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1
Introduction

The instantaneous reversal of the motion of every moving particle of a
system causes the system to move backwards, each particle along its path
and at the same speed as before ...

(Thomson, 1874)

Until very recently, the foundations of statistical mechanics were far from satis-
factory (Evans, Searles, and Williams, 2009a). Textbooks approach the derivation
of the canonical distribution in one of two ways. A common approach is to postu-
late a microscopic definition for the entropy and then to show that the standard
canonical distribution function can be obtained by maximizing the entropy sub-
ject to the constraints that the distribution function should be normalized and
that the average energy is constant. The choice of the second constraint is com-
pletely subjective due to the fact that, at equilibrium, the average of every phase
function is fixed. The choice of the microscopic expression for the entropy is also
ad hoc. This “derivation” is therefore flawed.

The second approach begins with Boltzmann’s postulate of equal a priori
probability in phase space for the microcanonical ensemble and then derives
an expression for the most probable distribution of states in a small subsystem
within that much larger microcanonical system. A variation of this approach is to
simply postulate a microscopic expression for the Helmholtz free energy via the
partition function.

The so-called Loschmidt paradox, which so puzzled Boltzmann and his con-
temporaries, remained unresolved for 119 years after it was first raised. All the
equations of motion in mechanics (both classical and quantum) and electrody-
namics are time-reversal-symmetric. Time reversibility of the classical equations
of motion is trivial to demonstrate. Consider Newton’s equations of motion for the

positions q; of N identical particles subject to interatomic forces F,(q;, ..., qy):
d*q,(t) ‘
dtlZ =F(q. i=1...N (1.1)

As Loschmidt and Kelvin (separately) noticed (Loschmidt, 1876; Thomson,
1874), time reversal t — —t leaves Eq. (1.1) unaltered since (—1)? = 1. This means
that if q(¢); —7 < t < 7 is a solution of the equations of motion, then so too is
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First Edition. Denis J. Evans, Debra J. Searles, and Stephen R. Williams.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.



2

1 Introduction

q(—t) : —7 <t < 7. Changing the direction of time inverts every velocity — as
per Kelvin’s quote above.

The Loschmidt Paradox can be stated quite simply. If all the laws of physics are
time-reversal-symmetric, how can one prove a time-asymmetric law like the sec-
ond “Law” of thermodynamics that states that the entropy of the Universe “tends
to a maximum” (Clausius, 1865; Clausius, 1872). Although there have been many
attempts over the last century to resolve this paradox, the matter was not really
settled until the first proof of a fluctuation theorem in 1994 (Evans and Searles,
1994).

A less well-known problem concerns Clausius’ inequality itself. In some ways,
this is an even more fundamental problem because it concerns thermodynamics
rather than statistical mechanics. Clausius’ inequality for the heat Q,, transferred
to a thermal reservoir states that the cyclic integral ¢ dQ,,/T > 0. When this
inequality is, in fact, an equality (the process is quasi-static), we have the usual
argument that [ dQy /Ty, is a state function and represents the change in the
equilibrium entropy of the reservoir, S, and T, is the equilibrium thermody-
namic temperature of that reservoir or set of reservoirs. Clausius went on to apply
his inequality to the system of interest (soi) and thermal reservoir (th). Indeed, in
his original papers he does not distinguish between the two systems.

Now comes the difficulty: when we have a strict inequality ¢ dQ/T > 0, either
the system of interest or the reservoir (or both) is (or are) not in true thermody-
namic equilibrium (the process is not quasi-static). In this case, what is the tem-
perature? Clausius only defined the temperature for quasi-static or equilibrium
processes where the entropy is a state function. In the case of a strict inequality,
[ dQ/T is not a state function. It is path- and/or history-dependent.

For quasi-static processes (only!), the change in equilibrium entropies of two
equilibrium states can be obtained by considering [ dQy, /T, for a reversible (i.e.,
infinitely slow) pathway between the two equilibrium states. However, if the initial
or final states are out of equilibrium or if the pathway connecting the two states is
irreversible, the entropy that Clausius defined is ill-defined and so too is the tem-
perature: T = dU /0S|, where U is the internal energy, S the (undefined) entropy,
and V the volume. This means that the Clausius inequality § dQ/T > 0 is without
meaning.

