple cycles by replacing some vertices into cographs are described.

In the chapter “Optimization Algorithms for Shared Groups in Multicast Rout-
ing,” the multicast group routing problem is considered. The problem requires the
construction of one or more routing trees such that each destination has its demand
satisfied by one or more data sources. The problem can be viewed as a generalization
of the multicast routing problem with a single data source. This problem has
important applications in the design of collaborative communication networks,
among other uses. While the problem is NP-hard, it is possible to develop algorithms
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for its solution that approximate the solution in practice. Existing techniques for
solving multicast group routing problems are discussed. Some fast heuristics for
this problem are proposed. It is shown that computational experiments support the
quality of the results achieved by these algorithms.

In the chapter “Minimizing the Fuel Consumption of a Multiobjective Vehicle
Routing Problem Using the Parallel Multi-Start NSGA II Algorithm,” a new
multiobjective formulation of the vehicle routing problem (VRP), the multiobjective
fuel consumption vehicle routing problem (MFCVRP), using two different objective
functions is presented. The first objective function corresponds to the optimization
of the total travel time and the second objective function is the minimization of the
fuel consumption of the vehicle taking into account the travel distance, the load of
the vehicle, and other route parameters. Two cases of the MFCVRP are solved.

In the chapter “Manifold Location Routing Problem with Applications in
Network Theory,” the problem of determining locations of facilities and the item
distribution to customers from these facilities from supply chain networks is
considered. Determination of the facility locations is a well-known problem in
the literature, named facility location problem (FLP). The distribution of items via
vehicles is known as the VRP. It is emphasized that solving VR and FL problems
simultaneously can yield a robust facility location and reduced-cost distribution
within the customer-supplier network.

In the chapter “A Branch and Bound Algorithm for the Cell Formation Problem,”
the cell formation problem (an NP-hard optimization problem) is considered for
cell manufacturing systems. A branch and bound algorithm which provides exact
solutions of the cell formation problem is proposed.

The second part of the book is devoted to data mining in networks. In the chapter
“Hybrid Community Detection in Social Networks,” several ideas to design hybrid
methods for community detection are discussed.

In the chapter “Spectral Properties of Financial Correlation Matrix,” the random
matrix theory (RMT) is applied to investigate the cross-correlation matrix of a
financial time series in four different stock markets: Russian, American, German,
and Chinese. The deviations of distribution of eigenvalues of market correlation
matrix from RMT global regime are investigated. Specific properties of each market
are observed and discussed.

In the chapter “Statistical Uncertainty of Minimum Spanning Tree in Market
Network,” the procedure for the minimum spanning tree construction as a multiple
decision statistical procedure is considered. The statistical uncertainty of the
procedure is investigated.

In the chapter “Uncertainty of Identification of Cliques and Independent Sets
in Pearson and Fechner Correlations Networks,” two market network models for
the analysis of NYSE stock market are used: Pearson correlation network and
Fechner correlation network. The problem of estimation of statistical uncertainty
of identification of maximum cliques and maximum independent sets in Pearson
and Fechner correlation networks is considered. It is shown that identification of
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maximal cliques and maximal independent sets in Fechner correlation network is
distribution-free in a certain class of distributions which is not true for Pearson
correlation network.

In the chapter “Investigation of Connections Between Pearson and Sign Cor-
relations in Market Network,” the connection between the sign correlation of
Fechner and the classic Pearson correlation is investigated. Testing hypothesis of
the connection by real market data is conducted.

In the chapter “Testing the Stationarity of Sign Coincidence in Market Network,”
a hypothesis of the stationarity of observations from financial market are considered.
For testing the stationarity hypotheses, the Kolmogorov—Smirnov test and multiple
comparisons Bonferroni and Holm procedures are applied. The stationarity hypoth-
esis is tested for sign coincidence of returns by binomial proportions. It is shown that
the null hypothesis of stationarity is rejected for prices and not rejected for returns
and their sign coincidence on some significance level.

In the chapter “Synchronization and Network Measures in a Concussion EEG
Paradigm,” the neurophysiologic changes in a patient who suffered a concussion
during a football practice via quantitative and graph theoretic measures and to
evaluate the results with respect to the preconcussion state are characterized.
The deviations in the selected quantitative and graph theoretic measures partially
corroborate the usual clinical characteristics of the post-concussion state, but further
investigation for additional data and evaluation of alternative quantitative measures
is needed.

In the chapter “Video-Based Pedestrian Detection on Mobile Phones with the
Cascade Classifiers,” the problem of real-time pedestrian recognition on mobile
phones is discussed. A specialized procedure of data gathering and preprocessing to
train cascade classifiers is proposed. Experimental results in testing under real road
conditions with several mobile phones are given. It is emphasized, that sometimes it
is necessary to choose faster, but less accurate, object detection algorithm, because
in this case it is possible to process more number of frames in a fixed period of time.
Hence, the total object detection accuracy can be increased.

In the chapter “Clustering in Financial Markets,” graph partition of a particular
kind of complex networks referred to as power law graphs is considered. In
particular, analysis on the market graph, constructed from time series of price return
on the American stock market, is conducted. Two different methods originating
from clustering analysis in social networks and image segmentation are applied to
obtain graph partitions, and the results are evaluated in terms of the structure and
quality of the partition. It is shown that the market graph possesses a clear clustered
structure only for higher correlation thresholds. Partitions for different time series
are considered to study the dynamics and stability in the partition structure.

The third part contains applications of network analysis. In the chapter “Key
Borrowers Detected by the Intensities of Their Short-Range Interactions,” the issue
of systemic importance that an individual financial institution can disturb the
whole financial system is discussed. Interconnectedness is considered as one of
the key drivers of systemic importance. Several measures have been proposed in
the literature in order to estimate the interconnectedness of financial institutions and
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systems. However, they do not fully take into consideration an important dimension
of this characteristic: intensities of agent interactions. This paper proposes a novel
method that solves this issue. The approach is based on the power index and
centrality analysis and is employed to find a key borrower in a loan market. The
approach is applied at the European Union level.

In the chapter “A Semantic Solution for Seamless Data Exchange in Supply
Networks,” the semantic solution for data exchange in dynamically changing supply
networks is proposed. Despite the dynamic nature of supply networks, there is a
necessity to manage their efficiency. The first step in this direction is proper data
exchange, which leads to transparency of networks and speeds up interactions of
their participants. Despite plenty of data standards, there is a lack of approaches to
data modeling that allowed seamless knowledge sharing within supply networks.
This paper introduces a new ontology-based data metamodel of supply networks
based on organizational ontology, consistent theory for data modeling, and the
ontologized standard in logistics domain.

In the chapter “Langmuir Solitons in Plasma with Inhomogeneous Electron
Temperature and Space Stimulated Scattering on Damping Ion-Sound Waves,” an
analytical solution for solitons in plasma is obtained in an approximate form. It is
shown that analytical and numerical results have a good agreement.

In the chapter “Equilibria in Networks with Production and Knowledge Exter-
nalities,” a game equilibrium is investigated in a network in each node of which
an economy is described by the simple two-period model of endogenous growth
with production and knowledge externalities. Each node of the network obtains an
externality produced by the sum of knowledge in neighbor nodes. Uniqueness of the
inner equilibrium is proved. Three ways of behavior of each agent are distinguished:
active, passive, and hyperactive. Behavior of agents in dependence on received
externalities is studied. It is shown that the equilibrium depends on the network
structure.

We would like to take the opportunity to thank all the authors and referees for
their efforts to contribute the chapters. In addition, we would like to thank Springer
for giving us the opportunity for this work. This work is partly supported by Russian
Federation Government grant N. 11.G34.31.0057.

Nizhny Novgorod, Russia Valery A. Kalyagin
Nizhny Novgorod, Russia Petr A. Koldanov
Gainesville, FL, USA Panos M. Pardalos
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Part I
Optimization in Networks



Maximally Diverse Grouping and Clique
Partitioning Problems with Skewed General
Variable Neighborhood Search

Jack Brimberg, Nenad Mladenovi¢, and Dragan UroSevi¢

Abstract The maximally diverse grouping problem (MDGP) requires finding a
partition of a given set of elements into a fixed number of mutually disjoint subsets
(or groups) in order to maximize the overall diversity between elements of the same
group. The clique partitioning problem (CPP) has a similar form as the MDGP, but
is defined as the minimization of dissimilarity of elements in an unknown number
of groups. In this paper a new variant of variable neighborhood search referred
to as skewed general variable neighborhood search (SGVNS) is used to solve
both problems. Extensive computational results show that the developed heuristic
significantly outperforms its competitors. This demonstrates the usefulness of a
combined approach of diversification afforded with skewed VNS and intensification
afforded with the local search in general VNS.