Clausius is famous for his declaration:

The energy of the Universe is constant. The entropy tends to a maximum.
(Clausius, 1865, 1872)

He did not recognize the fact that he only defined the entropy (and temperature)
for reversible processes. This particular difficulty was first discussed in the late
nineteenth century by Bertrand (1887) and early in the twentieth century by Orr
(1904), Orr (1905), Planck (1905), and Buckingham (1905).

“There are three things in Prof. Orr’s article (Orr, 1904) which stand out as of
particular importance. (1) He says in substance, though with great moderation,
that all proofs of the theorem ... when the integral is taken round an irreversible
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cycle, are rubbish.” Buckingham later discusses problems with writing textbooks
while being aware at the time, of some of the difficulties mentioned above. Buck-
ingham continues: “The question how a treatise should be written is not so easily
answered. ... I do not know of a single book which today deserves the title of
‘Treatise on Thermodynamics’.” He concluded: “We must leave the question of
the proper method for a treatise to the future when the difficulties which now
beset us may have vanished.” (Buckingham, 1905)

In 1905, Planck responded to Orr (Planck, 1905) agreeing with Orr’s concerns
on the definition of temperature and saying in part that: “If a process takes place so
violently that one can no longer define temperature ..., then the usual definition
of entropy is inapplicable.”

These particular difficulties were only exacerbated in 1902 with the publication
(and subsequent circulation) of Gibbs’ seminal treatise “Elementary Principles
in Statistical Mechanics” (Gibbs, 1981). In his treatise, Gibbs showed that the
microscopic expression he identified at equilibrium, as the thermodynamic
entropy Sg(t) = —kg / dU f(I'; ) In[ f(T'; t)], where f(T'; ) is the N-particle phase
space distribution function at time ¢, is in fact a constant of the motion for
autonomous Hamiltonian dynamics! If the initial distribution was not the equi-
librium distribution, the Gibbs entropy did not, as Clausius claimed, increase in
time until it reached its maximum and the system was effectively in equilibrium.
For these systems, the Gibbs’ entropy is simply a constant independent of time.

After Boltzmann’s death, this distressing state of affairs was reviewed without
satisfactory resolution by the Ehrenfests in 1911 (Ehrenfest and Ehrenfest, 1990).
(Paul Ehrenfest was a student of Boltzmann.) Indeed ,in the Preface to the
(English) Translation, Tatiana Ehrenfest confides: “At the time the article was
written [1911], most physicists were still under the spell of the derivation by
Clausius of the existence of an integrating factor for the ... heat ... it became
clear to me afterwards, that the existence of an integrating factor has to do only
with the differentials dx,,dx,, ...,dx, of the equilibrium [T. Ehrenfest’s italics]
parameters dx,,dx,,...,dx,, and is completely independent of the direction
of time ... Nevertheless even today [1959] many physicists are still following
Clausius, and for them the second law of thermodynamics is still identical with
the statement that entropy can only increase.”

The Ehrenfests’ article did point out that away from equilibrium entropy was
problematic and that for autonomous Hamiltonian systems the entropy defined
by Gibbs was indeed a constant of the motion. In Ehrenfest and Ehrenfest (1990,
p. 54), they agree with Gibbs that, “From Liouville’s theorem, Eqs. (26) and (26’),
it follows immediately that the quantity o [i.e., S; above] ... remains exactly con-
stant during the mixing process.” They go on to discuss Gibbs’ flawed attempts
to resolve the paradox by defining a coarse-grained entropy. This quantity’s time
dependence is determined by the grain size and is thus not an objective property
of the physical system of interest.

The theory of the relaxation to equilibrium has also been fraught with diffi-
culties (Evans, Searles, and Williams, 2009a). First, there was no mathematical
definition of equilibrium! The first reasonably general approach to this problem is
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summarized in the Boltzmann H-theorem. Beginning with the definition of the H-
function, Boltzmann proved that the Boltzmann equation for the time evolution
of the single particle probability density implies, for uniform ideal gases, a mono-
tonic decrease of the H-function in time (Boltzmann, 1872) — see the review by
Lebowitz (1993) for a modern discussion of Boltzmann’s ideas.