Keywords Diverse grouping ¢ Clique partitioning ¢ Variable neighborhood
search

1 Introduction

The maximally diverse grouping problem (MDGP) requires finding a partition of a
given set of elements into a fixed number of mutually disjoint subsets (or groups)
in order to maximize the overall diversity between elements of the same group.
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4 J. Brimberg et al.

The clique partitioning problem (CPP) is similar. Instead of maximizing diversity
among groups, one wants to find an unknown number of groups such that the sum
of edge weights over the induced subgraphs (or cliques) is minimized.

MDGP Formulation. The MDGP may be formulated as follows (see, e.g., Fan
etal. [11]): P ={p; : i = 1,..., N} denotes the set of elements of interest, and pj,
k € {1,...,K}, the attribute values associated with each element p;. The measure
of diversity between any pair of elements p; and p; may be given by some distance
function, e.g.,

K
Z(pik — pi)?

k=1

which calculates the Euclidean distance between corresponding points in the
attribute space. The objective is the partition of a set P into G disjoint groups so
that the sum of diversities over the individual groups is maximized.

Let x;, = 1 if p; is assigned to the group g, and O otherwise, i = 1,2,...,N,
g =1,2,...,G. The model may be written as the following quadratic binary integer
programming problem:

N—1 N
maXZ Z dijXigXig (D
g=1 i=1 j=i+1
s.t.
G
Y xg=1.i=12...N )
g=1
N
ingzag,g=1,2,...,G (3)
i=1
N
ingfbg,gZI,Z,...,G 4)
i=1
Xg €{0,1%,i=1,2,....,N,g=1,2,...,G. (5)

The constraints (2) ensure that each element is assigned to exactly one group.
Constraints (3) and (4) impose minimum and maximum group sizes, respectively.
In most studies of MDGHP, it is assumed that group sizes must be equal so that
N = mG, where m is an integer, and a, = b, = m for all groups g = 1,2,...,G.
Then constraints (3) and (4) in the model above can be replaced with

N
ingzm,gzl,Z,...,G. (6)
i=1

The above model allows groups to differ in size, although in practical cases such as
study groups, the variation in size should be kept relatively small.
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CPP Formulation. The CPP can be described as follows. Given a weighted, non-
oriented, and complete graph G = (V, E, w), we wish to find a partition of the node
set into an unknown number of nonempty, disjoint subsets Vi, V,, ..., V; such that
the sum of edge weights over the k induced subgraphs (or cliques) Gi, G», ..., Gk
is minimized. Let c;; denote the weight (or cost) of edge (i, ), for all pairs of nodes
(i,)), 1 <i<j <N, where N equals the number of nodes in graph G similarly as in
the MDGP. Note, however, that unlike the MDGP where diversities are specified by
edge distances d;; > 0, the costs ¢;; can now take on negative values. A mathematical
formulation of the problem is given by (see [6]):

min E CijXij

(iy)€E
S.t.
Xij + X —xir < 1, Vi<i<j<r<NnN (CPP)
Xij— Xpp +xir < 1, Vi<i<j<r<N

—xj+x,+x, <1, VI<Si<j<r<N

x;j € {0, 1}, VI<i<j<N.

If x;; = 1, then nodes i and j are in the same cluster, and the cost ¢;; of edge (i, )
is added in the objective function; otherwise, it is not. The constraint set ensures that
all edges in the complete subgraph G, t = 1,2, ..., k, are included in the solution.

The CPP may be extended to incomplete graphs by inserting fictitious edges
with large positive weights between pairs of nodes wherever edges are missing
in the original graph. The large positive weight ensures that each subgraph G,
t=1,2,...,k,isaclique that contains no fictitious edges. If all edges in a complete
graph G have negative (or zero) weights, the problem becomes trivial, with the
optimal solution given by k = 1 and G; = G. Thus, the CPP becomes interesting
only when some of the edge weights have positive values.

MDGP Applications. One of the earliest applications of MDGP was in the
formation of student work groups. For example, in MBA programs it is very
important to divide a class into diverse study groups in order to enhance the learning
environment (Weitz and Lakshminarayanan [27], Desrosiers et al. [9]). Another
application concerns the formation of peer review groups to evaluate research
proposals. Again, the objective is to form diverse groups in order to ensure that
projects are evaluated from several different points of view (see Hettich and Pazzani
[16]). For other applications cited in the literature see, e.g., Lotfi and Cerveny
[18] for exam scheduling, Weitz and Lakshminarayanan [27] for very large scale
integration (VLSI) design, and Kral [17] for the storage of large programs onto
paged memory.

Problems similar to MDGP have been considered by Bhadury et al. [2], Baker
and Benn [1], and Desrosiers et al. [9]. A simplified model is proposed in [2], where
a high degree of intra-team similarity and/or inter-team dissimilarity is requested.



6 J. Brimberg et al.

A network flow problem, known as the dining problem, is used to assign MBA
students to different projects. The case study presented in [1] consists of assigning
235 students to eight tutor groups. The model used belongs to the mixed linear goal
programming class and is equivalent to the min-sum formulation of Desrosiers et al.
[9], where the £1-norm is used to measure dissimilarities between students. In the
proposed local search, swaps between the two worst teams are used to improve
the current solution. Desrosiers et al. [9] use a centroid to represent each group
of entities, and examine two objectives: min-sum—minimize the sum of distances
between group centroids and the general centroid of all data; min-max—minimize
the maximum of such distances. The authors also apply their method to partition 120
MBA students in groups of 5 at HEC, Montreal. If the £;-norm is used, the model
becomes linear. However, if Euclidean distance is considered, the corresponding
model is more similar to MDGP, and belongs to the class of quadratic O—1 programs.
Exact and heuristic solution techniques are adapted for solving the problem.

CPP Applications. The CPP has important applications in the social sciences (e.g.,
see [6], and the references therein). Wang et al. [26] demonstrate that the CPP
compares favorably with K-means and latent class analysis for recovery of cluster
structure in real data sets. An advantage of the CPP model is that we do not need
to know the number of clusters beforehand. One of the most cited applications
of CPP is in the aggregation of binary equivalence relations. In this context, the
c;j parameters represent the number of attributes on which nodes i and j disagree
minus the number on which they agree. For example, if there are 10 attributes in all
being compared and given nodes i and j have the same measurement on 8 of them,
¢j = 2—8 = —6, and there is a strong tendency to place these two nodes in the
same cluster. If on the other hand ¢; = 8 — 2 = 6, there would be a tendency to
place them in separate clusters.

Recent Heuristics for Solving MDGP. The MDGP is known to be NP-hard [12],
and therefore, heuristics have been developed to solve it. Fan et al. [11] propose
a hybrid genetic algorithm to solve the problem. Gallego et al. [13] suggest tabu
search with strategic oscillation. The artificial bee colony optimization (ABCO)
method proposed by Rodriguez et al. [23] may be considered as a state-of-the-
art heuristic for solving MDGP. A competitive heuristic based on general variable
neighborhood search (GVNS) is found in [24]. GVNS is a variant where a deter-
ministic local search that uses several neighborhoods (called variable neighborhood
descent, or VND for short) is applied in the local search step in place of the single
neighborhood used in basic VNS.

Recent Heuristics for Solving CPP. The earliest methods to solve CPP use a
simple relocation procedure (analogous to the Insertion move for MDGP) that
interchanges nodes across clusters until a local optimum is reached (e.g., [22]).
Marcotorchino and Michaud [19] expanded the search to include merging of clusters
and exchanging cluster memberships for pairs of nodes. Simulated annealing and
tabu search heuristics are proposed by De Amorim et al. [8], based on the simple
relocation neighborhood above. However, this also includes the possibility of
relocating a node to the empty set, thereby increasing the number of clusters by 1.
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Charon and Hudry [7] investigate various “noising” procedures that distort the data
in order to allow uphill moves. Brusco and K ohn [6] develop a state-of-the-art
“neighborhood search heuristic,” following the ideas of the variable neighborhood
search (VNS) metaheuristic, where the shaking (or perturbation) step is carried out
in a random fashion instead of the systematic approach of VNS. The local search
employs the single node relocation neighborhood.