However, there are at least two problems with Boltzmann’s treatment. First,
the Boltzmann equation is valid only for an ideal gas. Second, and more prob-
lematic, unlike Newton’s equations, Hamilton’s principle, or the time-dependent
Schrédinger equation, the Boltzmann equation itself is not time-reversal-
symmetric. It is therefore completely unsurprising that the Boltzmann equation
predicts a time-irreversible result, namely the Boltzmann H-theorem.

This leads to a second version of the irreversibility paradox (at least for ideal
gases): how can the time-irreversible Boltzmann equation, which leads easily to
the time irreversible Boltzmann H-theorem, be derived exactly for ideal gases
from time-reversible Newton’s equations? This issue was also discussed, without
resolution, in the Ehrenfest encyclopedia article (Ehrenfest and Ehrenfest, 1990).

Since our new proof of how macroscopic irreversibility arises from time-
reversible microscopic dynamics is valid for all densities, we do not need to
directly answer this question in this book. We do make the comment, however,
that it is thought that in the ideal gas limit, the Boltzmann equation is exact, but
its detailed derivation is beyond the scope of this present book."

The 1930s saw significant progress in ergodic theory with a proof that for a
finite, autonomous Hamiltonian system, whose dynamics preserves a mixing
microcanonical equilibrium distribution (i.e., a distribution that is uniform over
the constant energy phase space hypersurface), averages of physical properties
must, in the long-time limit, approach those obtained with respect to that
equilibrium microcanonical distribution, regardless of the initial distribution
(Sinai, 1976). Later in this book we will give a generalization of the ergodic theory
proof. We consider finite systems with autonomous dynamics that are mixing
with respect to some possibly thermostatted and/or barostatted equilibrium
distribution that is also a solution to the dynamics considered. We show that for
such systems, at sufficiently long times, averages of physical phase functions will
approach, to arbitrary accuracy, the equilibrium averages taken over their mixing
equilibrium distributions, irrespective of the initial distribution.

These proofs are, however, not very revealing. They tell us almost nothing of
the relaxation process, only that it takes place. Relaxation is inferred rather than
elucidated.

We go on to discuss a new set of theorems and results that, when taken
together, provide a completely new approach to establishing the foundations of
classical statistical thermodynamics and simultaneously resolving all the issues
mentioned above. Each of these theorems is consistent with time-reversible,

1) In Chapter 9, we do make some comments on the relationship between Boltzmann’s assumption of
molecular chaos (stosszahlansatz in German) and the axiom of causality. It is this assumption that
breaks time reversal symmetry in the Boltzmann equation.
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deterministic dynamics. Indeed, time reversibility of the underlying equations of
motion is the key component to proving these theorems. We do comment that
there are stochastic and/or quantum versions of some of the theorems. Each of
these theorems is exact for systems of arbitrary size: taking the thermodynamic
limit is not required. The theorems are valid for arbitrary temperatures and
densities. The theorems are exact arbitrarily near to, or far from, equilibrium.
Assumptions about being arbitrarily close to equilibrium, so that the response of
systems to external forces is linear, are not required. In the process of deriving
these theorems, the so-called “Laws” of thermodynamics cease to be unprovable
“Laws” and instead become mathematical theorems.

The first step toward understanding how macroscopic irreversibility arises from
microscopically time-reversible dynamics came in 1993 when Evans, Cohen, and
Morriss (1993) proposed the first so-called fluctuation relation. By generalizing
concepts from the theory of unstable periodic orbits in low-dimensional systems,
these authors proposed a heuristic, asymptotic argument for the relative proba-
bility of seeing sets of trajectories and their conjugate sets of antitrajectories in
nonequilibrium steady states maintained at constant internal energy. In the fol-
lowing year, Evans and Searles (1994) published the first mathematical proof of a
fluctuation theorem. A generalized and detailed proof of the Evans—Searles fluc-
tuation theorem is given in Chapter 3. This proof concerns the relative probability
of fluctuations in sign of a quantity now known as the time-averaged dissipation
function. Unsurprisingly, fluctuation theorems lead to many new results. This is
what the present book sets out to describe. It used to be said that there are very
few exact results that are known for nonequilibrium many-body systems. This is
no longer the case.