Outline. In this paper we present two related algorithms recently developed in
[4, 5] for solving the MDGP and CPP, respectively. The methodology is an extension
of the GVNS based heuristic proposed in [24]. In brief, the new algorithms consider
a skewed version of GVNS that allows moves to inferior points located in promising
regions of the solution space. In the next section the relationship between the
two problems is analyzed. The new heuristic is described in detail in Sect. 3, as
applied to the MDGP including a description of the data structure used for efficient
implementation of the VND local search. In Sect. 4 the implementation differences
for solving the CPP are summarized. A summary of computational results on a wide
range of test problems taken from the literature is given is Sects. 5 and 6 for MDGP
and CPP, respectively. For almost all problem instances examined, significantly
better solutions are obtained than those of the best competitors.

Concluding remarks are given in Sect.7. This work unifies the results of two
journal articles [4, 5].

2 Relation Between CPP and MDGP

In the MDGP the number of groups (or cliques) is fixed, and typically these groups
must have the same size, or nearly the same size. However, in the CPP we don’t
know the number of groups, and there are no limitations on group size. To get around
this difficulty, we simply set the number of groups initially to an upper limit of N (the
number of nodes in G), and allow some of these groups to be empty. No limitations
on group size are imposed, so that the number of groups is effectively treated as a
variable in the model formulation.

Now let y;; = 1, if node i belongs to group g, and 0 otherwise. We reformulate
CPP as the following equivalent quadratic binary integer program:

N N—-1 N
max—> > D cdiedis

g=1 i=1 j=i+1
S.t.

(CPP,)
N

D vie=1. i=1,....,N
g=1

Yig € 0,1}, i=1,....Ng=1,....N
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This formulation is equivalent to the general MDGP except that (a) all constraints
on group size have been deleted and (b) the number of groups is no longer specified.
Note that the nonlinear formulation in (CPP,) allows a reduction in the number of
constraints compared to the original linear formulation (CPP) from O(N?) to N.
Meanwhile the number of binary variables remains close to the same in both
formulations.

A similar 0/1 quadratic program as (CPP,) may be found in Wang et al. [25]
as an alternate formulation of the CPP. However, in [25], a maximum number of
cliques (kmax < N) are assumed to be known, which is not necessary here. Also,
those authors use the quadratic formulation to solve the Group Technology Problem,
whereas we are showing here that the CPP may be viewed as a relaxed form of the
MDGP.

By recasting the model in the form of an MDGP, we are now able to borrow any
solution method for MDGP and apply it (after some small modifications) to solve
our original CPP. We will take advantage of this fact by adapting our new VNS
based heuristic that was originally applied on the MDGP, and is described next.

3 Solving MDGP with Variable Neighborhood Search

VNS is a well-known metaheuristic, or framework for building heuristics, whose
basic idea is a systematic change of neighborhood structures during a search for
a better solution (Mladenovi¢ and Hansen [20] and Brimberg et al. [3]). The
inner loop of basic VNS contains three steps: (a) shaking; (b) local search; and
(c) neighborhood change. A successful VNS variant, called general VNS, uses a
mechanism of changing neighborhoods not only in the diversification or shaking
step, but also in the intensification or deterministic local search step (Hansen et al.
[15], Mladenovic et al. [21]). Skewed VNS is another VNS variant that modifies the
“neighborhood change” step. A current solution is allowed to move to an inferior
solution only if the latter is very far and of similar quality.

This section gives the details of the VNS implementation for solving MDGP.
The main idea is to combine the concepts of general VNS (GVNS) and skewed
VNS (SVNS), by allowing skewed moves within GVNS; that is, we combine the
intensification of the local search in GVNS with the diversification provided by
SVNS. The resulting framework is called skewed general variable neighborhood
search (SGVNS), as proposed in Brimberg et al. [4].

3.1 Solution Space of MDGP

The solution space includes all possible feasible divisions of elements into groups.
A division is feasible if and only if each created group g contains at least a, and at
most b, elements. A current solution is represented by a vector x° of length N such
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that x“[i] is the label of the group containing the element i (i = 1,2, ..., N). In order
to speed up the local search, we also maintain matrix sd such that sd“[i][g] is the
sum of diversities between the element i and all the elements assigned to the group
g in the current solution:

sdligl = ) dy

J=1.20 Nt =g

Note that for the current solution, matrix sd° can be computed in O(N?).

For the solution represented by the vector x° (and by the corresponding matrix
sd°) it is possible to calculate the objective function value given in formula (1) in
the following way:

N—1 N
=) =) dix(.i))

i=1 j=i+1
where

- 1 ifxffi] = x°[]

X (e, 1)) = . -

0, if x“[{] # x“[j]

Note also that the same objective value can be calculated by using the previously
calculated matrix sd“:

1 N
FO) =5 D sd T[]

i=1

3.2 VND Local Search

The local search is implemented using VND, for which the following neighborhoods
are designed (see [24]): Insertion, Swap, and 3-Chain.

Insertion. Neighborhood Insertion contains solutions obtained by moving only one
element from its current group to another group. By using the previously described
matrix sd¢, it is possible to compute efficiently for each feasible move the change in
value of the objective function f. Denote with x" a solution obtained from solution
x¢ by moving the element i from its current group g; to a group g». In this case, the
sum of diversities in all groups except groups g; and g, is unchanged. The element i
is removed from the group g; and because of that, the sum of diversities in the group
g1 decreases by the sum of diversities between i and all other elements belonging
to the group g;. The element i is inserted into g»; hence, the sum of diversities in
g» increases by the sum of all diversities between i and the elements belonging to
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the group g,. It is easy to conclude that the difference between objective function
values for solutions x¢ and x" is

Af = f(xX") = f(x°) = sd°[i][g2] — sd°[i][g1].
If Af > 0, the element i is moved from the group g, to the group g, (x°[i] = £2);
then, groups g; and g, are modified and values sd“[j][g1] and sd°[j][g>] must be
updated in the following way:

sd“[llg1] = sd°[jl[g:] — dji

and

sd“[l[g2] = sd°[j][g2] + dji.

Since the updating must be performed for each element j, updating of matrix sd“
after performing an Insertion move has complexity O(N). The number of solutions
in the Insertion neighborhood of x“ is O(GN). See Algorithm 1 for details of
the search. Note that the subroutine Updatesd is used to denote in general the
updating of matrix sd° after a move is made to a neighboring solution (Insertion,
Swap, or 3-Chain).

Swap. Neighborhood Swap contains solutions obtained by swapping a single pair
of elements belonging to different groups. Let element i be in group g; and element
Jj in group g; of the current solution x°. Denote with x" the solution obtained after
moving the element i into group g; and the element j into group g;. Since the element
i is removed from the group g;, the diversities between element i and the elements
remaining in the group g; do not contribute to the objective function value of the

Function LSIns(x,sd,f);
rez <— false;
for v <— 1 to N do
for g <— 1to Gdo
if x[v] # g then
df <= sd[v][g] — sd[v][x[v]];
if df > 0 then
xv] < g
f<f+df;
Updatesd(x,sd, v, g);
rez < true
end
end

end
end
return rez

Algorithm 1: VND implementation of local search in Insertion neighborhood



Maximally Diverse Grouping and Clique Partitioning Problems with Skewed. . . 11

Function LSSwap(x, sd, f);

rez <— false;

forv<1toN—1do

foru <— v+ 1toN do

if x[v] # x[u] then

df <= sd[v][x[u]] + sd[u][x[v]] — sd[v][x[v]] — sd[u][x[u]] — 2dy..;

if df > 0 then
Swap(x, v, u);
f<f+df
Updatesd(x, sd, v, u);
rez <— true;
return rez

end

end
end

end
return rez

Algorithm 2: VND implementation of local search in Swap neighborhood

new solution. But, because the element i is inserted in the group g;, all diversities
between i and the elements belonging to the group g; contribute to the objective
function value of the new solution. Similar facts are true for the element j. So, we
can finally calculate the difference between the objective values of the current and
neighboring solutions:

Af = f(X") = f (&) = (sd[i][g;] — sd“[i[&i]) + (sd[l[g] — sd°[j]lg;]) — 2d.