In Chapter 3, we prove the second law inequality (Searles and Evans, 2004), and
the nonequilibrium partition identity (Morriss and Evans, 1985; Carberry et al.,
2004; Evans and Searles, 1995). These are simple mathematical consequences of
the fluctuation theorem. The second law inequality is, in fact, a generalization of
the second “Law” of thermodynamics that is valid for finite, even small systems,
observed for finite, even short, times. Classical thermodynamics applies to only
large, in principle infinite, systems either at equilibrium or in the infinitely slow,
or quasi-static, limit.

Dissipation was first explicitly defined in 2000 by Searles and Evans (2000a),
although it was, of course, implicit in the earlier proofs of the Evans—Searles fluc-
tuation theorems in 1994, et seq. It is also implicit in many of Lord Kelvin’s papers
in the late nineteenth century. The dissipation function has many properties, but
its original definition directly involved sets of trajectories and their conjugate sets
of time-reversed antitrajectories. For classical N-particle systems, the specifica-
tion of all the coordinates and momenta of all the atoms in the system completely
describes the microstate of a classical system. We define the phase space vector
I'=(q;,....qy.P;,--. - Py) of the positions q; and momenta p, of the N particles.
We imagine an infinitesimal set of phases inside an infinitesimal volume 4 V(I")
in phase space. For simplicity, we assume that the system is autonomous (i.e., the
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equations of motion for all the particles, [T, £), do not refer explicitly to time
I, any external fields are time-independent).

As time evolves, this set will trace out an infinitesimal tube in phase space. We
follow this tube for a time interval (0, £). At time ¢, an initial phase space vector I
has evolved to the position §'T’, where S’ is the phase space —time evolution opera-
tor. If we take the set of phase points inside the infinitesimal volume dV-(S'T) and
reverse all the momenta leaving all the particle positions unchanged, we have the
phase vector MTS'T, where MT is a time-reversal mapping: M (q, p) = (q, —p).

If we now imagine following the natural motion of this mapped set forward
in time from time ¢ to 2¢, we arrive at the phase point S’MTS'T. Because the
equations of motion are time-reversal-symmetric, the final set of phase points will
have the same position coordinates but the opposite momenta to the original set
of time zero phases: S‘’MTS'T = MTT. This is the fundamental property of time-
reversible dynamics discussed in Kelvin’s quote at the beginning of this chapter.
This time reversibility property is exploited directly in the definition of the dissi-
pation function. We will give a more detailed description of reversibility using a
more precise notation in Chapter 2 — especially in Section 2.1.

The time integral of the dissipation function is simply defined as the natural
logarithm of the probability ratio of observing at time zero the conjugate sets of
trajectories inside phase space volumes § Vp(I'), 8V (MTST):

p@EVrI):0) ' ;
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The small phase space volume 6 V-(I') defines an initial set of phase space trajec-
tories. The volume 5 V(M7 S'T) defines the conjugate set of the antitrajectories.
Going forward in time from 6§V (MTST) is like going backward in time from
5 V(ST except that all the momenta are reversed. For Eq. (1.2) to be well defined
requires that the system should be ergodically consistent, that is, if the numerator
is nonzero for initial phases inside some specified phase space domain D, then the
denominator must also be nonzero. This condition ensures that the dissipation
function is well defined everywhere inside the ostensible phase space domain, D.

Asahistorical remark, we can see from the definition, Eq. (1.2), that ergodic con-
sistency guarantees the existence of (almost all) conjugate phase space trajectory/
antitrajectory pairs. However, the mere existence of these pairs of trajectories by
no means implies that the probability ratio of observing infinitesimal sets of these
conjugate trajectory pairs is unity, as Loschmidt tried to imply. Once you have
written down Eq. (1.2) for the relative probability of seeing a set of trajectories and
its conjugate set of antitrajectories, it seems obvious that Loschmidt’s assertion of
both sides of Eq. (1.2) equaling unity is wrong. One must not make the mistake of
discussing individual conjugate phase space trajectories rather than conjugate sets
of trajectories. The probability of observing any individual phase space trajectory
is precisely zero! Their rephrasing of Eq. (1.2) would have been ill defined, leading
to zero divided by zero on the left-hand side.

We will see in Chapter 5 that an equilibrium state is characterized by a set
of equations of motion and a phase space distribution for which the dissipation