It is obvious that the change of the objective value for each solution from
neighborhood Swap is done in O(1), while the cardinality of Swap is O(N?). After
performing a Swap move, it is necessary to update matrix sd¢, and the complexity of
this update is O(N). (We can consider Swap or 2-opt as two successive Insertions.)

3-Chain. A 3-Chain move is determined by three elements, i, j, and k, belonging
to three different groups, g;, g;, and g, respectively, by moving the element i to
the group g;, the element j to the group g, and the element k to the group g;.
Neighborhood 3-Chain consists of all solutions obtained by performing a single
3-Chain move.

We can calculate the difference between objective function values as follows:

Af = f(") = f (&) =(sd°[i][g;] — sd’[i][gi]) + (sd“[][g«] — 5[]+
(sd[k][gi] — sd‘[K][gx]) — (dyj + dix + di).
So, the complexity of solution checking is O(1), but the cardinality of the whole

neighborhood is O(N?). Updating of the matrix sd after a 3-Chain move is made is
performed in a straightforward way by combining three successive Insertion moves.
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Function VND-2(x, sd, f);
end < false;
while not end do

repeat

‘ rez <— LSIns(x,sd,f);

until rez = false;

if LSSwap(x, sd,f) = £alse then end <— true
end

Algorithm 3: VND-2

Two VND Variants. We propose two variants of variable neighborhood descent:

¢ VND-2—use neighborhoods Insertion and Swap in this order and
¢ VND-3—ause all three developed neighborhoods in the following order: Insertion,
Swap, and 3-Chain.

If no improvement is found in a given neighborhood of the current solution, the
search resumes in the next neighborhood in the sequence. If an improvement is
found, the local search always resumes in the Insertion neighborhood of the new
current solution, i.e., the first neighborhood in the sequence. If no improvement can
be found in any of the listed neighborhoods of x¢, the local search is terminated.
See Algorithms 1-3 for a standard implementation of VND-2. Our implementation
is slightly different in that all pairs of elements are examined once in LSSwap, and
hence, a few Swap moves may occur before exiting the loop and returning to the
Insertion neighborhood. Also note that VND-2 is the only variant attempted in the
computational experiments due to limitations placed on the computing time.

3.3 Initial Solution

The calculation of the initial solution is done in two phases. In the first phase,
we ensure that each group g contains at least a, elements by inserting the chosen
elements. In the second phase, we distribute the remaining elements so that each
group g contains at most b, elements. At the beginning, we select G elements at
random and insert them into different groups.

Denote with E, a set of elements currently assigned to a group g. During the
first phase, we maintain the set of groups that have fewer elements than the desired
minimum:

G ={g:|E,| <ag}.

Each iteration of the first phase consists of selecting at random one unassigned
element, denoted with i, and assigning it to a selected group. The selected element
must be inserted into one of the groups from the set G'. So, for each group g € G,
we calculate the average distance between the selected element i and all the elements
belonging to the group g, and select the group whose average distance value is the
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Procedure InitialSolution(x,sd,f);

AV «—{1,2,...,N};AG < {1,2,...,G};

for g <~ 1to Gdoc, < O end

while AG # @ do
g < RandomElem(AG); v <— RandomElem(AV);
x[v] <= gicg <= g+ 1;

AV < AV \ {v};

if ¢, = a, then AG <— AG \ {g} end
end
AG < 0;

for g < 1to Gdo
| ifc, < b, then AG <— AG U {g} end
end
while AV # @ do
g < RandomElem(AG); v <— RandomElem(AV);
x[v] <= gicg < g+ 1;
AV < AV \ {v};
if c;, = b, then AG <= AG \ {g} end
end
Computesd(x, sd);
f <= Computeobij(x)

Algorithm 4: Initial solution

largest. The selected group g is the one for which the expression D;, defined as

D. — ZjeEg dij
g —
|Egl
is maximized.
The first phase ends when the set G’ becomes empty. During the second phase,
we maintain a set of groups which has fewer elements than the desired maximum:

G = {g:|E,| <bg}.

All other steps of the second phase are the same. The second phase finishes when
all elements are assigned.

The initial solution can also be created at random: instead of assigning a selected
element to a group with maximal average distance, we assign it to a randomly
selected group.

3.4 Shaking

In order to perform a perturbation of the current solution, we define the kth
neighborhood as the set of solutions obtained by k consecutive Swap moves. Thus,
in the shaking step, we generate a random solution from the kth neighborhood of
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Procedure Shake(k, x, sd,f);
while k£ > 0 do
(u,v) <—(Randvert, RandVert);
if x[u] # x[v] then
Swap(x, u, v);
k< k—1
end
end
Computesd(x, sd);
f < Computeobj(x)

Algorithm 5: Shake procedure

Function SGVNS (kyin, Ksteps Kmax tmax);
InitialSolution(x‘,sd<,fc);
VND-2(x¢, sd°, f);
(s f1) = (s
k < kmin;
while CPUTime() < tju, do
X", sd", f) <= (x, sd®, f€);
Shake(k,x", sd",f");
VND-2(x", sd", f");
if f(X)/f(x°) + ap(x, x") > 1 and f(x")/f(x}) + ap(x’,x") > 1 then
(XC! Sdl?,f(') <« (xn’ Sdll‘f}‘l);
if f(x°) > f(x?) then (x*, sd®, f?) < (x°, sd°,f°) end;

k < kmin

else

k< k + kszep;

if k > k. then k < ki,
end

end
end
return x”

Algorithm 6: SGVNS

the current solution by performing k random Swap moves. In each of the moves, we
randomly select two elements that belong to two different groups.

3.5 Skewed General Variable Neighborhood Search

Unlike classical VNS, the idea is to allow skewed moves to inferior solutions in
promising regions of the solution space. In our implementation this means that after
shaking and local search, we move to the new solution x" if the following conditions
are satisfied:

G 4+ ap(x,x") >1 and ACY

) F et > 1. ™
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where x” is the best found solution, and x¢ the current solution. We use p(x(, x)
to denote the distance between solutions x(!) and x®. This distance is defined in the
following way:

Ope)
p(xV, @) = % 8)
where
WA = {(,j) (VL] = XV A 2] # 2PV 0
)

(V1] # xVUD A GO =P}

which estimates the “fraction” of pairs belonging to the same group in one solution,
but not to the same group in the other solution. Note that the average number of
elements in any of the groups is approximately %, and thus there are (%) ~ % pairs
of elements in each group. Because there are G groups, the total number of pairs is
% in one solution, and 2 x ’2\’—(2; = %2 elements in both solutions. The parameter « is
assigned a value of 0.05 (selected after detailed testing).

Combining the different parts described above leads to the implementation of

SGVNS that is summarized in Algorithm 6.

4 Implementation Differences for Solving CPP with SGVNS

To avoid duplication in this section, we only summarize the differences between the
SGVNS implementation for CPP and the one for MDGP. Further details on the CPP
implementation are given in [5]. Computational results in Sect. 6 demonstrate that
the new heuristic provides a powerful solution approach just as its counterpart for
the MDGP.

The solution space is constructed in the same way as for the MDGP. Thus, the
current solution is represented by vector x of length N (x° = (x{, x5, ..., x5)) such
that x{ is the label of the group (clique) containing element i i = 1,2,...,N). In
order to speed up the local search, we also maintain matrix sd¢ such that sd“[i][g] is
the sum of edge weights between element i and all elements assigned to the group
g in the current solution.

The number of groups (active columns in sd°) is initially set to N with one
element in each group. This, in fact, gives the initial solution. Unlike MDGP with a
constant number of groups (G), the number of groups (gmax) in CPP will be allowed
to change during the solution process. To accomplish this, we always maintain an
empty group in the list of groups (last column in sd°).

The local search is implemented using the same VND as for MDGP, including
the same nested structure of Insertion and Swap neighborhoods. If the Insertion
step is performed, we change the current solution, and then it becomes necessary



